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Lecture 06: Boltzmann Distribution and Partition Function 

In these notes, we introduce the method of Lagrange multipliers and use it to derive the Boltzmann distribu-
tion. From the Boltzmann distribution, we relate the Helmholtz free energy to the spectrum of probabilities 
to be in various microstates. This relation justifies the importance of the partition function, and as an ex-
ample calculation of the utility of the partition function, we consider a spin system in an external magnetic 
field. 

1 Returning to Microstates 

In the previous notes, we showed that for closed systems1 at fixed temperature, the second law of thermo-
dynamics implies 

F = E − T S, (1) 

defined as the Helmholtz free energy of these systems, is minimized at equilibrium. In applying this result, 
we considered a system in which this free energy was written as a function of a macroscopic quantity, and 
we were thus able to determine the macrostate corresponding to the free energy minimum and, equivalently, 
the thermal equilibrium of the system. However, by focusing only on the macrostate (i.e., some description 
of the system at large), we were ignoring possibly interesting properties of the microstate. In particular, 
each macrostate can be associated with many di�erent microstates and at thermal equilibrium it would 
interesting to know the probability distribution to be in various microstates. Such a probability distribution 
could not be obtained from the macrostate analysis of the previous notes. 

Figure 1: We previously found the thermal equilibrium of a system at a temperature T by analyzing the 
macrostate. Can we do the same by analyzing the properties of the microstate? 

Instead, in order to be able to determine the probabilistic properties of microstates at thermal equilib-
rium, we need a formalism for minimizing free energy in terms of the properties of the microstate (see Fig. 
1). This task is what we turn to in these notes. 

1That is systems that can exchange energy but not matter with their surroundings 
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2 FREE ENERGY AND MICROSTATES M. WILLIAMS

Framing Question
We previously used the free energy F = E − TS to determine the macrostate of a

system at equilibrium. How can we use the free energy to determine the probabilistic
properties of microstates?

2 Free energy and microstates
In our objective to determine how free energy minimization constrains the properties of microstates, we
must first find a relation between free energy and microstates. Calculating free energy requires that we
calculate energy and entropy, so from our discussion in Lecture Notes 3 on ”Entropy and Information”, we
are already part of the way towards achieving a relation between free energy and microstates. We noted
that the most general form for the entropy of a system consisting of a set of microstates {i}where microstate
i occurs with probability i is

S = −kB
∑
{i}

pi ln pi, (2)

∑
{i}where the summation represents a sum over the set of all microstates. Now, if we say that each mi-

crostate i has the energy Ei, then we can define the average energy across all microstates as

〈E〉 =
∑

piEi. (3)
{i}

If we have a system composed of many different microstates, the energy defined in Eq.(3) gives us the average
energy of our system. From Eq.(2) and Eq.(3), and the fact that free energy is F = E − TS, we can define
the free energy of a system with a set of microstates {i} as

F = 〈E〉 − TS =
∑
{i}

(
piEi + kBTpi ln pi

)
, (4)

where pi is again the probability to be in the microstate i. In Eq.(4), we use 〈E〉 instead of simply the energy
of a single microstate because the free energy describes the entire system and must therefore include an
energy term representing the whole system.

Eq.(4) is the free energy of our system written in terms of the probability to be in a microstate i. If we
can minimize Eq.(4) as a function of our pi, we can find the probability spectrum of the microstates when
our system in in thermal equilibrium at a temperature T . However, there is a caveat to this minimization
procedure. The probability pi is a constrained by normalization; the probability to be in any microstate must

m∑pbe 1. Therefore, we cannot si ly find the raw local minimum of Eq.(4); we need to find the local minimum,
subject to the constraint that {i} pi = 1.

At this point, our problem is well formulated. We would like to determine the probability spectrum of
the microstates in this system. Namely, we want to find the probability pi to be in microstate i. To find this
probability, we need to minimize Eq.(4) subject to the constraint of probability normalization. That is,

Problem
We wa to find the set of pis that minimize F =

∑
{i} (piEi + kBTpi ln pi) subject to the con-

straint
nt∑
{i} pi = 1.

The problem given above represents a type of calculus problem that we have not encountered before. Conse-
quently, instead of solving it directly we will begin with a simpler example. Ultimately, by working through
this example, we seek to answer the following question
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3 OPTIMIZATION UNDER CONSTRAINTS M. WILLIAMS

Question
How do we maximize or minimize quantities when the independent variables are

subject to a constraint?

