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Lecture 11: Non-Equilibrium Statistical Physics 

In the previous notes, we studied how systems in thermal equilibrium can change in time even though 
equilibrium averages of quantities like energy and total spin are time-independent. The main result of those 
notes was a computational algorithm that allowed us to simulate such systems. In these notes, we extend 
a result derived in that previous discussion and thereby build a formalism to study these time-dependent 
problems analytically. 

1 Out of equilibrium 
Say we have a lattice system consisting of N spins. The spins have magnetic dipole moment µ and are in 
an external magnetic field H . We initially prepare the system so that all spins are pointed upwards. The 
system is in contact with a large surrounding environment at some temperature T , but the system is not yet 
at equilibrium because this initial spin configuration does not match that predicted by equilibrium statistical 
physics. Instead, the system only becomes analyzable with the methods of equilibrium statistical physics as 
we allow it to evolve for infinite time. 

Figure 1 

The spins have an energy governed by the energy function E = ({si}) = −µH 
P 

i
N 
=1 si. Previously, we 

devised a computational algorithm to model not only this system’s equilibrium distribution of microstates, 
but also how such a system which is not initially at thermally equilibrium can approach equilibrium over 
time. We seek to extend the framework developed in the previous notes in order to study—analytically, 
rather than computationally—how the system depicted in Fig. 1 with energy E = ({si}) = −µH 

PN 
i=1 si 

reaches thermal equilibrium. 

Figure 2: Glucose di�using through space. The time evolution of the positions of the glucose molecules 
does not obey Newtonian mechanics, but are rather described by a mathematical model of di�usion. 

As we extend our framework we will even be able to encompass systems we have not studied before. E. 
coli is a species of bacteria of roughly a micrometer (i.e., 10−6 meters) in length that lives in the human gut. 
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2 THE MASTER EQUATION M. WILLIAMS 

On the length scale and in the environment in which E. coli lives, standard Newtonian dynamics does not 
apply and the molecules that E. coli uses for food do not drift towards the bacterium at a constant velocity. 
Instead, they move away from their initial location in a process called di�usion. It is possible to describe 
di�usion mathematically using continuous versions of the equations which model how spin systems relax 
towards equilibrium. 

Devising ways to analytically model the time evolution of a spin system and the di�usion of glucose 
molecules will comprise the two objectives of these notes. 

Framing Questions 
How can we model the time-dependent relaxation of a thermodynamic system as 

evolves towards equilibrium? How can we model probabilistic processes that depend 
on a continuous random variable (e.g., the probabilistic movement of E. coli nutrients)? 

2 The Master Equation 
The fortunate thing is that we have already made great strides towards answering our two framing questions. 
In the previous notes, prior to laying out a computational algorithm for simulating a thermodynamic system, 
we derived an equation relating probabilities, time, and transition probabilities: X� � 

pj (t +Δt) = pj (t) + pk(t)πk→j − pj (t)πj→k . (1) 
k 

We interpreted Eq.(1) as follows: Given the spectrum of probabilities pj (t) for a system to be in a microstate 
j at time t, and the matrix πj→k defining the probability of moving from a state j to a state k in a time step Δt, 
we can then determine the spectrum of probabilities to be in the various microstates at a future time t +Δt. 
In deriving Eq.(1), we took time to be measured in discrete steps of size Δt because we were primarily 
concerned with simulating thermodynamic systems, and such a simulation has to use a discrete notion of 
time. However, in extending this formalism analytically, we are bound by no such constraint. Indeed, we can 
use the methods of calculus to convert Eq.(1) into a di�erential equation. To do so, we define the transition 
rate Wk→j as the probability per unit time to move from microstate k to microstate j. Analytically, Wk→j is 
defined as 

Wk→j ≡ lim 
πk→j 

, (2)
Δt→0 Δt 

1where the limit is finite because πk→j has an implicit first-order dependence on the transition time Δt . 
Subtracting pj (t) from both sides of Eq.(1), dividing by Δt, taking Δt → 0, and using the definition of the 
partial derivative, we obtain 

