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Solution 4: Free Energy and Partition Functions

Preface: In this assignment, we apply our understanding of free energy to compute how the average spin 
of a spin system is affected by an external magnetic field. We then compute partition functions for various 
systems. In the penultimate problem, we derive the formula for the number of derangements of a list, and 
thus establish the mathematical groundwork for the final problem: the statistical physics of permutations.

1. Spins in a Magnetic Field: Macrostates

(a) (4 points) We have N spins in an external magnetic field H and we seek to find the free energy
FN (m,T ) for this system. Mathematically, the only difference between this system and that con-
sidered in Section 6 of Lecture Notes 05 is the energy term. In the lecture notes, the energy was
quadratic in the average magnetization m. In this problem, the energy is given by

EN (m) = −µH
N∑
i=1

si = −µHN 1

N

N∑
i=1

si = −µHNm, (1)

which is linear in m. The entropy for the two systems is the same, so we can simply take Eq.(31)
from the notes, and state that the entropy for our system is

SN (m) = kB ln ΩN (m) = kB

[
N ln 2− N

2
ln(1−m2)− N

2
m ln

1 +m

1−m

]
, (2)

where we neglected sub-leading terms. Using Eq.(1) and Eq.(2), the free energy for the system is
therefore

FN (m,T ) = EN (m)− TSN (m)

= −µHNm− kBT
[
N ln 2− N

2
ln(1−m2)− N

2
m ln

1 +m

1−m

]
. (3)

�

(b) (4 points) We now want to compute the value of m at which Eq.(3) is at a local minimum. We
determine the local minimum of FN (m,T ) by finding the m that satisfies

∂

∂m
FN (m = m,T ) = 0,

∂2

∂m2
FN (m = m,T ) > 0. (4)

Computing the first condition in Eq.(4), we have

0 =
∂

∂m
FN (m = m,T )

= −µHN − NkBT

2

(
2m

1−m2
− ln

1 +m

1−m
+m

1

1 +m
+m

1

1−m

) ∣∣∣
m=m

= −µHN +
NkBT

2
ln

1 +m

1−m
, (5)

which yields the condition
2µH

kBT
= ln

1 +m

1−m
. (6)
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We can write Eq.(6) in a more useful form by using the definition of the hyperbolic tangent func-
tion. First, we take the exponential of both sides of Eq.(6) in order to obtain

e2µH/kBT =
1 +m

1−m
. (7)

Then we solve Eq.(7) for m to find

m =
e2µH/kBT − 1

e2µH/kBT + 1
=
eµH/kBT − e−µH/kBT

eµH/kBT + e−µH/kBT
, (8)

or, with the the definition,

tanh(x) =
ex − e−x

ex + e−x
, (9)

we obtain

m = tanh

(
µH

kBT

)
. (10)

Checking the second condition in Eq.(4), we have

∂2

∂m2
FN (m = m,T ) =

∂

∂m

N

2

[
− 2µH + kBT ln(1 +m)− kBT ln(1−m)

]∣∣∣
m=m

= N
kBT

1−m2 , (11)

which is always greater than zero for valid values of m (because m =
∑
i si/N it can only be

within the range [−1,+1]). Therefore, with both conditions in Eq.(4) satisfied, Eq.(10) defines the
local minimum of the free energy.

�

(c) (4 points) Since Eq.(10) gives m as a function of H , we can easily plot it. For three different tem-
perature values, we have

m

H

tanh(β0µH/2)

tanh(β0µH)

tanh(2β0µH)+1

−1

Figure 1: Plot ofm as a function ofH for various temperatures. As we decrease temperature (or increase β),
the response of m to H increases (i.e., ∂m/∂H increases).

�

(d) (4 points) As T → 0, µH/kBT goes to∞ and Eq.(10) and Eq.(9) tell us that the m goes to +1.

