
Massachusetts Institute of Technology MITES 2018–Physics III

Solutions 1: Physics and Mathematics Review

Preface: Before you begin writing up your solution to this assignment, read in full the supplementary note 
01 on ”Presenting work”. In particular pay attention to the ”Write Legibly” and ”Explanations are part of 
the solution” bullet points. In short, you should draft your work so that someone who is not accustomed 
to your hand writing can read it, and you should include both qualitative explanations and mathematical 
derivations in your solution.

1. Introduce Yourself

Complete the survey at surveymonkey.com.

2. Sum and Product Notation

(a) (3 points) When we multiply two exponential functions, the result is an exponential with an ar-
gument equal to the sum of the arguments of each exponential factor in the product. Namely 
ea1 ea2 = ea1+a2 . Generalizing this result to the case of an N -term product, we have

N∏
i=1

eai = ea1ea2 · · · eaN

= ea1+a2+···+aN

= exp

(
N∑
i=1

ai

)
, (1)

where exp(x) ≡ ex. �

(b) (3 points) When we add two logarithmic functions (with the same base), the result is a logarithm
with an argument equal to the product of the arguments of each factor in the sum. Namely
ln a1 + ln a2 = ln a1a2. Generalizing this result to the case of an N -term sum, we have

N∑
i=1

ln ai = ln a1 + ln a2 + · · ·+ ln aN

= ln a1a2 · · · aN

= ln

N∏
i=1

ai. (2)

�

(c) i. (3 points) From single-variable calculus, we know that the derivative of the natural logarithm
function lnx is 1/x. Therefore, by the fundamental theorem of calculus, we have∫

dx
1

x
= lnx+ C. (3)

For a fixed integration domain, from x = 1 to x = ai, we have∫ ai

1

dx
1

x
= lnx

]x=ai
x=1

= ln ai, (4)
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where we used ln 1 = 0. Summing this result from i = 1 to i = N , and using the result from
(b), we obtain

N∑
i=1

∫ ai

1

dx
1

x
= ln

N∏
i=1

ai. (5)

ii. (3 points) For a parameter b > 0, we have∫ ∞
0

dx e−bx = −1

b
e−bx

]x=∞
x=0

=
1

b
. (6)

Using the result in (a), we thus have the integral∫ ∞
0

dx
N∏
i=1

e−aix =

∫ ∞
0

dx exp

(
−

N∑
i=1

aix

)

=

∫ ∞
0

dx exp

(
−x

N∑
i=1

ai

)

=
1∑N
i=1 ai

, (7)

where we used Eq.(6) in the final line.
�

3. Partial Derivative

(a) Using Eq.(??) as a model, denote and define ”the partial derivative with respect to y” of f(x, y)
as a limit. What does this quantity represent.
Using the partial derivative in the prompt as a model, we can define the partial derivative of
f(x, y) with respect to y as

∂

∂y
f(x, y) = lim

h→0

f(x, y + h)− f(x, y)
h

. (8)

This quantity represents the instantaneous rate of change of the function f(x, y) with respect to
y at the point (x, y).

�

(b) Compute the partial derivative with respect to y of f1(x, y), f2(x, y), and f3(x, y) defined above.
Given the model in the prompt we can compute the partial derivatives of each function by differ-
entiating with respect to y and treating all other variables (namely, x) as constants. Doing so, we
have, for the first function

∂

∂y
f1(x, y) =

∂

∂y
sin(xy2)

= 2xy cos(xy2). (9)

For the second function, we have

∂

∂y
f2(x, y) =

∂

∂y
x3y2

= 2x3y. (10)
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And for the third function, we find

∂

∂y
f3(x, y) =

∂

∂y
ln(xy)

=
∂

∂y
(ln(x) + ln(y)) =

1

y
(11)

�

(c) We will compute each mixed partial derivative as it is outlined in the prompt. Computing the
first mixed partial derivative, we have

∂

∂x

(
∂

∂y
f1(x, y)

)
=

∂

∂x

(
2xy cos(xy2)

)
= 2y cos(xy2)− 2y3x sin(xy2). (12)

Computing the second mixed partial derivative, we have

∂

∂y

(
∂

∂x
f1(x, y)

)
=

∂

∂y

(
y2 cos(xy2)

)
= 2y cos(xy2)− 2y3x sin(xy2). (13)

We see that Eq.(12) and Eq.(13) are equivalent. Thus, the order of the partial derivatives does not
matter when computing the second partial derivative of this particular multivariable function.
More generally, for functions which are continuously differentiable, the order of mixed partial
derivatives does not affect the final result.