∂ X� � 
pj (t) = pk(t)Wk→j − pj (t)Wj→k . [Master Equation] (3)

∂t 
k 

Eq.(3) is called the master equation. It often exists as the first step in studying the time-evolution of time-
dependent probabilistic processes.P

We should note that although πj→k = 1, Wj→k does not have an identical normalization and in fact P k 
Wj→k 6= 1. This is because while πj→k defines a dimensionless probability, Wj→k defines a probability k 

per unit time, and therefore does not have the same normalization requirements. 
Conceptually, Eq.(3) represents the idea that the time-rate change of the probability to be in a microstate j 

is equal to the sum of all the probability currents flowing into j minus the sum of all the probability currents 
1We can expect πk→j to go to zero as Δt to go to zero because the probability to make a transition should go to zero as the time 

over which the transition happens goes to zero. The limit is just the claim that πj→k has at least a first-order dependence on Δt. 

2 



2 THE MASTER EQUATION M. WILLIAMS 

flowing out of j (See Fig. 3) 

Figure 3: Visual depiction of master equation 

We can use Eq.(3) to model how a system with a discrete spectrum of microstates relaxes to equilibrium. 
We can even extend it to consider a continuous spectrum of microstates. Our systems of interest are a spin 
lattice and di�using molecules, but before we consider such systems we can practice applying Eq.(3) to a 
simpler scenario. 

2.1 Poisson process and master equation 
We are sitting at the tables outside Bosworth’s cafe in MIT’s lobby 7 when we decide to devise a time-
dependent probabilistic model of people entering the infinite corridor. We want to model the probability 
that n people enter the infinite corridor from Lobby 7 in a time t. We can use the master equation to construct 
this model. First we make two assumptions about this system: 

1. People enter the infinite corridor one at a time and at the average rate λ. 

2. Each person entering the infinite corridor does so independently of every other person. 

As is true for many initial models these assumptions do not have perfect fidelity to their real-life counter-
parts, but they suÿce for first-pass model building. The quantity pj (t) denotes the probability that j people 
have entered the infinite corridor by time t. We will use the master equation to derive a di�erential equation 
for pj (t) which can then be solved to obtain an explicit expression for pj (t). To derive the form of in Eq.(3) 
applicable to this system, we only need to determine the transition rates Wk→j for this system. 

Because people in this model only enter the infinite corridor one at a time, the transition rate Wk→j is 
only non-zero if k and j di�er by 1. Moreover, since we are only counting the people entering the infinite 
corridor (and not the people exiting it), we can only have a transition from k to j if k = j − 1. Finally, we 
know that people enter the lobby at the average rate λ. Consequently, the rate of transition from j − 1 to j is 
λ, and thus the nonzero elements of Wk→j should be λ. From these inferences, we have ( 

λ , if j = k + 1 
Wk→j = (4)

0 , otherwise. 

With Eq.(4), the master equation in Eq.(3) becomes 

∂ 
pj (t) = pj−1(t)Wj−1→j − pj (t)Wj→j+1

∂t � � 
= λ pj−1(t) − pj (t) . (5) 
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In order to find the probability that j people have entered the infinite corridor by time t (under the assump-
tions of this process), we need to find the function pj (t) that satisfies Eq.(5). The standard method of solving 
such equations requires techniques we have not developed (and will not subsequently need), so we will 
quote the solution and check that it satisfies Eq.(5)2. The solution is 

(λt)j 
−λt pj (t) = e . (6)

j! 