3 Optimization Under Constraints
Our goal is to find a way to maximize a function when the function’s independent variables are constrained
in someway. We will begin with an example framed around a question: If a rectangle has a fixed perimeter
P , what dimensions of the rectangle maximize the areaA. In this problem, the areaA is the quantity we are
seeking to maximize, and the claim that it has a perimeter P is the constraint.

Let x and y be the dimensions of the rectangle. Then by simple geometry, twice the width plus twice the
height is equal to the perimeter and the width times the height is equal to the area:

P = 2x+ 2y, A = xy. (5)

We are still trying to find the dimensions x and y which maximize A = xy, subject to the condition that
2x+2y = P . A is a multivariable function, and when we are trying to find a point defining the optimum of
a multivariable function we must find the point where the partial derivatives of the function are zero. Thus
given the constraint, we are trying to find the x and y which satisfy

∂

∂x
A
∣∣∣
P=2x+2y

= 0 and ∂

∂y
A
∣∣∣
P=2x+2y

= 0. (6)

One way to approach this problem is to eliminate one of the dimensions by using the constraint to solve for
this dimension in terms of the other dimension, and then to implement the standard maximization algo-
rithm. For example, from the first equation in Eq.(5), we can solve for y to obtain

y =
P

2
− x. (7)

If we substitute, Eq.(7) into the equation for A in Eq.(5) we find

A =
P

2
x− x2, (8)

which is the equation for the area with the incorporated perimeter constraint. Applying the standard max-
imization algorithm in calculus, we find that Eq.(8) is maximized for x = P/4. From Eq.(7), this in turn
implies y = P/4. Therefore, the dimensions of a rectangle with maximum area given a perimeter P are

x = y =
P

4
. (9)

In other words, for a fixed perimeter, the area of a rectangle is maximized if that rectangle is in fact a square.
The above solution is one approach to finding a maximization with a constraint: Use the constraint to

eliminate one of the independent variables, and then proceed with the standard algorithm from calculus.
Another approach uses the constraint in a more clever way.

Let’s say we introduce the variable λ into the problem by defining the function

H(x, y, λ) = xy + λ(P − 2x− 2y). (10)

How would we find the local minimum of Eq.(10)? Well, H(x, y, λ) is a multivariable function, and a point
at an optimum of a multivariable function is partly defined by all partial derivatives of the function being
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3 OPTIMIZATION UNDER CONSTRAINTS M. WILLIAMS 

zero at that optimum. So the local minimum of Eq.(10) is partly defined by 

∂ 
H(x, y, λ) = x − 2λ = 0 

∂x 
(11) 

∂ 
H(x, y, λ) = y − 2λ = 0 

∂y 
(12) 

∂ 
H(x, y, λ) = P − 2x − 2y = 0 

∂λ 
(13) 

(14) 

Solving the system of equations given by Eq.(11), Eq.(12), and Eq.(13), we find that the values of x and y for 
which H(x, y, λ) is maximized are 

x = y = 
P
, (15)

4 

and λ = P/8. In Eq.(15), we see we have reproduced Eq.(9), the dimensions which maximize the area of a 
rectangle subject to a given perimeter. The intuition behind this new procedure is that since the derivative 
along every coordinate direction must be zero at a maximum, we can incorporate the variable constraint 
into a new function H(x, y, λ) (with a new variable λ) by defining the function in such a way that requiring 
all partial derivatives to be zero simply gives us our original constraint as one of the zero derivatives. In 
the above example, we incorporated the constraint into the maximization algorithm by defining the new 
variable λ and adding λ(P −2x − 2y) to the quantity we intended to maximize. The more general procedure 
is as follows: 

Optiization subject to a constraint 
If we are trying to optimize (that is minimize or maximize) the N variable function 

f(x1, x2, . . . , xN ), (16) 

subject to the constraint 
g(x1, x2, . . . , xN ) = C, (17) 

then we define 

H(x1, x2, . . . , xN , λ) = f(x1, x2, . . . , xN ) + λ (C − g(x1, x2, . . . , xN )) , (18) 

and we solve the system of equations given by 

∂ 
∂x1 

H = 0, · · · , ∂ 
∂xN 

H = 0, 
∂ 
∂λ 

H = 0. (19) 

The solutions to the above conditions will give us a set of values of x1, x2, · · · , xN values 
where Eq.(16) is optimized under constraint of Eq.(17), but we will also obtain the value 
of λ. However, λ is an auxiliary parameter which is introduced for the procedure, but 
does not have any deeper meaning other than its utility in parameterizing the constraint. 