4. Area of Projectile Motion

(a) For a ball traveling in a constant gravitational, the time-dependent kinematical equations for the
horizontal coordinate x(t) and the vertical coordinate y(t) are

x(t) = x0 + v0xt, y(t) = y0 + v0yt−
1

2
gt2, (14)

where x0 and v0x are the initial position and velocity in the xdirection, and y0 and v0y are similarly
defined. The acceleration due to gravity is g = 9.81 m/s2. For this system, we have x0 = y0 = 0
and v0y = v0 sin θ and v0x = v0 cos θ. Therefore, the kinematic equations become

x(t) = (v0 cos θ)t y(t) = (v0 sin θ)t−
1

2
gt2. (15)

Our objective is to find the total horizontal distance the ball travels over its trajectory. We can
find this horizontal distance by computing the time it takes to complete the trajectory and then
inserting this time into the x(t) equation in Eq.(15). From the figure, y(t) = 0 only at the start and
the end of the projectile motion, so the total time for the trajectory can be determined by solving
y(t) = 0 and ignoring the t = 0 solution. Doing so, using y(t) in Eq.(15), we find the total time

ttot =
2v0
g

sin θ. (16)

Inserting Eq.(16) into x(t) in Eq.(15), gives us the total distance Xtot:

Xtot = x(ttot) =
2v20
g

cos θ sin θ. (17)

3



We could use a trigonometric identity to further simplify Eq.(17), but we will leave it in its current
form because this form will make subsequent calculations easier.

�

(b) We can determine the height of the ball as a function of x, by eliminating t from the system of
equations in Eq.(15). Solving for t in terms of x given the first equation in Eq.(15), we have

t =
x

v0 cos θ
. (18)

Substituting Eq.(18) into the y(t) equation in Eq.(15), we have

y = v0 sin θ
x

v0 cos θ
− 1

2
g

x2

v20 cos
2 θ
, (19)

or

y(x) = tan θ x− gx2

2v20 cos
2 θ
. (20)

�

(c) We seek to determine an angle θ at which the quantity

A(θ) =

∫ Xtot

0

dx y(x), (21)

is at a maximum. First we will use our previous results for y(x) and Xtot to compute an explicit
expression for A(θ). From (a) and (b), we find

A(θ) =

∫ Xtot

0

dx y(x)

=

∫ 2v2
0

g cos θ sin θ

0

dx

[
tan θ x− gx2

2v20 cos
2 θ

]

=

[
tan θ

x2

2
− gx3

6v20 cos
2 θ

]x= 2v2
0

g cos θ sin θ

0

=
2v40
g2

tan θ cos2 θ sin2 θ − 4v40
3g2

cos3 θ sin3 θ

cos2 θ

=
2v40
3g2

sin3 θ cos θ. (22)

Before we attempt to maximize this result, let us consider its basic dimensional and limiting case
properties. We note that the expression in Eq.(22) has a factor of v40/g2 in the from. The units of
this quantity are [

v40
g2

]
=

(m/s)4

(m/s2)2
=

m4 · s4
m2 · s4 = m2, (23)

indicating that our area has the correct units of meters-squared.
Also, as we take θ → 0 or θ → π/2, the total distance Eq.(17) traveled by the projectile goes to
zero, because a ball launched horizontally from y = 0 and a ball launched vertically do not travel
a horizontal distance. Therefore for θ → 0 and θ → π/2, we should expect the total area between
the trajectory of the ball and the horizontal is zero; this is indeed what we find in Eq.(22).
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Now, let’s determine the value of θ that maximizes Eq.(22). We want to find θ1 such that

A′(θ = θ1) = 0, and A′′(θ = θ1) < 0, (24)

for these define the conditions under which a function is at a local maximum. Differentiating
Eq.(22) once and setting the result to zero, we find

A′(θ = θ1) =
2v40
3g2

[
3 sin2 θ1 cos

2 θ1 − sin4 θ1
]
= 0, (25)

Dividing out sin2 θ (which is non-zero because we know θ1 = 0 is not the sought for value) and
ignoring the dimensional prefactor, we have the condition

0 = 3 cos2 θ1 − sin2 θ1 = 3 cos2 θ1 − 1 + cos2 θ1 = 4 cos2 θ1 − 1. (26)

Solving for cos θ1 then yields
cos θ1 = ±1

2
. (27)

From here on, we will choose the positive value of cos θ1 because the image in the prompt does
not depict the ball being thrown in the negative x direction. Therefore from Eq.(27), we can infer
that θ1 = π/3 is a possible value at which A(θ) is maximized.
We have only shown that the derivative of A(θ) is zero at θ = π/3. In order to show that A(θ) has
a local maximum at this value, we need to show that the second-derivative is negative at this value
of θ. Using Eq.(25) to compute the second derivative of A(θ) gives us

A′′(θ) =
2v40
3g2

[
6 sin θ cos3 θ − 6 sin3 θ cos θ − 4 sin3 θ cos θ

]
=

2v40
3g2

[
6 sin θ cos3 θ − 10 sin3 θ cos θ

]
, (28)

Evaluating this function at θ = π/3, and using sin(π/3) =
√
3/2 and cos(π/3) = 1/2, we obtain

A′′(θ = θ1) =
2v40
3g2

[
6 ·
√
3

2
· 1
8
− 10 · 3

√
3

8
· 1
2

]
=

2v40
3g2

[
−3
√
3

2

]
< 0. (29)

Since A′′(θ = θ1) < 0 and A′(θ = θ1) = 0, θ1 is indeed a local maximum.
Therefore, the function A(θ) is maximized at the angle θ = π/3.

�
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