Calculating the time-derivative of Eq.(6), we find 

∂ (λt)j−1 (λt)j 
−λt − λ −λt pj (t) = λj e e 

∂t j! j!� � 
(λt)j−1 (λt)j 

−λt − −λt = λ e e 
(j − 1)! j!� � 

= λ pj−1(t) − pj (t) , (7) 

as desired. The solution Eq.(6) appears to be a strange one, but it is actually an important discrete probability 
distribution in probability and statistics. It is called the Poisson distribution, and it represents the probabil-
ity that a certain number of independently-occurring events occur in a given time interval. The most salient 
statistical property of the Poisson distribution is that the mean is equal to the variance: 

hji = σj 
2 = λt, (8) 

as can easily be shown from Eq.(6). The fact that the mean number of people who have entered the infinite 
corridor is hji = λt makes sense given that λ is the average rate at which people enter the corridor. The fact √ 
that the standard deviation of the number of people who have entered the corridor is σj = λt indicates 
that as time goes on the width of our probability distribution increases but does so faster at a rate less thanp
the increase in the mean. Therefore, the relative width around the mean is hji/σj = λ/t and goes to zero 
as time goes to infinity. 

Having worked through a mostly mathematical example of using Eq.(3) to solve for the time-dependent 
probability of a system, we can now turn to the physical problem which motivated these notes: The equi-
librium relaxation of a spin system. 

3 Time-evolution of spin systems 
Now, we turn towards trying to develop a time-dependent description of a spin lattice. We will start with the 
master equation, but we will modify the notation slightly in order to better describe the system of interest. 
We will replace the indices j and k (which represent di�erent general microstates of the system) in Eq.(3) 
with S and S 0 which represent di�erent spin microstates. The master equation then becomes 

∂ X � 
p(S 0 

� 
p(S)(t) = , t)W (S 0 → S) − p(S, t)W (S → S 0) . (9)

∂t 
{S0} 

The quantity p(S, t) is the probability that the system is in the microstate S = {s1, . . . , sN } at a time t, and 
0 0W (S 0 → S) is the rate of transitions from microstate S 0 = {s1, . . . , s } to the microstate S . The summation P N 

represents a sum over all microstates for the system. {S0}
In solving Eq.(9), we could seek an explicit form for the time-dependent probability p(S, t). Computing 

such a probability is notoriously diÿcult even with the master equation, however, fortunately, we are often 
not interested in the explicit time dependence of the probabilities to be in various microstates but rather 

2The forward-reasoning solution is found in [1]. 
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the time-dependence of quantities like average spin. Therefore, rather than attempting to find an explicitPNexpression for p(S, t), we will derive an equation for the time-dependence of the total average spin h k=1 ski 
of the system, and we will solve this equation in order to precisely define how the average spin evolves in 
time toward equilibrium. 

Given the probability p(S, t) of being in a microstate S at a time t, we can define time-dependent averages 
of arbitrary quantities which are functions of the microstate. Generally, for a microstate-dependent quantity 
A(S), we have the time-dependent average X 

hAi = A(S) p(S, t), (10) 
{S} P

where defines a summation over microstates. Our goal is to use Eq.(9) and Eq.(10) to find a time-{S}
dependent description of our lattice system. To find such a description will require us to first choose W (S → 
S 0), but, before we do so, we can use the general properties that we expect W (S → S 0) to have in order to 
derive a time-dependent equation for hski, the average spin at lattice site k. We first consider the time-
dependence of a single spin sk. By the definition of average given in Eq.(10), we have Xd d hski = sk p(S, t)

dt dt 
{S} 

= 
X 

sk 
∂
p(S, t), (11)

∂t 
{S} 

where in the second line we moved the time-derivative within the summation and converted it to a partial 
time-derivative to acknowledge the fact that we are di�erentiating a multivariable function. Using Eq.(9), 
we then have Xd ∂ hski = sk p(S, t)

dt ∂t 
{S}X X � � 

= sk p(S 0, t)W (S 0 → S) − p(S, t)W (S → S 0) 
{S} {S0}X X X X 

= skW (S 0 → S)p(S 0, t) − skW (S → S 0)p(S, t). (12) 
{S} {S0} {S} {S0}P P

The summations and represent two di�erent summations over the same set of microstates. The {S} {S0}
microstate label S also acts as a sort of dummy microstate which we use to denote terms in the summation. 
Therefore, much in the same way that we can relabel the variables which parameterize integrations and 
summations without changing the final result, we can also relabel the microstate summations in the above 
equation without changing the result. We relabel these summations by switching the S and S 0 labels (and 