The above procedure is called the method of Lagrange multipliers, and the parameter λ is termed a 
Lagrange multiplier. This method is used in all areas of physical sciences and mathematical modeling 
when equations need to be optimized under constraints of the independent variables. 

One important fact that we have swept under the rug is that this procedure allows us to find the local 
optima of functions where the independent variables are subject to constraints, but it does not tell us whether 
those optima are local minima or local maxima. For multivariable functions, the procedure for determining 
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4 BOLTZMANN AND THE PROBABILITY TO BE IN A MICROSTATE M. WILLIAMS

whether an optimum of a function is a maximum or a minimum is more complicated (see Second partial 
derivatives test) than it is for single-variable functions. So, moving forward ,we will make the somewhat 
ad-hoc claim that we know which optimum we are aiming for when we implement the method of Lagrange 
multipliers. 

4 Boltzmann and the probability to be in a microstate 

With the procedure discussed above, we now have a way to answer our question from the previous two 
sections. We wanted to know how to find the probabilities pi that minimize the function 

F =
∑
{i}

(
piEi + kBTpi ln pi

)
, (20)

∑
{i} pi = 1. As per, the Lagrangewhen we know that the probabilities have the normalization constraint

multipliers procedure, we define the function H as

H({pi}, λ) =
{i}

piEi + kBTpi ln pi + λ
∑( ) (

1−
∑
{i}

pi

)
. (21)

Computing the pj partial derivative of H and setting the result to zero, we have

∂

∂pj
H({pi}, λ) = Ej + kBT (ln pj + 1) + λ = 0. (22)

Solving Eq.(22) for pj gives us

pj = e(−λ−Ej)/kBT−1 = e−λ/kBT−1e−Ej/kBT . (23)

In Eq.(23) the only undetermined variable is the Lagrange multiplier λ. We determine this variable by con-
sidering the final partial derivative of H . Computing the λ partial derivative of H and setting the result to
zero gives us

∂

∂λ
H({pi}, λ) = 1−

∑
{i}

pi = 0, (24)

Inserting Eq.(23) into Eq.(24), we obtain

1 =
{i}

pi =
∑ ∑

{i}

e−λ/kBT−1e−Ei/kBT = e−λ/kBT−1
∑
{i}

e−Ei/kBT , (25)

which implies
e−λ/kBT−1 =

1∑
{i}

e−Ei/kBT
. (26)

Finally, returning to Eq.(23), we find that the probability pj to be in a microstate j is

pj =
e−Ej/kBT∑
{i}

e−Ei/kBT
. [Boltzmann distribution] (27)

Eq.(27) represents the probability to be in microstate j (given that this microstate has energy Ej) when the
system is at thermal equilibrium with temperature T . Formally, it is called the Boltzmann distribution.
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5 FREE ENERGY AND PARTITION FUNCTION M. WILLIAMS

Again we note that we have derived Eq.(27) only from the condition that the derivatives of Eq.(21) are zero,
when in fact to show that Eq.(27) yields a free energy minimum, we would need to do a second derivative
test. However,

5 Free Energy and Partition Function
Let us recap our work to this point. We began Section 2 of these notes by arguing that if we are to describe
statistical physics systems by microstates, we have to use probabilities since the definition of entropy is
written in terms of probabilities of microstates. From here, we postulated that the free energy for a system
with a set of microstates {i}, where a microstate i has energyEi, is Eq.(20). From Lecture Notes 05, we know
that at a thermal equilibrium temperature T , the free energy is minimized. Thus our objective, was then to
find the probabilities that minimized Eq.(20) subject to the constraint of probability normalization. Using
the method of Lagrange multipliers, we found that these probabilities were given by Eq.(27).

