
Massachusetts Institute of Technology MITES 2018–Physics III

Assignment 5: Statistical Physics, The Ideal Gas, and Simulations

Preface: In this assignment, we build and explore a model of molecule-receptor binding, derive some canon-
ical results for the ideal gas model, and conclude by working through a soft-introduction to the use of sim-
ulations in computational science.

1. Model of Receptor Binding
On the cell membranes of cells, there are protein receptors to which extracellular molecules can bind
and ultimately induce a signal in the cell. Let us consider a simple model of such receptor-molecule
binding and analyze this model from the perspective of statistical physics.
Say we have many molecules each of which can either be free or bound to one of M distinct protein
receptors (There are many more molecules than receptors). The molecules are identical to one another
and each one has energy 0 when it is free and energy −E0 when it is bound to a receptor. Our system
exists at a temperature T . An example microstate is shown in Fig. 1.

Figure 1: A particular microstate of a system with M = 5 receptor sites.
There are two molecules bound to receptors so the energy of this microstate
is −2E0.

(a) (6 points) There are a number of questions we can ask about the given physical system. You only
needed to provide three questions; here are several possible ones

– What is the partition function of this system in terms of E0 and T (or β)?
– What is the average number of occupied receptor sites?
– What is the average number of occupied receptor sites when T → 0?
– What is the probability that all M receptor sites are occupied?
– What is the Gibbs entropy of this system?
– As a function of k, the number of occupied receptor sites, what is the Boltzmann entropy of

the system?
– If we assumed the molecules not bound to the receptor behaved as particles in an ideal gas

of volume V , what would the partition function be?
The important thing about these questions is that they be well-defined which means that we can
answer them explicitly using the methods we have learned so far this summer.

�

(b) (6 points) We will answer the first two questions listed above.
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• What is the partition function of this system in terms of E0 and T (or β)?
We have a system with many identical molecules, each of which has energy 0 when it is un-
bound and energy −E0 when it is bound to a receptor site. There are M distinct receptor
sites. Therefore, if k ≤M molecules are bound to receptor sites, there is ”M choose k” num-
ber of ways to arrange these identical molecules amongst the M sites, and such a microstate
has energy −E0k. Therefore, the probability to have k occupied receptor sites is given by

pk =
1

ZM (βE0)

(
M

k

)
eβE0k, (1)

where Z is the partition function of the system. Given that k can run from 0 to M , we then
find the partition function

ZM (βE0) =
N∑
k=0

(
M

k

)
eβE0k =

(
1 + eβE0

)M
, (2)

where we used the binomial theorem in the final line.
• What is the average number of occupied receptor sites?

We can compute 〈k〉, the average number of occupied receptor sites, by using Eq.(1) in our
probability based definition of average. We have

〈k〉 =
M∑
k=0

k pk =
1

ZM (βE0)

M∑
k=0

k

(
M

k

)
eβE0k. (3)

From Eq.(2), we can write Eq.(3) in terms of the partial derivative of the partition function.
We then find

〈k〉 =
1

ZM (βE0)

∂

∂(βE0)

M∑
k=0

(
M

k

)
eβE0k

=
1

ZM (βE0)

∂

∂(βE0)
ZM (βE0)

=
∂

∂(βE0)
lnZM (βE0). (4)

Using Eq.(2) to compute this quantity yields

〈k〉 =
∂

∂(βE0)
ln
(
1 + eβE0

)M
=

M

1 + e−βE0
. (5)

Therefore, the Eq.(5) is bounded above by M (as we expect) and as T → 0 (i.e., β → ∞),
〈k〉 approaches M and all the receptor sites become fully occupied. Conversely, as T → ∞,
〈k〉 approaches M/2 and half of the sites become occupied. Entropically, this makes sense
because as T → 0, entropy dominates the free energy and the system seeks the macrostate
with the highest entropy.

�

2. Average Energy of an Ideal Gas

(a) In Lecture Notes 07, we showed that the partition function of the ideal gas is

Zideal gas =
V N

N !

(√
2πmkBT

h

)3N

. (6)
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Writing Eq.(6) in terms of β = 1/kBT , we obtain

Zideal gas =
V N

N !