0the sk and s labels) in the first term of Eq.(12). We then obtain k X X X X 
0d hski = skW (S → S 0)p(S, t) − skW (S → S 0)p(S, t)

dt 
{S0} {S} {S} {S0}X X X X 

0 = skW (S → S 0)p(S, t) − skW (S → S 0)p(S, t) 
{S} {S0} {S} {S0}X X 

0 = (sk − sk)W (S → S 0)p(S, t). (13) 
{S} {S0} 

In the second line, we switched the order of the summations in the first term, an operation which is valid 
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because each microstate summation is independent of the other. To further simplify Eq.(13), we recall the 
Monte Carlo methods of the previous notes. In defining transitions between microstates, we only allowed 
microstates that di�ered by a single spin flip to transition into each other. We can represent this result 
analytically by requiring the transition rate W (S → S 0) to be nonzero only for those microstates S 0 which 
di�er from S by a single spin flip. We will denote the set of microstates which di�er from S by a spin flip at 
lattice site j as Sj . Thus, S and Sj are identical except at lattice site j where they have opposite spins. With 
this restriction on the microstates that can transition into one another, we can reduce the S 0 summation to 
one only running over the microstates Sj . There are N microstates of the form Sj (one for each possible value 
of j) for every S microstate, so the summation over all microstates can simply be defined as a summation 
j = 1 to j = N . This redefinition yields 

NX X 
0 0(sk − sk)W (S → S 0)p(S, t) = (sk − sk)W (S → Sj )p(S, t). (14) 

{S0} j=1 

0The spin s is the kth spin of the microstate Sj . As we noted, Sj is identical to S except at the lattice site j.k 
Therefore, we have ( 

sk , for k 6= j,0 s = (15)k −sk , for k = j, 

and we can write 
N NX X 

0(sk − sk)W (S → Sj )p(S, t) = (sk − sk)W (S → Sj )p(S, t) + (−sk − sk)W (S → Sk)p(S, t) 
j=1 j 6=k 

= −2skW (S → Sk)p(S, t). (16) 

Using this result in Eq.(14) and substituting back into Eq.(13), we have Xd hski = −2 skW (S → Sk)p(S, t). (17) 
dt 

{S} 

Finally, using the definition of the average in Eq.(10), gives us 

d hski = −2 hskW (S → Sk)i . (18)
dt 

Eq.(18) is what we were looking for: a di�erential equation defining the time-evolution of the average spin. 
In order to use Eq.(18) to solve for the explicit time-dependence of hski, we need to find an explicit expression 

dfor W (S → Sk) in terms of the spin at lattice site sk and then use the expression to compute hski = dt 
−2 hskW (S → Sk)i. We turn to this task now. ’ 

3.1 Detailed balance 
We want to determine an explicit expression for W (S → Sk). We begin by deriving a form of the detailed 
balance result for our continuous-in-time system. As t → ∞ the time-dependent probability distribution 

eq(S).p(S, t) must reach its time-independent thermal equilibrium value p Therefore, for t → ∞, Eq.(9) 
becomes X 

0 = (peq(S)W (S 0 → S) − peq(S)W (S → S 0)) . (19) 
{S0} 
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Under the assumption that the individual terms in Eq.(19) vanish independently of one another, we then 
have 

eq(S)W (S 0 → S) p exp [−βE(S)] 
= = , (20)eq(S 0)W (S → S 0) p exp [−βE(S 0)] 

where in the final equality, we substituted in the equilibrium distribution peq(S) ∝ exp [−βE(S)] for which 
E(S) is the energy of microstate S . Eq.(20) is the detailed balance condition for this system of spins. In 
order to make further progress in defining the transition rate, we relabel S 0 as Sj to represent the fact that 
S 0 can only transition to or from S if they di�er by a spin flip at some site j: 

W (Sj → S) exp [−βE(S)] 
= . (21)

W (S → Sj ) exp [−βE(Sj )] 