From here, we can do some slight book keeping. For notational simplicity, let us define

Z =
∑
{i}

e−Ei/kBT . (28)

We call Eq.(28) the partition function of our system. The partition function is important because of its simple
relationship with the free energy. Inserting Eq.(27) into Eq.(20), we find

F =
∑
{i}

(
piEi + kBTpi ln pi

)
=
∑
{i}

(
e−Ei/kBT

Z
Ei + kBT

e−Ei/kBT

Z

(
− Ei
kBT

− lnZ

))

=
∑
{i}

(
e−Ei/kBT

Z
Ei −

e−Ei/kBT

Z
Ei −

e−Ei/kBT

Z
kBT lnZ

)
, (29)

which upon canceling the first and second terms, and using probability normalization, gives us

F = −kBT lnZ. [Free energy and partition function] (30)

Therefore, the free energy is −kBT times the natural logarithm of the partition function.
There is one more important relation between the partition function and an important physical quantity

in our system, but deriving it requires we introduce one last bit of new notation. Because the factor 1/kBT
appears so often in statistical physics it is usually redefined as the quantity

β ≡ 1

kBT
, [Definition of β] (31)

representing inverse temperature. Writing our partition function, in terms of inverse temperature, we have

Z =
∑

e−βEi . (32)
{i}

Now, let us compute the average energy of our system. Given that Eq.(27) gives the probability to be in a
microstate j, the average energy across all microstates is

〈E〉 =
∑
{i}

piEi =
1

Z

∑
{i}

Eie
−βEi = − 1

Z

∂

∂β

∑
{i}

e−βEi , (33)
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6 SPINS IN A MAGNETIC FIELD M. WILLIAMS

where in the last line we used d
dxe
−ax = −ae−ax. By the definition of the derivative of the logarithm, we

then have
〈E〉 = − ∂

∂β
lnZ. [Average energy] (34)

So the average energy of the system is the negative of the β derivative of the natural logarithm of the partition
function. By a similar procedure, we can show that the variance in the energy (i.e., σ2

E = 〈E2〉 − 〈E〉2) is

σ2
E =

∂2

∂β2
lnZ. [Variance in energy] (35)

6 Spins in a Magnetic Field
We have largely completed the objective of these notes, but before we conclude let us consider a concrete
example.

Say we have a collection of N spins denoted s1, s2, . . . , sN . These spins can take on the values +1 or −1.
They also exist in an external magnetic fieldH > 0 which acts on each spin and produces an energy−µHsk
for each spin sk (Fig. 2). The quantity µ is called the magnetic moment of the spin; it is included in the
energy to yield the correct units and we assume all spins have the same magnetic moment2. We want to use
the formalism we just developed to find the probability that this system of spins is in a particular microstate
defined by {s1, s2, . . . , sN}.

Figure 2: We have N spins in an external magnetic field H . If a spin si is pointing in the same direction as
the magnetic field, then its energy is −µH , and if the spin is pointing in the opposite direction as the field,
then its energy is +µH .

First we write, the energy of this system for an arbitrary microstate. Given that the energy of the spin sk
is −µHsk, the energy of all the N spins is

E({sk}) = −
N∑
k=1

µHsk = −µH
N∑
k=1

sk, (36)

where {sk} denotes a particular microstate. Therefore, the probability to be in a spin microstate defined by
{sk} is (

p({sk}) = exp βµH
N∑
k=1

sk

)
1

Z
, (37)

2This assumption is a pretty good one because in many materials, magnetism arises from electrons all of which do indeed have the
same magnetic moment.
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6 SPINS IN A MAGNETIC FIELD M. WILLIAMS

where Z is the partition function given by

Z =
∑

{sk=±1}

(
exp βµH

N∑
k=1

sk

)
, (38)

∑
where

k
denotes the fact that we are summing over all possible values of sk for k = 1, . . . , N . We can{s =±1}

go further and simplify the partition function. The summation in Eq.(38) is over all possible spin microstates
of the system. Given that each spin can take on the value−1 or+1, we can write this summation in expanded
form as ∑

{sk=±1}

=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN=±1
, (39)

where ∑
s1=±1

f(s1) = f(1) + f(−1). (40)

Next, with the multiplication property of exponentials, we have(
exp βµH

N∑
k=1

sk

)
=

N∏
k=1

eβµHsk . (41)

With these calculations, Eq.(38) becomes

Z =
∑
s1=±1

∑
s2=±1

· · ·
∑

∑Ns =±1

N∏
k=1

eβµHsk

=
∑
s1=±1

eβµHs1

s2=±1
eβµHs2 · · ·

∑
sN=±1

eβµHsN

=
N∏
k=1

∑
sk=±1

eβµHsk . (42)