As T → 0, m→ 1 . (12)
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Figure 2: Plot of popen as a function of T . Plot (a) is based on the assumption that εopen < εclosed and plot(b) is
based on the assumption that εopen > εclosed. We note that at T = 0 we either have popen = 1 (if εopen < εclosed)
or popen = 0 (if εopen > εclosed) both of which reflect the fact that at T = 0, the system only wants to be in its
lowest energy microstate. As T →∞, popen → 1/2 meaning that at high temperatures, the open and closed
microstates are equally likely.

When m = 1, this means that
∑N
i=1 si = N and thus all the spins are pointed upwards. There

is only a single microstate for which all the spins are pointed upwards, so ΩN (m) = 1 at this
temperature. We thus find that the entropy is

lim
T→0

SN (m̄) = lim
T→0

kB ln ΩN (m̄) = ln 1 = 0, (13)

which is consistent with the third law of thermodynamics (i.e., that the entropy of systems with
a single lowest energy state goes to zero as temperature goes to zero).

�

2. Open and Closed Ion Channel

(a) (2 points) We want to compute the partition function of the ion channel system. The ion channel
has two microstates. One microstate has energy εopen corresponding to the open microstate and
the other has energy εclosed corresponding to the closed microstate. The partition function for a
general system is

Z =
∑
{i}

e−βEi , (14)

where i is a particular microstate,
∑
{i} defines the summation over microstates, and Ei is the

energy of microstate i. For this system, we therefore have

Z = e−βεclosed + e−βεopen , (15)

where β = 1/kBT .
�

3



(b) (4 points) In general, the probability to be in a microstate i of a thermodynamic system is

pi =
e−βEi

Z
, (16)

where Ei is the energy of the microstate, and Z is the partition function of the system. For our
system, given the result Eq.(15) and that the energy of the open microstate is εopen, the probability
to be in the open state is

popen =
e−βεopen

e−βεclosed + e−βεopen
=

1

e−β(εclosed−εopen) + 1
, (17)

where we divided the numerator and the denominator by e−βεclosed in the final line. With the
definition ∆ε = εclosed − εopen and writing this result in terms of T , we have

popen =
1

e−∆ε/kBT + 1
. (18)

Plots of this function (contingent on whether ∆ε > 0 or ∆ε < 0. ) are shown in Fig. 2.
�

(c) (4 points) By the Gibbs definition, the entropy of a two-state system where there is a probability
popen to be in one state and a probability pclosed to be in the other state is

S = −kBpopen ln popen − kBpclosed ln pclosed, (19)

We computed popen in Eq.(18). By probability normalization, we must have popen + pclosed = 1.
And so, we have

pclosed = 1− 1

e−∆ε/kBT + 1
=

e−∆ε/kBT

e−∆ε/kBT + 1
=

1

1 + e∆ε/kBT
, (20)

where we multiplied the numerator and the denominator by e∆ε/kBT in the final equality. Re-
turning to Eq.(19), and using Eq.(18) and Eq.(20), we find that the entropy is

S = kB
ln
(
e−∆ε/kBT + 1

)
e−∆ε/kBT + 1

+ kB
ln
(
e∆ε/kBT + 1

)
e∆ε/kBT + 1

. (21)

Now we will consider the T → 0 limit. Let us assume ∆ε > 0. If we take T → 0, then the
e−∆ε/kBT + 1 goes to 1 since the exponential goes to zero. Since ln 1 = 0, the first term of Eq.(21)
is zero when T → 0 (and ∆ε > 0). For the second term, taking T → 0, results in a limit like

lim
x→∞

lnx

x
. (22)

Because x faster than lnx increases as we increase x, this limit is also zero. Therefore, as T → 0,
the entropy Eq.(21) also goes to zero. This result is consistent the third law of thermodynam-
ics.