(
1

h

√
2πm

β

)3N

. (7)

Using Eq.(13) and Eq.(7), to compute the average energy of the ideal gas, we find

〈E〉 = − ∂

∂β
lnZideal gas

= − ∂

∂β
ln

[
V N

N !

(
1

h

√
2πm

β

)3N
]

= − ∂

∂β

ln
V N

N !
+ ln

(√
2πm

h

)3N

+ ln
1

β3N/2


=

3N

2

∂

∂β
lnβ =

3N

2

1

β
, (8)

where in the final line we dropped all terms that did not depend on β. With the definition of β
in terms of temperature, we then find that

〈E〉 =
3

2
NkBT. (9)

Eq.(63) is an important result in statistical physics. Since 〈E〉 only comes from kinetic energy
contributions to the ideal gas, the average kinetic energy per particle is

Avg kinetic energy per particle =
〈E〉
N

=
3

2
kBT. (10)

or
T =

2

3kB
(Avg kinetic energy per particle). (11)

From Eq.(11) comes the interpretation of T as a proxy for the average kinetic energy of a gas
particle in a gas.

(b) We want to prove the relationship between the partial derivatives of lnZ and the variance σ2
E in

the energy of an ideal gas. With Z defined as

Z =
∑
{i}

e−βEi , (12)

the average energy is given by

− ∂

∂β
lnZ =

∑
{i}

Ei
e−βEi

Z
= 〈E〉. (13)

Computing the negative of the second derivative of Eq.(13), we obtain

∂2

∂β2
lnZ = − ∂

∂β

∑
{i}

Ei
e−βEi

Z
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= −
∑
{i}

Eie
−βEi

(
∂

∂β

1

Z

)
−
∑
{i}

Ei
1

Z

∂

∂β
e−βEi

= −
∑
{i}

Eie
−βEi

(
∂

∂β

1

Z

)
+
∑
{i}

Ei
1

Z
Eie
−βEi

=
∑
{i}

Eie
−βEi

1

Z2

(
∂

∂β
Z

)
+
∑
{i}

E2
i

1

Z
e−βEi

= −
∑
{i}

Eie
−βEi

1

Z2

∑
{j}

Eje
−βEj

+
∑
{i}

E2
i

1

Z
e−βEi , (14)

where we used ∑
{j}

Eje
−βEj = − ∂

∂β

∑
{j}

e−βEj = − ∂

∂β
Z, (15)

in the final line. Given that the index defining the summation is unimportant, and scalar factors
multiplying summations can be brought inside the integral symbol, we can write Eq.(14) as

∂2

∂β2
lnZ = −

∑
{i}

Ei
e−βEi

Z

+
∑
{i}

E2
i

1

Z
e−βEi . (16)

Finally, with the definition of microstate probability as pj = e−βEj/Z, we can write Eq.(16) as

∂2

∂β2
lnZ = −

∑
{i}

Eipi

+
∑
{i}

E2
i pi = −〈E〉2 + 〈E2〉 = σ2

E , (17)

and the identity is therefore proved.
�

(c) We want to find the standard deviation in the energy of an ideal gas, and in order to do this we
must first compute the variance. Using Eq.(17), Eq.(7), and part of the result from (a), we find the
variance

σ2
E =

∂2

∂β2
lnZideal gas

=
∂2

∂β2

ln
V N

N !
+ ln

(√
2πm

h

)3N

+ ln
1

β3N/2

 (18)

= − ∂

∂β

3N

2β
=

3N

2β2
. (19)

In terms of temperature, we therefore have the variance σ2
E = 3

2N(kBT )2, and the standard devi-
ation

σE = kBT

√
3

2
N. (20)

�

(d) If 〈E〉 and σE are the mean and standard deviation, respectively, of a Gaussian, then Eq.(63) and
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∝ e−(E−〈E〉)2/2σ2
E

〈E〉

→ ← σE

E

Figure 2: Plot of Gaussian distribution of ideal gas energies: The distribution of ener-
gies is sharply peaked about the mean. The width σE is much smaller (in scale) than
〈E〉. Given that there is a 99% chance that a random variable falls within 3 standard
deviations away from the mean, this means that in real systems of gas molecules, the
average energy of the system (the random variable in this situation) is essentially al-
ways very close to the theoretical mean 〈E〉.