From here, we are close to the end. By Eq.(40), we have∑
sk=±1

eβµHsk = eβµH + e−βµH = 2 cosh(βµH), (43)

where we used the definition of the hyperbolic cosine function cosh(x) = (ex+e−x)/2. Returning to Eq.(42),
we obtain

Z =
N∏
k=1

2 cosh(βµH) = 2N coshN (βµH), (44)

therefore the probability Eq.(37) to be in a particular microstate is

p({sk}) =
exp

(
βµH

∑N
k=1 sk

)
2N coshN (βµH)

. (45)

We conclude, by asking one final question: As a function ofH and T , what is the average spin of the system?
We define the average spin as

〈s〉 ≡ 1

N

N∑
i=1

〈si〉. (46)
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6 SPINS IN A MAGNETIC FIELD M. WILLIAMS

hsi 

H 

tanh(β0µH/2) 

tanh(β0µH) 

tanh(2β0µH)+1

−1

Figure 3: Plot of 〈s〉 as a function of H for various temperatures. We see that as we increase temperature T
or lower β, the average magnetization 〈s〉 approaches ±1 for lower values of H .

From Eq.(36), we see that the average energy is related to the average spin through

〈E〉 = −NµH〈s〉. (47)

Also, we previously related the average energy of our system to the partition function in Eq.(34). Therefore,
we have

〈s〉 = 1

NµH

∂

∂β
lnZ

=
1

NµH

∂

∂β
ln
[
2N coshN (βµH)

]
=

1

µH

∂

∂β
ln cosh(βµH), (48)

which leaves us with
〈s〉 = tanh(βµH). (49)

In the first problem of Assignment# 4, we analyzed the identical problem from the perspective of macrostates.
Taking m =

∑N
i=1 si/N to define the macrostate, we found that the value of m which gives us a free energy

minimum is given by

µH =
kBT

2
ln

1 +m

1−m
, (50)

which when solved for m, yields

m =
e2βµH − 1

e2βµH + 1
=
eβµH − e−βµH

eβµH + e−βµH
= tanh(βµH). (51)

Therefore, Eq.(49) matches the result we found when we analyzed the system in terms of microstates. A
plot of Eq.(49) is shown in Fig. 3. From the plot we see that lower values of temperature (i.e., higher values
of β) result in 〈s〉 approaching ±1 more quickly for lower values of H . In general, this system exemplifies a
paramagnetic system in which 〈s〉, the average spin of single spin, is only nonzero if the external magnetic
field H is non-zero.

Finally, if we consider this system in the limit of high temperature T , we can Taylor expand the hyperbolic
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7 RECAP M. WILLIAMS

tangent in Eq.(49). By the expansion tanh(x) = x+O(x3), we have

〈s〉 = µH

kBT
+O

(
µ3H3/k3BT

3
)
, (52)

Defining the total magnetization of this spin system as M ≡ µN〈s〉, Eq.(52) indicates that at high tempera-
tures the total magnetization has the form

M =
Nµ2H

kBT
+O

(
µ3H3/k3BT

3
)
, (53)

Eq.(53) is called the Curie law for magnetism. It states that for paramagnetic fields at high temperature
and/or weak external field, the total magnetizationM of the material is linearly proportional to the external
fieldH and inversely proportional to the temperature T . The effect is named after its discoverer Pierre Curie,
the husband of the Marie Curie.

7 Recap
At this point we are able to fill in the other side of Fig. 1.

{i}

Figure 4: To study a thermal system in terms of the macrostate, we compute the minimum of the free energy
written as a function of the ∑macrostate. In terms of microstates, the minimum of the free energy is given by
F = −kBT lnZ, where Z = e−βEi with Ei the energy of microstate i.

When trying to analyze the properties of the thermal equilibrium of a system, we can either consider
the macrostates of the system and try to determine the macrostate associated the local minimum of the free
energy function. Alternatively, we can study the system in terms of microstates and compute the partition
function for the system. This latter procedure does not require any additional minimization because the
Boltzmann distribution used to compute the partition function was already derived from constraining the
free energy to be at a local minimum.

Because it automatically defines the equilibrium of a system, the partition function is foundational to
equilibrium statistical physics. Consequently, for the next few lectures we will be exploring how to apply
the right branch in Fig. 4 to some common (and not so common) systems of interest.
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