�

3. Lattice Model of a Single Dimer

(a) (4 points) We want to determine the partition function of the system consisting ofL distinct lattice
sites and two identical particles where the particles have energy −E0 when they are next to one
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another. There are ”L choose 2” ways to select lattice sites for the two particles, and thus there are
”L choose 2” microstates. Of the total number of ways to select lattice sites for the two particles,
there are L−1 ways to select these lattice sites such that the particles are next to one another. This
is because having the particles be next to one another is like having a larger particle that occupies
two lattice sites, and for L total lattice sites, such a large particle can be in one of L− 1 positions.
The counting of our microstates and their associated energies is therefore as follows

State of System Number of Microstates Energy of Microstate
Dimer microstates L− 1 −E0

Non-dimer microstates
(
L

2

)
− (L− 1) 0

Therefore, by the definition of the partition function for a thermal system, we obtain

Z =
∑
{i}

e−βEi

=
∑

dimers

e−βEdimer +
∑

non-dimers

e−βEnon-dimers

= (L− 1)eβE0 +

(
L

2

)
− L+ 1

= (L− 1)eβE0 +

(
L

2

)
− L+ 1. (23)

�

(b) (4 points) We want to compute the probability to be in the dimerized state. Given the above table,
the probability to be in the dimerized state is

pdimer =
(L− 1)eβE0

(L− 1)eβE0 +
(
L
2

)
− L+ 1

=
(L− 1)eβE0

(L− 1)eβE0 + L(L− 1)/2− (L− 1)

=
1

1 + (L/2− 1)e−βE0
, (24)

where in the second line we used
(
L
2

)
= L!/(2!(L − 2)!) = L(L − 1)/2 and in the final line we

divided the numerator and the denominator by (L−1)eβE0 . We note that as T →∞, (i.e., β → 0)
the probability to be in the dimerized state becomes 2/L which is simply the number of dimer
microstates divided by the total number of microstates. Alternatively as T → 0, β → ∞ and the
probability to be in the dimerized state goes to 1. This makes sense, because the dimerized state
is the lowest energy state and the system falls to the lowest energy state as T → 0.

�

(c) (4 points) Our task is to find the temperature ranges for which there is a higher likelihood to be
in the dimer state than there is to be in the non-dimer state. Since there are only two states, there
is a higher likelihood to be in the dimer state if pdimer > 1/2. Thus, our task (reformulated) is to
find the temperature ranges for which pdimer in Eq.(24) is greater than 1/2.
Setting up the associated inequality and solving, we find

1/2 < pdimer
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=
1

1 + (L/2− 1)e−βE0

2 > 1 + (L/2− 1)e−βE0 [Flip inequality when inverting both sides]
1 > (L/2− 1)e−βE0

ln 1 > ln
[
(L/2− 1)e−βE0

]
0 < ln(L/2− 1)− E0

kBT
. (25)

Isolating T in the final inequality, we have

T <
E0

ln(L/2− 1)
. (26)

�

4. Spins in a Magnetic Field: Microstates

(a) (4 points) Our objective is to derive an alternative expression for the partition function of a col-
lection of spins {si} each of which has a magnetic dipole moment µ and all of which exist in
an external magnetic field H . We begin with the expression for the partition function as it was
derived in Lecture 06:

ZN (βµH) =
∑

{sj=±1}

exp

(
βµH

N∑
i=1

si

)
=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1

exp

(
βµH

N∑
i=1

si

)
(27)

In Eq.(27), we are computing the sum of exp
(
βµH

∑N
i=1 si

)
over the possible values of s1, s2, . . . , sN .

For this summation, the microstates are written out explicitly, but we can also write Eq.(27) in
terms of collections of microstates. If our system has n↑ up spins and n↓ down spins, then we have
the equation

N∑
i=1

si =
∑

num. up spins
(+1) +

∑
num. down spins

(−1) = n↑ − n↓. (28)

The energy of the system can thus be written as

E(n↑) = −µH
N∑
i=1

si = −µH(n↑ − n↓). (29)

For this spin system, n↑ can go from 0 to N . Now, there are ”N choose n↑” microstates for ev-
ery choice of n↑. Therefore, if we were to compute the partition function of this system using
the energy Eq.(29), we would need to weigh our Boltzmann factor e−βE(n↑) by the number of
microstates associated with this energy. We therefore find that the partition function is