Next, we specify how our energy depends on the microstates of the system. For a system of spins, each of 
which has magnetic moment µ and all of which are in a magnetic field H , the energy for a given microstate 
is 

NX 
E(S) = −µH si. (22) 

i=1 

Inserting Eq.(22) into Eq.(21), and noting that S and Sj only di�er by a spin flip at j gives us 

βµHsjW (Sj → S) e 
= , (23)−βµHsjW (S → Sj ) e 

where sj is the jth spin of S , but −sj is the jth spin of Sj . From here, we can guess a general form for 
W (S → Sj ), and then use Eq.(23) to determine any undetermined functions in this guess. Because S → Sj 

simply consists of a spin flip at lattice site j and, from Eq.(22), the spins do not interact with each other, 
we would expect W (S → Sj ) to only be a function of sj , the spin at lattice site j. Thus, we can guess that 
W (S → Sj ) has the form � � 

1 1 
W (S → Sj ) = + sj f(βµH) , (24)

τ 2 

where f(x) is a function that goes to zero as x → 0. The parameter τ is a constant with units of time that 
is introduced to ensure that W has the proper dimensions. The first term in Eq.(24) is included to account 
for the case when there is no magnetic field. In such a scenario, we would expect an equal probability of 
having or not having a spin flip during a microstate transition. Thus, in the H → 0 limit there is only a 1/2 
chance of having a spin flip, and a transition rate of 1/2 ×1/τ = 1/2τ . The second term in Eq.(24) is the most 
general expression for a function of si and βµH which goes to zero as H → 0. The spin sj is a coeÿcient in 

2Eq.(24), rather than an argument of the function because, given sj = 1 for all j and the fact that f(βµH) → 0 
as H → 0, any general function of sj and βµH must reduce3 to a function of βµH times sj . Also, sj only 
appears linearly in Eq.(24) because, given that sj = +1 or −1, we have ( 

sj , for k odd 
(sj )

k = (25)
1 , for k even. 

We can determine f(x) in Eq.(24) by returning to Eq.(23). We will write the exponentials in the equation 
in the form 

βµHsj −βµHsj βµHsj −βµHsje + e e − eβµHsje = + 
2 2 

3This result could be proved in a special case presuming f(sj x) can be expanded as a Taylor series about x = 0. The only way 
f(x) → 0 as x → 0 is if the even powers of x in the expansion of f(x) go to zero. We are left with an expansion which only has odd 

npowers of x which, for odd n, have coeÿcients of sj = sj . 
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βµH −βµH βµH − e−βµH e + e e 
= + sj

2 2 
= cosh(βµH) + sj sinh(βµH). (26) 

x −xIn the second to last line, we used Eq.(25), the fact that e + e only consists of even powers of x, and the 
−xfact that ex − e only consists of odd powers of x. Returning to Eq.(25) and using the expanded form of 

βµHsje in Eq.(26), we have 

W (Sj → S) cosh(βµH) + sj sinh(βµH) 
= 

W (S → Sj ) cosh(βµH) − sj sinh(βµH) 

1 + sj tanh(βµH) 
= . (27) 
1 − sj tanh(βµH) 

Returning to the guess Eq.(24), we see that Eq.(27) suggests that f(x) = − tanh(x)/2. Therefore, the transi-
tion rate is h i1 

W (S → Sj ) = 1 − sj tanh(βµH) . (28)
2τ 

We note that tanh(x) → 0 as x → 0, yielding W (S → Sj ) = 1/2τ for zero magnetic field. With the transition 
rate fully defined in Eq.(28), we can return to Eq.(18) and find the evolution equation for hski. 