Eq.(20) tell us that, for constant temperature,

〈E〉 ∼ N, σE ∼ N1/2. (21)

For the Gaussian distribution, σE provides a rough scale for how wide the distribution is about
the mean. What Eq.(21) tells us is that for N � 1 (like N = 1026), the mean of the distribution
is many orders of magnitude larger than the standard deviation. Therefore, for these very large
values ofN the distribution is highly peaked at 〈E〉 and has a very narrow distribution about this
value.
A schematic of such a plot is shown in Fig. 2.

�

3. Ideal Gas Law

Figure 3: An external force fon sys. applied to a wall of area A on a volume V of gas. We can
use this depiction to define a pressure exerted by the gas on the surroundings.

(a) (4 points) We want to find a relationship between the change in free energy and the work done
on a system. The free energy of a system is given by

Fsys. = Esys. − TSsys.. (22)
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For a constant temperature system, the change in free energy dFsys can be related to the change
in energy dEsys and the change in entropy dSsys through

dFsys. = d
(
Esys. − TSsys.

)
= dEsys. − TdSsys., (23)

where in the final equality we distributed the differential operator d across the terms in the paren-
theses and treated T as a constant. Now, by conservation of energy, we know that the change in
the internal energy dEsys of a system is given by

dEsys. = dWon sys. + dQent.. (24)

dWon sys. is the work done on the system, and dQent. is the heat entering the system. For the system
of interest, we will take the entropy change of the system to be

dSsys. = dQent./T, (25)

which allows us to write Eq.(24) as

dEsys. = dWon sys. + TdSsys. (26)

Subtracting TdSsys. from both sides of Eq.(26), we have

dWon sys. = dEsys. − TdSsys.. (27)

Finally, using Eq.(36) in , we obtain

dWon sys. = dFsys.. (28)

Namely, the work done on a system is equal to the change in the free energy of the system.
�

(b) (4 points) Our objective is to prove a relationship between the work done on a system, the pressure
of the system, and the change in the volume of the system. We begin with the equation for the
incremental work dWon sys. done on a system given that an external force fon sys. is applied to the
system over a distance dx:

dWon sys. = fon sys.dx. (29)

By Newton’s third law, the force that the surroundings exert on a system is equal in magni-
tude and opposite in direction to the corresponding force the system applies to its surroundings.
Namely, if fby sys. is the force the system exerts on its surroundings, then we have

fon sys. = −fby sys.. (30)

Plugging Eq.(30) into Eq.(29), we have

dWon sys. = −fby sys.dx. (31)

Say that our volume V consists of a rectangular prism of the kind in Eq.(??). For a volume V
represented by a rectangular prism, if we translate a face of the prism with area A by changing a
side length of the prism by a distance dx, then the volume change dV of the system is

dV = Adx. (32)
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This result, together with the definition of the pressure that a system exerts on its surroundings,

P =
fby sys.

A
, (33)

Eq.(31) becomes

dWon sys. = −
fby sys.

A
Adx = −PdV, (34)

and the result is proved.
�

(c) (4 points) We seek a relationship between the free energy of our ideal gas system and the pressure
the ideal gas exerts on its surroundings. We write the free energy of our system explicitly in terms
of its dependent variables T , V , and N as

Fsys. = F (T, V,N). (35)

Any change in F (T, V,N) can be written as a linear combination of the changes along its inde-
pendent variables where the coefficients are defined by the appropriate partial derivative:

dF (T, V,N) =

(
∂F

∂T

)
dT +

(
∂F

∂N

)
dN +

(
∂F

∂V

)
dV. (36)

For a system which is at constant temperatureT and which does not change its number of particles
N , the first and the last terms in Eq.(36) vanish and with Eq.(35) we are left with

dFsys. =

(
∂F

∂V

)
dV.. (37)

Now, from Eq.(28) and Eq.(34), Eq.(37) becomes(
∂F

∂V

)
dV = dFsys. = dWon sys. = −PdV. (38)

Taking the coefficient of dV on the far left side of Eq.(38) to be equal to the coefficient of dV on
the far right side of Eq.(38), we have

P = −
(
∂F

∂V

)
, (39)

which is the desired relationship between free energy and pressure.
�

(d) (4 points) We will use the derived result Eq.(39) to derive the relationship between pressure P ,
volume V , temperature T , and number of particlesN for the ideal gas. Given that the free energy
F is related to the partition function Z through

F = −kBT lnZ, (40)

we can use the ideal gas partition function Eq.(6), to find

P = −
(
∂F

∂V

)

7



= kBT
∂

∂V
ln

[
V N

N !

