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Exam Instructions: 
This is an open-notebook exam, so feel free to use the notes you have transcribed throughout the summer 
and problem sets you have completed, but cellphones, laptops, and any notes written by someone else are 
prohibited. You will have 2 hours to complete this exam. 

Since this is a timed exam, your solutions need not be as ”organized” as are your solutions to assign-
ments. Short calculations and succinct explanations are acceptable, and you can state (without derivation) 
the standard results we derived in class. However, you should also recognize that you cannot receive partial 
credit for derivations/explanations you do not provide. 

Challenge 

Problem 1 (10 pts): 

Problem 2 (30 pts): 

Problem 3 (20 pts): 

Problem 4 (20 pts): 

Problem 5 (25 pts): 

Problem 6 (25 pts): 

Total (130 pts): 
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1. Protein Expression and Probability (20 points) 
For a particular model of a gene in a cell, the probability density that said gene produces a concentra-
tion x of proteins during the cell cycle is given by � �Nx 

p(x) = A e −x/b, (1)
b 

where b is a biological constant with units of concentration, N is a physical constant, and A is a nor-
malization parameter. 

(a) (5 points) The concentration of proteins that can be produced ranges from zero to infinite. What 
must A be in order for Eq.(1) to be normalized? 

(b) (5 points) What is the mean of the normalized probability density? 
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[Scratch work] 
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2. Binary Alloy1 (35 points) 

(a) N = 8 and k = 0 microstate (b) Microstate with N = 8 and 
k = 2 

Figure 2: Two di�erent microstates for an N = 8 system. The figure on the left shows 
the original positions of the α and β atoms (i.e., the positions at temperature zero). The 
figure on the right shows a microstate in which k = 2 atoms (both α and β) have been 
displaced. 

A binary alloy contains N identical atoms of type α and N identical atoms of type β. At low temper-
atures the system can be modeled as follows. There are N well-defined α-sites which are normally 
occupied by the α atoms and N well-defined β-sites which are normally occupied by the β atoms. At 
T = 0, the system is completely ordered, and all the α-sites are occupied by α atoms and same thing 
for β-sites and β atoms. However, at finite temperature, k ≤ N of the α atoms are displaced into the 
β-sites. (An equal number of β atoms is displaced to the α-sites). 
The energy of the system is given by E = εk, where ε is a constant with units of energy. To specify 
one of the many microstates of the system consistent with a particular value of k, one needs to indicate 
which α-sites are occupied by the k β atoms and which β-sites are occupied by the k α atoms. For 
example, if k = 1, then one α atom is displaced and there are N possible α atoms to choose from, and 
there are N possible β-site locations where it could be placed. 

(a) (5 points) What is the number of di�erent ways of choosing k of the α-sites to be vacated and 
occupied by β atoms? 

(b) (5 points) What is the number of di�erent ways of choosing k of the β-sites to be vacated and 
occupied by α atoms? 

(c) (5 points) What is the free energy of the system as a function of k? (Your answer can be written in 
terms of factorials or binomial coeÿcients) 

(d) (5 points) Take Stirling’s approximation to be ln N ! ' N ln N − N . What is the free energy of the 
system as a function of k after applying Stirling’s approximation? 

(e) (10 points) The system is in thermal equilibrium at a temperature T , and the number of displaced 
sites is k(T ). Using the result from (c), and the properties of free energy at thermal equilibrium, 
determine k as a function of ε, N , and T . 

1This problem is from an MIT 8.044 Open courseware exam. 
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3. Model of Receptor Binding (20 points) 
On the cell membranes of cells, there are protein receptors to which extracellular molecules can bind 
and ultimately induce a signal in the cell. Let us consider a simple model of such receptor-molecule 
binding and analyze this model from the perspective of statistical physics. 
Say we have many molecules each of which can either be free or bound to one of M distinct protein 
receptors (There are many more molecules than receptors). The molecules are identical to one another 
and each one has energy 0 when it is free and energy −E0 when it is bound to a receptor. Our system 
exists at a temperature T . When the particles are free, we assume there is only one microstate for the 
free particles. An example microstate is shown in Fig. 3. 