3.2 A di�erential equation for average spin 
Returning to Eq.(18), and using our new found expression for W (S → Sj ), we can now compute hskW (S → 
Sk)i. We obtain � i�h1 hskW (S → Sk) = sk 1 − sk tanh(βµH)

2τ 
1 2 = sk − sk tanh(βµH)2τ 

=
1 hski − 

1 
tanh(βµH), (29)

2τ 2τ 

2where we used s = 1 in the last line. Substituting this result back into Eq.(18) gives us the di�erential k 
equation 

τ
d hski = −hski + tanh(βµH). (30)
dt 

We then sum over the index k to obtain 

d 
τ hM i = −hMi + N tanh(βµH), (31)
dt 

where we defined M as the total spin according to 

NX 
M ≡ si. (32) 

i=1 

At this point, we are mostly done. Eq.(31) gives us an equation defining how hM i evolves in time under the 
microstate transition assumption encoded into the definition of W (S → S 0). Using Eq.(31) to solve for hMi, 
we can obtain an explicit expression for hMi as a function of time and thereby be able to precisely describe 
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how hMi relaxes to its equilibrium value. Solving Eq.(31), we find � � 
−t/τ −t/τhMit = hMi0e + N tanh(βµH) 1 − e , (33) 

where hMi0 is the average total spin at t = 0. Eq.(33) represents the complete time-dependent description of 
how the total average spin changes in time. In previous work, we showed that when we consider this system 
of spins in an external field at thermal equilibrium, then the mean of a single spin site is hsieq = tanh(βµH), 

= Nhsieqand thus the mean of the sum of all spin sites is hMieq = N tanh(βµH). We see that the t →∞ limit 
of Eq.(33) reproduces this equilibrium behavior. The consistency between the long-time behavior of Eq.(33) 
and the results of equilibrium statistical physics stems from the detailed balance condition Eq.(21) that we 
used to derive the transition rate W . Because these transition rates were chosen to be related to the Boltz-
mann distribution through detailed balance, then all time-dependent averages derived from these transition 
rates must have t →∞ behavior which matches the result computed from the Boltzmann distribution. 

We can now use the explicit form of hMit to answer a potential question of interest about this system. 

Given that we begin in a macrostate with total average spin hMi0, how much time does it take to 
be within a fractional error f of the thermal equilibrium value N tanh(βµH)? 

Noting that the thermal equilibrium value of hMi is given by N tanh(βµH), and assuming we get within 
a fraction f of this value at tf , Eq.(33) gives us 

−tf /τ −tf /τ )(1 + f)N tanh(βµH) = hMi0e + N tanh(βµH)(1 − e 
−tf /τf N tanh(βµH) = [hMi0 − N tanh(βµH)] e 

N tanh(βµH) − hMi0tf /τe = , (34)
f N tanh(βµH) 

which, upon taking the absolute value4 and the logarithm of both sides, yields 

N tanh(βµH) − hMi0 
tf = τ ln . (35)

f N tanh(βµH) 

Eq.(35) answers a question we side stepped when we discussed ways to computationally simulate spin lattice 
systems. Back then we said we need to implement the Monte Carlo algorithm for a time ”long enough” for 
the system to reach equilibrium. The result above makes this notion of ”long enough” more precise by 
telling us for how much time we need to simulate the system for in order for the average total spin hMi to 
be within a fraction f of the thermal equilibrium value. One thing we should note about this result is that 
it predicts that the system will never reach thermal equilibrium in finite time. We see this from the fact that 
as we take f → 0 (i.e., the fractional error when we reach perfect equilibrium) in Eq.(35), then the time it 
takes to achieve this perfect equilibrium is tf → ∞. Therefore, for finite times, the system will never have 
fully reached thermal equilibrium. 

4 Di�usion Equation and Continuous Systems 
Now that we have answered one of our framing questions, we now turn to the other: How can we find a 
time-dependent description of probabilities when the random variables those probabilities describe is con-
tinuous? In order to develop a formalism that can encompass this objective, we will make some assumptions 
which will sacrifice generality for solubility. 