(√
2πmkBT

h

)3N

.

]

= kBT
∂

∂V

ln
V N

N !
+ ln

(√
2πm

h

)3N

+ ln
1

β3N/2


= NkBT

∂

∂V
lnV, (41)

where in the last line we dropped all terms that were not functions of V . Differentiating the final
line, we obtain

P =
NkBT

V
, (42)

or in its more standard form
PV = NkBT. (43)

We note that in form of the ideal gas law given in Eq.(43), N is the number of particles in the
system, and kB = 1.3807× 10−23 J·K−1 is Boltzmann’s constant. The ideal gas law is sometimes
written as

PV = nRT, (44)

where n is the number of moles of particles in the system, and R = 8.314 J·mol−1·K−1. Eq.(43)
and Eq.(44) are equivalent, given that N/NA = n and NAkB = R, where NA = 6.022 × 10−23 is
Avogadro’s number.

�

4. Laplace’s Method and Stirling’s Approximation

(a) (4 points) We want to use Laplace’s method to approximate the Gamma function. First we write
the equation in a more suggestive form:

Γ(N + 1) =

∫ ∞
0

dx e−x+N ln x ≡
∫ ∞
0

dx e−Nf(x), (45)

where we defined
f(x) =

x

N
− lnx. (46)

In standard derivation of the Laplace’s method procedure, we did not assume the parameter
N was part of the function f(x), but it turns out the procedure still applies as long as there is a
function proportional toN in the argument of the exponential. From the definition of the gamma
function in Eq.(45), that function is N lnx. Now, in order to compute the value of x at which
Eq.(46) has a local minimum, we must first find the point at which f ′(x) = 0. Labeling this point
x1, we find it is constrained by

0 = f ′(x = x1) =
1

N
− 1

x1
, (47)

which implies
x1 = N. (48)

Now, computing the second derivative of Eq.(46) to ensure that f(x) has a local minimum at the
point, we have

f ′′(x = x1) =
d

dx

(
1

N
− 1

x

) ∣∣∣
x=x1

=
1

x21
=

1

N2
. (49)
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Since N > 0, we have f ′′(x = x1) > 0 and therefore x1 = N defines a local minimum for this
system. As the last step in the Laplace’s method procedure, we need to compute f(x) at the value
x = x1. We have

f(x = x1) =
x1
N
− lnx1 = 1− lnN. (50)

Finally, with Eq.(49) and Eq.(50), we can apply the derived formula for Laplace’s method. Doing
so gives us

Γ(N + 1) =

∫ ∞
0

dx e−x+N ln x

=

∫ ∞
0

dx e−Nf(x)

'

√
2π

Nf ′′(x1)
e−Nf(x1)

=

√
2π

N(1/N2)
e−N+N lnN . (51)

With e−N+N lnN =
(
e−1elnN

)N
= (N/e)N , we then have the final result

Γ(N + 1) '
√

2πN

(
N

e

)N
. (52)

�

(b) (2 points) In Assignment #3, we derived that the Gamma function Γ(N+1) is equal toN !. There-
fore, Eq.(86) indicates that we can approximate N ! as

N ! '
√

2πN

(
N

e

)N
, (53)

which is what we have been using as Stirling’s approximation.
�

(c) (4 points) We want to compute the percent error of the approximation Eq.(53). We will choose
N = 100 as our value of N . Computing the result exactly using the definition N ! = N(N −
1) · · · 2 · 1, we have

(N !)exact = 9.332621× 10157. (54)

Now computing N ! approximately using Eq.(53), we find

(N !)approx. = 9.324847× 10157. (55)

Finally, computing the percent error in the approximation, we have

% error in approximation of N ! =

∣∣∣(N !)approx. − (N !)exact

∣∣∣
(N !)exact

× 100 = 8.33× 10−2. (56)