ZN (βµH) =
N∑

n↑=0

(# of microstates for n↑) e−βE(n↑) =
N∑

n↑=0

(
N

n↑

)
eβµH(n↑−n↓). (30)

�

(b) We want to use Eq.(30) to complete the calculation of the partition function for this system. We
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first note that n↓ = N − n↑ so that

βµH(n↑ − n↓) = βµH (n↑ − (1− n↑)) = βµH (2n↑ − 1) . (31)

Eq.(30) then becomes

ZN (βµH) =
N∑

n↑=0

(
N

n↑

)
eβµH(2n↑−N)

= e−βµHN
N∑

n↑=0

(
N

n↑

)
e2βµHn↑

= e−βµHN
N∑

n↑=0

(
N

n↑

)(
e2βµH

)n↑

= e−βµHN
(
1 + e2βµH

)N [Binomial Theorem]

=
[
e−βµH

(
1 + e2βµH

)]N
=
(
e−βµH + eβµH

)N (32)

With the fact that ex + e−x = 2 cosh(x), we then find

ZN (βµH) = 2N coshN (βµH), (33)

as we previously found.
�

5. Number of Derangements

(a) (2 points) We want to find the number of derangements of the list (1, 2, 3) where a derangement
is defined as a permutation in which no element is in its original ordering. Listing out all the
permutations of (1, 2, 3) we have

(1, 2, 3) (1, 3, 2) (2, 3, 1) (2, 1, 3) (3, 1, 2) (3, 2, 1). (34)

Inspecting Eq.(34), we see that the first four permutations have either 1, 2, or 3 in the same order-
ing that the respective number has in the original permutation (1, 2, 3). Thus only the last two
permutations satisfy the definition of a derangement. Therefore

Number of derangements of (1, 2, 3) = 2. (35)

�
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A1

A2

A3

# of orderings
with ”2” in 2nd

position

# of orderings
with ”1” in 1st

position

# of orderings
with ”3” in 3rd

position

Figure 3: The circleAk represents all the orderings such that k is in the kth position. To find
the number of derangements, we will count the number of unique elements in the above
diagram and subtract the result from the total number of permutations of three elements.

(b) i. (4 points) We want to express the total number of unique orderings in the Venn diagram Fig.
3. In the Venn diagram, each circle represents the orderings with a particular number in
its original ordering. For example, Ak is the collection of orderings in which k is in the kth
position. The Venn diagrams have overlapping elements because some permutations have
multiple numbers remaining in their original positions.
If we had two Venn diagrams, we would add all the elements from the single Venn diagrams
and then subtract the contributions arising from the overlap. We would then find

Total number of elements for two circle Venn diagram = |A1|+ |A2| − |A1 ∩A2| (36)

For the three circle Venn diagram, to count the total number of unique permutations con-
tained in all three Venn diagrams, we add all the elements in all single Venn diagrams, sub-
tract the contributions arising from all overlaps of two Venn diagrams, and then add the
contributions arising from the overlap of the three Venn diagrams. The end result is that the
number of unique elements in Fig. 3 is

|A1|+ |A2|+ |A2| − |A1 ∩A2| − |A2 ∩A3| − |A3 ∩A1|+ |A1 ∩A2 ∩A3| (37)

�

ii. (4 points) Now we want to express Eq.(37) in terms of factorials. We note that Ak is the set of
permutations where the number k is in the kth position, and |Ak| is the number of elements in
that set. Since the number k has a fixed position in Ak, we can count the number of elements
comprisingAk (i.e., find |Ak|) by counting the number of ways to reorder the numbers which
are not fixed.
For a list of three numbers, if we fix one number, then there are (3−1)! = 2! ways to rearrange
the remaining numbers.
Similarly, |Ak∩A`| is the number of permutations such that both k and ` are in their respective
positions. For a list of three numbers, if we fix two numbers, then there is (3 − 2)! = 1 way
to arrange the remaining number.
Continuing with this argument, we therefore find

|A1| = |A2| = |A2| = (3− 1)! = 2!