The precise process we would like to model is the continuous version of a random walk. In the typical 
example of a random walk—and let’s consider one-dimensions for simplicity—a particle has a 50−50 chance 

4We take the absolute value to account for the possibility that hMi0 > N tanh(βµH). 
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of moving either to the left or to the right after each time step. For such a random walk, it is easy to show 
that, after taking N steps, the probability to be a distance L from the starting point is 

PN (L) = 
1 � �N�! � . (36)1 12N (N + L) ! (N − L) !2 2 

What we would like to find now is a formula analogous to Eq.(36) for a process in which the time steps are 
continuous. Such a process well models how glucose molecules move away from their starting points in an 
aqueous solution. To derive such a formula we start with the master equation for a discrete set of microstates 
labeled by j: X� �∂ 

pj (t) = pk(t)Wk→j − pj (t)Wj→k . (37) 
∂t 

k 

We can translate Eq.(37) into something applicable to a continuous set of microstates x by promoting the 
discrete summations to integrals, and by making our probability and transition rate functions of x: 

∂ 
Z ∞ h i 

0 p(x, t) = dx0 p(x , t)W (x 0 → x) − p(x, t)W (x → x 0) . (38)
∂t −∞ 

In Eq.(38), x is the random variable, p(x, t) is the time dependent probability density for the random variable, 
and W (x → x0) is the transition rate between values of the random variable. We note that to say that p(x, t) 
is a probability density is to say it is not dimensionless but has units which are the inverse of the units of x. 
The normalization condition for p(x, t) is given by Z ∞ 

dx p(x, t) = 1. (39) 
−∞ 

Eq.(38) is the version of the master equation which is applicable to transitions between continuous mi-
crostates. Now, we want to specify Eq.(38) to the case of a continuous random walk where x denotes the 
position of a particle and p(x, t) is the probability density for that position at time t. The quantity W (x0 → x) 
denotes the transition rate to move from the position x0 to the position x. Reasonably, we can take such a 
transition rate to depend only on the di�erence x − x0 between these two positions. We are essentially tak-
ing the evolution of this system to be memory-less, that is, the probability to transition to a new microstate 
depends only on the current microstate and not the trajectory in reaching the current microstate. 

Moreover, since for the discrete random walk, there is equal probability of moving to the left and to the 
right, W (x0 → x) as a function of x − x0 should yield the same results if we make it a function of x0 − x. This 
is to say W (x0 → x) is an even function of x0 − x. 

Finally, we expect the transition rate for moving towards far away distances to be much less than the 
transition rate for moving towards nearby distances. Thus W (0x0 → x) should be a monotonically decreasing 
function of |x−x0|, and should, moreover, decrease rapidly as |x−x0| increases in order to ensure transitions 
to faraway positions are unlikely. 

We can encapsulate all of these properties into the function χ(u) as follows 

1 
W (x1 → x2) = χ(x2 − x1)

τ 
χ(u) = χ(−u) 

χ(u) decreases rapidly with u (40) 

The parameter τ is a time constant which is necessary to ensure W has the correct units. A plot of χ(u) 
which satisfies the stated properties is shown in Fig. 4. With our definition of χ(u), we can write Eq.(38) as Z ∞ h i∂ 0 − x)0τ p(x, t) = dx0 p(x , t)χ(x − x 0) − p(x, t)χ(x . (41)

∂t −∞ 
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χ(u) 

u 

Figure 4: Plot of possible χ(u). We note that χ(u) is symmetric about the point x = 0, highly peaked 
at u = 0, and decreases rapidly for larger |u|. 

Now, we make the change of variables ` = x0 − x. With the fact that χ(`) = χ(−`), we obtain Z ∞ h i 
τ
∂
p(x, t) = d` p(x + `, t)χ(`) − p(x, t)χ(`) . (42)

∂t −∞ 

Given that χ(`) is highly peaked near ` = 0 and goes to zero quickly as ` moves away from the origin, the 
product χ(`)g(`) for any function g(`) should be similarly dominated by its ` = 0 values5. Therefore, we 
can Taylor expand any function of ` which multiplies χ(`) about ` = 0 and still recover the pre-dominant 
behavior of the full function. For the first term in the integrand of Eq.(42), we have � � 

`2 

χ(`)p(x + `, t) = χ(`) p(x, t) + `
∂
p(x, t) + 

∂
p(x, t) + O(`3) , (43)