Therefore when we apply Stirling’s approximation to N = 100, we have a ∼ 0.1% error in our
result. As we increase N , this percent error gets even smaller and smaller such that when we are
considering N on the order of Avogadro’s number (1026), the error is virtually non-existent.
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5. Coin-Flip Simulation and the Gaussian Distribution
If we flip a fair coin N times, then the probability that we get k heads is

P (N, k) =
1

2N

(
N

k

)
. (57)

Using Stirling’s approximation (proved in Problem 1 of this assignment), it is possible to show that for
N � 1, the probability Eq.(57) can be approximated as the Gaussian

P (N, k) '
√

2

πN
exp

(
− 2

N
(k −N/2)2

)
. (58)

The relation between Eq.(57) and Eq.(58) is another example of the central limit theorem, the theorem
stating that some distributions reduce to the Gaussian distribution in the largeN limit. In this problem,
we will demonstrate this result computationally by simulating many different runs of coin flips. In
science and engineering, simulations are used tounderstand theoretical models qualitatively in lieu of
actual experiments, which may be difficult or time consuming to perfom. For example, rather than
flipping a coin 1000 times and counting the number of heads ourselves, we will run a simulation to do
this coin-flipping and counting for us.
We will be using Mathematica to complete this problem, so we need to establish some code preliminar-
ies.

(i) Log in to your account in one of MIT’s Athena Clusters, and go to the MITES 2018 –Physics III
course website.

(ii) Download the code coin flip simulation.nb from the course webpage and open it in Mathe-
matica.

(iii) Select a block of code and run it by pressing Shift+Enter.

Now we can begin the problem itself

(a) What is the mean and what is the standard deviation of Eq.(57)? What are these values for N =
1000? Hint: You already computed both of these quantities in Assignment #2 so you can just quote the
answer.

(b) Run each line of the ”Function Definitions” section of the code to determine what the associated
function does.

(c) Run each part of the ”Simple Code Examples” section. For each line that has a (∗ ∗), explain the
purpose of the line in the overall code (For example, ”This line defines the function v” or ”This
line produces a random number between 0 and 1”). You can write your annotations between the
asterisks of (∗ ∗).

(d) In ”Simulating Coin Flips”, we have two code blocks. The first code block provides a single
simulation of coin flips, like flipping a coin 100 times and counting the number of heads.
A student wrote this block of code with the intention of making it depict flipping a fair coin (i.e.,
50% chance of heads and 50% chance of tails) 1000 times and incrementing the tally of heads by
1 only if heads is obtained. However, he made some mistakes in his code.
Correct his code, annotate/explain each line with a (∗ ∗), and run it to produce the intended
simulation.

(e) The second code block of ”Simulating Coin Flips” provides many simulations of coin flips, like
having 100 people each flip a coin 100 times and counting the distribution of heads across all
people.
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In the second code block of ”Simulating Coin Flips”, the student wanted to simulate 5000 people
flipping a fair coin (i.e., 50% chance of heads and 50% chance of tails) 1000 times and he wanted
to create a histogram of the number of heads obtained across all people. However, he made some
mistakes in his code.
Correct his code, annotate/explain each line with a (∗ ∗), and run it to produce the intended
simulation.

(f) After you run (e), you should find the distribution, the mean, and standard deviation of number
of heads for the 5000 simulations of 1000 coin flips.

– What probability distribution does the distribution of heads in the histogram remind you of?
– How do the mean and standard deviation compare to the theoretical results computed in (a)?

Submitting: As your submission for this part of the assignment, you should first make sure you
write your name at the top of the notebook. Then, you should print out the entire Mathematica
notebook which should include your runs, corrections, and annotations from the various parts
of the problem.

(a) We want to determine the mean and the standard deviation for the distribution

P (N, k) =
1

2N

(
N

k

)
. (59)

Eq.(59) is the binomial distribution with p = 1 − p = 1/2. In Assignment #2, we found that the
mean and standard deviation of the binomial distribution for general p is

〈k〉 = Np, σk =
√
Np(1− p). (60)

With our particular value of p = 1/2, we then have

〈k〉 =
N

2
, σk =

√
N

2
. (61)

For N = 1000, Eq.(61) become

〈k〉 = 500, σk = 15.811. (62)

�

Solutions to parts (b)–(f) are given in the solutions notebook for this problem.
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1 Challenge Problem

Rules of Play: The due date for this challenge problem is Sunday July 29 at the start of our final exam
review session. Students who complete parts of this problem receive awards. Here are how awards
are meted out:

(a) Any points obtained from solving the problem are added to your final exam score.
(b) If at least half of the class completes up to and including part (e), then Jason will bake something

for the final exam.
(c) In addition to (a), any student who solves the problem in full, will have one fewer problem on

their final exam. (There will be 5-6 problems for the two hour final).