|A1 ∩A2| = |A2 ∩A3| = |A3 ∩A1| = (3− 2)! = 1!

|A1 ∩A2 ∩A3| = (3− 3)! = 0!. (38)
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Rewriting Eq.(37) in terms of factorials, we see that the number of unique elements in Fig. 3
(i.e., the number of permutations of (1, 2, 3) where either 1, 2, or 3 is in its original position)
is

3 · 2!− 3 · 1! + 1 · 0!. (39)

�
iii. (4 points) Eq.(39) is the number of permutations of (1, 2, 3) where either 1, 2, or 3 is in its orig-

inal position. To find the number of permutations where neither 1, 2, nor 3 is in its original
position (i.e., the number of derangements), we need to subtract the total number of permu-
tations from the number calculated in Eq.(39). There are 3! total permutations for a list with
three unique numbers. Therefore, computing the number of derangements, we have

d3 = 3!− (3 · 2!− 3 · 1! + 1 · 0!) = 3!− 3 · 2! + 3 · 1!− 1 · 0!. (40)

�
iv. (4 points) Inspecting Eq.(40), we see that the factorial terms descend in integer steps from

3 to 0. We also see that the magnitude of the coefficients of the factorial terms, are 1, 3, 3, 1
in sequence. These coefficients are the same as those in the binomial expansion of (x + y)3,
namely they are

(
3
j

)
for j running from 0 to 3. Finally, we see that the signs in Eq.(40) alternate

with the first term being positive, the second term negative, the third term positive again, and
the fourth term negative again. We can thus write Eq.(40) in summation notation if we make
the following translations

3!, 2!, 1!, 0!→ (3− j)! for j = 0, 1, 2, 3 (41)

1, 3, 3, 1→
(

3

j

)
for j = 0, 1, 2, 3 (42)

+1,−1,+1,−1→ (−1)j for j = 0, 1, 2, 3 (43)

In result, Eq.(40) becomes

d3 =
3∑
j=0

(
3

j

)
(−1)j(3− j)! (44)

�
v. (2 points) We would like to generalize Eq.(44) to the case where we have N unique elements

and we are trying to find the number of derangements. If we were to work through the
derivation again, we would find that the dN could be gleaned from Eq.(44) if we took every
3 and replaced it with an N . We thus have

dN =
N∑
j=0

(
N

j

)
(−1)j(N − j)! (45)

�

(c) (6 points) In order to use Eq.(45) to fill out the given table, we need to compute d1, d2, d3, and d4.
Doing so, according to the given formula, we have

d1 =
1∑
j=0

(
1

j

)
(−1)j(1− j)!

=

(
1

0

)
1!−

(
1

1

)
0!
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= 1− 1 = 0 (46)

d2 =
2∑
j=0

(
2

j

)
(−1)j(2− j)!

=

(
2

0

)
2!−

(
2

1

)
1! +

(
2

0

)
0!

= 2− 2 + 1 = 1 (47)

d3 =
3∑
j=0

(
3

j

)
(−1)j(3− j)!

=

(
3

0

)
3!−

(
3

1

)
2! +

(
3

2

)
1!−

(
3

3

)
0!

= 3!− 3 · 2! + 3 · 1!− 0! = 6− 6 + 3− 1 = 2 (48)

d4 =
4∑
j=0

(
4

j

)
(−1)j(4− j)!

=

(
4

0

)
4!−

(
4

1

)
3! +

(
4

2

)
2!−

(
4

3

)
1! +

(
4

4

)
0!

= 4!− 4 · 3! + 6 · 2!− 4 · 1 + 0! = 24− 24 + 12− 4 + 1 = 9 (49)

Collecting these results and placing them in a table, gives us the summarized result

Number of Elements in
List

Number of
Derangements

1 0
2 1
3 2
4 9

�
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