∂x 2 ∂x2 

and the master equation becomes Z ∞ � � 
∂ ∂ `2 ∂2 

τ p(x, t) = d` ` χ(`) p(x, t) + χ(`) p(x, t) + O(`3)
∂t −∞ ∂x 2 ∂x2 Z ∞ Z ∞∂ 1 ∂2 

= p(x, t) d` ̀  χ(`) + p(x, t) d` ̀ 2 χ(`) + · · · . (44)
∂x −∞ 2 ∂x2 

−∞ 

Where the · · · stand in for higher-order terms which are sub-dominant when χ(`) is highly peaked at ̀  = 0. 
Because χ(`) is an even function, we have Z ∞ 

d` ̀  χ(`) = 0. (45) 
−∞ 

Also, we define `2 as Z ∞ 

`2 ≡ d` ̀ 2 χ(`), (46) 
−∞ 

which is the variance of χ(`) (given that it has a mean of zero). Therefore, to the approximation where we 
only keep the first nonzero term in Eq.(44), we find 

∂ `2 ∂2 

p(x, t) = p(x, t). (47) 
∂t 2τ ∂x2 

5Provided, of course, that g(`) is not the inverse of χ(`). 
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(a) Time t = t0 (b) Later time t > t0 (c) Even later time t � t0 

Figure 5: Time evolution of Eq.(50). As the system evolves the Gaussian distribution flattens out, and it 
becomes more likely to find the particle away from the origin. The archetypal feature of di�usive processes 
is that the standard deviation in the position x varies as the square root of time t. 

Eq.(47) is called the di�usion equation. It is a partial di�erential equation defining the time evolution of 
the probability density of a continuous-time random walk. In its more typical form we define 

`2 
D ≡ , (48)

2τ 

as the di�usion coeÿcient of this process and we write Eq.(47) as 

∂ ∂2 

p(x, t) = D p(x, t). (49)
∂t ∂x2 

In order to completely answer the framing question of these notes, we need to solve Eq.(49) and thereby find 
the explicit form of p(x, t). Such a solution requires methods that extend beyond the prerequisites of this 
course (but are found in [1]), so we will quote the most important specific solution to Eq.(49). Let us say 
p(x, t) represents the probability density that a particle (maybe a glucose molecule) is at a position x at time 
t. Say the particle starts (i.e., at t = 0) at the origin x = 0, so that the probability density to be anywhere else 
at this time is zero6. Then it is possible to show that for t > 0, p(x, t) is given by 

2−x /4Dt p(x, t) = √ 
1 

e . (50)
4πDt 

Eq.(50) is the probability probability density that results from taking the N � L � 1 limit of Eq.(36). It is 
straightforward to check that Eq.(50) satisfies Eq.(49) and the normalization condition Eq.(39) for all times. 
Moreover, as a Gaussian function of position we can easily state its properties. From Eq.(49), we see that the 
mean and variance in position are given by 

hxi = 0, σ2 = 2Dt. (51)x 

The variance of Eq.(50) increases in time which implies that the probability density gets wider and wider 
as the system evolves. Therefore, as time goes on, it becomes more likely to find the particle away from the 
origin. Secondly, from Eq.(50), we see that the height of the peak of the Gaussian decreases in time. This 
means that as time goes on, it becomes less likely to find the particle at the origin. These two results are 
necessarily coincident since conservation of probability requires decreases in the probability density at any 

6We will not get into the fact that the probability density to be at x = 0 is note one. Since p(x, t) is a density rather than a raw 
probability, the density at x = 0 is actually infinite. 
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part of the distribution to be associated with increases in the density at other parts. Plots of Eq.(50) showing 
this behavior are provided in Fig. 5. 

Physically, the importance of Eq.(49) and Eq.(50) exists in their ubiquity. These equations provide good 
quantitative descriptions for many continuous in time random processes ranging from the di�usion of 
molecules in water (Fick’s Law of Di�usion), to the changes in the genetic diversity in a population of 
species (Genetic Drift), and even to the stock market (Black Scholes Equation). 
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