6. Statistical physics of permutations
We have 2N objects consisting of N objects of type-B denoted B1, B2, . . . , BN and N objects of type-
W denoted W1,W2, . . . ,WN . The objects can only exist in (Bk,W`) pairs, and the mircostates of our
system are defined by a particular collection of pairings between the Bs and W s. Fig. 4 depicts one
such microstate for N = 15.

Figure 4: A particular microstate of a N = 15 system.

The energy of a microstate is the sum of the energies of all the pairs. The energy of a particular pair
(consisting of (Bk,W`)) is

E(Bk,W`) =

{
0 if k = `,

λ if k 6= `,
(63)

where λ > 0 is a parameter with units of energy. Namely, from Eq.(63), if a pair consists of (Bk,Wk),
for any k, then the energy of the pair is zero, and if a pair consists of (B`,Wk), for ` 6= k, then the
energy of the pair is λ. We call the former a ”matched pair” and the latter a ”mismatched pair”.

(a) How many possible microstates are there for a system with N Bs and N W s?
(b) Let j be the number of mismatched pairs in a microstate. What is the energy of a microstate

written in terms of j? What is the energy for the microstate shown in Fig. 4?
(c) Letting j be the number of mismatched pairs in a microstate, argue that the partition function for

a system of N Bs and N W s (governed by the energy Eq.(63)) can be written as

ZN (βλ) =
N∑
j=0

gN (j)e−βλj , (64)

and explain what gN (j), λj, and the summation represent. (Hint: Eq.(64) is analogous to Eq.(6)
from Assignment 4.)

12



(d) Explain why we can write gN (j) as

gN (j) =

(
N

j

)
dj , (65)

where dj is the number of derangements of j elements.
(e) You previously showed that the general formula for the number of derangements of N elements

is

dN =
N∑
j=0

(−1)j
(
N

j

)
(N − j)!, (66)

By using the integral expression for the factorial of a number,

M ! =

∫ ∞
0

dx e−xxM , (67)

and the Binomial theorem, derive an integral expression for dN . Your expression should not have
any unevaluated sums.

(f) Use your result from (e), the expression in (d), and the Binomial theorem to derive an integral
expression for ZN (βλ) in Eq.(64). Your expression should not have any unevaluated sums, and should
reduce to the result from (a) when λ = 0..

(g) Use Laplace’s method to approximate the integral obtained in (f)
(h) The average number of mismatched pairs in the system can be defined as

〈j〉 =

N∑
j=0

j pj =

∑N
j=0 j gN (j)e−βλj

ZN (βλ)
, (68)

Using Eq.(64), write 〈j〉 in terms of a partial derivative of a function of ZN (βλ).
(i) Use the result of (h) and the Laplace’s method approximation of the partition function in (g) to

find an approximate formula for 〈j〉 as a function of temperature T . Noting that 〈j〉 can only be
greater than 0, at what value of T is the result of the approximation no longer valid? Plot 〈j〉 as
a function of T making sure to show the point where 〈j〉 is zero.

(a) The number of microstates in the system forN Bs andN W s is the total number of ways to choose
a collection of (Bk,W`) pairings. To find this number we can imagine arranging all the type-B
objects along a line in order. Then, the number of collections of (Bk,W`) pairings is the number
of ways we can order the type-W objects along the line of type-B objects. This number is simply
the number of ways to order N distinct objects in a list. Therefore, the number of microstates in
the system is

N ! (69)

�

(b) We know that there is an energy contribution λ for each mismatched pair. Therefore, if there are
j mismatched pairs in the system, then the energy is

E = λj. (70)

For the figure Fig. 4, there are 10 mismatched pairs, so the energy of this microstate is E = 10λ.