Figure 3: A particular microstate of a system with M = 5 receptor sites. 
There are two molecules bound to receptors so the energy of this microstate 
is −2E0. 

(a) (10 points) What is the partition function of the system written in terms of T , M , and E0 (and a 
physical constant)? (Your result should not have any unevaluated summations) 

(b) (5 points) Compute hki, the average number of molecules bound to receptors as a function of T . 
(c) (5 points) At what temperature is an average of one molecule bound to the receptors? 
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where V is the volume of the system. 

(a) (10 points) Evaluate all the integrals in Eq.(2) and write the final result in terms of T , V , N and
the set of masses m1,m2, . . . ,mN (and physical constants).

(b) (5 points) What is the free energy of this system written in terms of T , V , N and the set of masses
m1,m2, . . . ,mN (and physical constants).

(c) (5 points) Given that pressure is the negative of the volume partial derivative of the free energy,
derive the relationship between pressure P , number of particles N , volume V and temperature
T for this system.
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4. Ideal Gas of Distinguishable Particles (20 points)
The partition function for an ideal gas ofN distinguishable particles where particle k has massmk can
be written as

Z =
1

h3N

∫
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∫
all p
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5. Statistical Physics of Permutations (25 points)
We have 2N objects consisting of N objects of type-B denoted B1, B2, . . . , BN and N objects of type-
W denoted W1,W2, . . . ,WN . The objects can only exist in (Bk,W`) pairs, and the mircostates of our
system are defined by a particular collection of pairings between the Bs and W s. Fig. 4 depicts one
such microstate for N = 15.

where λ > 0 is a parameter with units of energy. Namely, from Eq.(3), if a pair consists of (Bk,Wk), for 
any k, then the energy of the pair is zero, and if a pair consists of (B`,Wk), for ` 6= k, then the energy 
of the pair is λ. We call the former a ”matched pair” and the latter a ”mismatched pair”. 
The partition function for this system can be written as ZN ∞ hX iN

−βλj −βλZN (βλ) = gN (j)e = dx e−x 1 + (x − 1)e , (4) 
0j=0 

where β = 1/kB T and where j is the number of mismatched pairs for a macrostate, and gN (j) is the 
number of microstates for a particular j. You do not need to know the value of gN (j) to solve this problem 

(a) (5 points) Derive an expression for hji in terms of the partition function and a partial derivative.
(b) (15 points) Use Laplace’s method to evaluate the integral in Eq.(4)
(c) (5 points) Combining (a) and (b), what is hji as a function of T ?
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Figure 4: A particular microstate of a N = 15 system.

The energy of a microstate is the sum of the energies of all the pairs. The energy of a particular pair
(consisting of (Bk,W`)) is

E(Bk,W`) =

{
0 if k = `,

λ if k 6= `,
(3)
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6. Transition Probabilities (25 points) 
We abstractly represent the connections between various states of a system with the picture below. In 
the picture, each filled circle represents a ”node”, and each line represents an ”edge.” When two nodes 
are linked by an edge, we say that they are ”connected.” 

Figure 5 

If at time t, we are at a node that is connected to M edges, then, in the next time step t +Δt, there is 
a probability of 1/M of traveling down any one of the connecting edges. There is a probability of zero 
of remaining at the same node. 

(a) (5 points) Letting πi→j represent the probability of transitioning from node i to node j in a single 
time step, fill in the elements below 

π1→1 = π1→2 = π1→3 = π1→4 = 

π2→1 = π2→2 = π2→3 = π2→4 = 
(5) 

π3→1 = π3→2 = π3→3 = π3→4 = 

π4→1 = π4→2 = π4→3 = π4→4 = 

(b) (10 points) Say that at time t, the probability pj (t) to be at node j is given by 

1 1 1 1 
p1(t) = , p2(t) = , p3(t) = , p4(t) = . (6)

3 6 6 3 

What is the probability to be at node 3 at time t +Δt? 

(c) (10 points) We take t →∞. What is the probability to be at the various nodes? 

13 



[Scratch work] 

14 



 

 
 

 

MIT OpenCourseWare 
https://ocw.mit.edu 

Resource: Introduction to Statistical Physics 
Mobolaji Williams 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/pages/privacy-and-terms-of-use/
https://ocw.mit.edu