�

(c) Whenever we are computing the partition function for a system, we can write the partition func-
tion as a summation over microstates or a summation over macrostates. If we write the partition
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function in terms of the latter, we need to include a degeneracy factor to account for the number
of microstates associated with a particular macrostate. Schematically, a general partition function
can be written as

Z =
∑

macrostate

(
Degeneracy of macrostate

)
e−β(Energy of macrostate), (71)

For example, the partition function of a set ofN spins (each of which has magnetic moment µ) in
a magnetic field H can be written as

Zspins =
N∑

n+=0

(
N

n+

)
eβµH(2n+−N). (72)

In the summation, we define the macrostate by n+, the number of up-spins, and
(
N
n+

)
represents

the degeneracy factor (i.e., the number of microstates withn+ up spins). The quantity−µH(2n+−
N) is the energy of the macrostate (or, equivalently, the energy of a microstate associated with
that macrostate)
For our system of permutations, we can write the partition function as

ZN (βλ) =
N∑
j=0

gN (j)e−βλj , (73)

where we define our macrostate by the number of mismatched pairs j, and the quantity−λj is the
energy of at macrostate. Thus, by Eq.(71), gN (j) is the degeneracy of the macrostate. Specifically,
it is the number of microstates associated with a particular value of j, and, given our definition
of j, gN (j) is found by counting the number of ways we can have j mismatched pairs in a system
with N W s and N Bs.

�

(d) In part (c), we surmised that gN (j) is the number of ways to have jmismatched pairs in the system.
We can calculate this quantity by simple combinatorics. Let’s say we begin withN matched pairs.
To find the number of ways to have j mismatched pairs, we will count the number of ways to
choose j of theseN original pairs, and then count the number of ways to rearrange the objects in
these pairs so that the j pairs are totally mismatched. gN (j) will then be the product of these two
numbers.
First, the number of ways to choose j pairs out of N total pairs is

(
N
j

)
.

Next, the number of ways to completely rearrange (i.e., mismatch) the objects in a collection of
j paired objects is simply the number of ways to completely rearrange j objects in a line. This
quantity was computed in Assignment # 4 and denoted as the number of derangements of a list.
For j elements in a list, the number of derangements is

dj =

j∑
k=0

(
j

k

)
(−1)k(j − k)!. (74)

Multiplying our two results (the number of ways to choose j pairs from N pairs and the number
of ways to completely rearrange the objects in these pairs), we have

gN (j) =

(
N

j

)
dj . (75)

�
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(e) It is possible to write the formula for derangements as an integral. If we have N items in a list,
the number of possible derangements is

dN =
N∑
k=0

(
N

k

)
(−1)k(N − k)!. (76)

Using the integral definition of the factorial, we have

(N − k)! =

∫ ∞
0

dx e−xxN−k. (77)

Inserting this result into Eq.(76) yields

dN =
N∑
k=0

(
N

k

)
(−1)k

∫ ∞
0

dx e−xxN−k

=

∫ ∞
0

dxe−x
N∑
k=0

(
N

k

)
(−1)kxN−k

=

∫ ∞
0

dxe−x(−1 + x)N , (78)

where we used the binomial theorem in the final line. We thus have

dN =

∫ ∞
0

dxe−x(x− 1)N . (79)

�

(f) We now want to use Eq.(79) to compute an integral expression for the partition function. First,
returning to Eq.(75) and using Eq.(79) to write the result as an integral, we have

gN (j) =

(
N

j

)∫ ∞
0

dx e−x(x− 1)j . (80)

We can insert this result into Eq.(73) to obtain

ZN (βλ) =
N∑
j=0

gN (j)e−βλj

=
N∑
j=0

(
N

j

)∫ ∞
0

dx e−x(x− 1)je−βλj

=

∫ ∞
0

dx e−x
N∑
j=0

(
N

j

)[
(x− 1)e−βλ

]j
. (81)

Using the Binomial theorem in the final line, we obtain

ZN (βλ) =

∫ ∞
0

dx e−x
[
1 + (x− 1)e−βλ

]N
. (82)
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We note that if we set λ = 0, we find

ZN (βλ)
∣∣∣
λ=0

=

∫ ∞
0

dx e−x
[
1 + (x− 1)

]N
=

∫ ∞
0

dx e−xxN = N !, (83)

which is the total number of microstates in the system. This is what we expect: When all the mi-
crostates have the same energy, the partition function reduces to the total number of microstates
in the system.

�

(g) We now seek to use Laplace’s method to evaluate the integral in Eq.(??). First we write the parti-
tion function as

ZN (βλ) =

∫ ∞
0

dx e−x
[
1 + (x− 1)e−βλ

]N
=

∫ ∞
0

dx e−Nf(x,βλ), (84)

where we defined
f(x, βλ) =

x

N
− ln(1 + (x− 1)e−βλ). (85)

Then, by Laplace’s method, we have

ZN (βλ) '

√
2π

Nf ′′(x1, βλ)
exp [−Nf(x1, βλ)] , (86)

where x1 is the value of x at which f(x, βλ) is at a local minimum. To find this value of x we
calculate f ′(x, βλ) and set it to zero for when x = x1. Doing so we have

0 = f ′(x, βλ)|x=x1

=
1

N
− e−βλ

1 + (x1 − 1)e−βλ

1

N
=

e−βλ

1 + (x1 − 1)e−βλ

=
1

eβλ + x1 − 1
. (87)

Calculating the inverse of the final line and adding 1− eβλ to both sides gives us

x1 = N − eβλ + 1. (88)

Eq.(88) gives us the value at which the first x derivative of Eq.(85) is zero. To apply Laplace’s
method, we need to ensure that Eq.(85) is at a local minimum at Eq.(88). Computing the second
derivative of f(x, βλ) at x1, we have

f ′′(x, βλ)
∣∣∣
x=x1

=
e−βλe−βλ

(1 + (x1 − 1)e−βλ)
2

=

(
e−βλ

1 + (x1 − 1)e−βλ

)
=

1

N2
, (89)
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where in the final line we used the equality above Eq.(87). We thus see that x1 indeed defines a
local minimum because f ′′(x, βλ) is always positive at x1. To complete our evaluation of Eq.(86),
we need to compute f(x, βλ) at x1. Doing so, we have

f(x, βλ)|x=x1
=
N − eβλ + 1

N
− ln(Neβλ)

=
N − eβλ + 1

N
− lnN − βλ. (90)

Finally, with Eq.(90) and Eq.(89), we find that Eq.(86) becomes

ZN (βλ) '
√

2π

N 1
N2

exp

[
−N

(
N − eβλ + 1

N
− lnN − βλ

)]
, (91)

or, more simply,

ZN (βλ) '
√

2πN exp
[
−
(
N − eβλ + 1−N lnN −Nβλ

) ]
, (92)

�

(h) We want to find an expression for 〈j〉, the average number of mismatched pairs, in terms of the
partition function and its derivative. From the definition of the partition function as a finite sum,
we have

ZN (βλ) =

N∑
j=0

gN (j)e−βλ. (93)

From this expression, we can infer that 〈j〉 is

〈j〉 =
1

ZN (βλ)

N∑
j=0

j gN (j)e−βλ

= − 1

ZN (βλ)

∂

∂(βλ)
ZN (βλ). (94)

From the properties of chain rule, we then find

〈j〉 = − ∂

∂(βλ)
lnZN (βλ), (95)

which is the desired expression. �

(i) Combining the results from (g) and (h), we can find an approximate expression for the average
number of mismatched pairs as a function of temperature. We have

〈j〉 = − ∂

∂(βλ)
lnZN (βλ)

' − ∂

∂(βλ)

[
1

2
ln(2πN)−

(
N − eβλ + 1−N lnN −Nβλ

)]
= −eβλ +N, (96)
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λ/ lnN

| T

〈j〉

Figure 5: Plot of 〈j〉 as a function of T . Below the temperature λ/ lnN , the
average number of mismatched pairs is zero.

which yields the temperature dependent function

〈j〉 ' N − eλ/kBT . (97)

Since 〈j〉 ≥ 0, we see that Eq.(97) is only valid for certain temperatures. Namely, solving for the
temperature at which 〈j〉 ≥ 0, we find

kBT ≥
λ

lnN
. (98)

Below this temperature, 〈j〉 assumes the value 〈j〉 = 0.
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