
Massachusetts Institute of Technology MITES 2017–Physics III

Solutions 6: Electromagnetism and Final Exam Review Assignment

Preface: The first part of this assignment consists of practice problems to review course material. The fi-
nal problem provides an example of determining a magnetic field from an electric field. Use the first five 
problems as review (they are not to be handed in). Only turn in Problem 6 on Sunday night.

1. Oscillations Near Equilibrium
A particle of mass m (confined to have position x > 0) is near the stable equilibrium of the potential

U(x) =
∆2

x2
− ∆4

x4
. (1)

What are the units of ∆2 and ∆4? If the mass begins at rest a distance `0 away from the stable equilib-
rium, what is the speed of the particle when it passes the equilibrium position?

Solution:
Because U(x) has units of Joules, ∆2 and ∆4 must have meters of J·m2 and J·m4, respectively.
Now, we want to find the speed of the particle as it passes through the equilibrium position given that
it started a distance `0 away from that position. Let us take xeq to be the equilibrium position. If the
particle is a distance `0 away from its equilibrium position, then it is either at the position xeq + `0 or
xeq− `0. By conservation of energy, the particle begins with an energy U(xeq + `0) (or U(xeq− `0)) and
when it passes the equilibrium position it has energy U(eq) + 1

2mv
2. Thus we have the conservation

of energy equation
U(xeq) +

1

2
mv2 = U(xeq + `0). (2)

Solving for v2 and employing the Taylor series approximation, we then have

v2 =
2

m

[
U(xeq + `0)− U(xeq)

]
=

2

m

[
U ′(xeq)`0 +

1

2
U ′′(xeq)`20 +O(`30)

]
. (3)

By the definition of equilibrium, we have U ′(xeq) = 0. We therefore have

v =

√
U ′′(xeq)

m
`20 (4)

From Eq.(4) we note, that the speed is the same if we take `0 → −`0, and thus to this order in the Taylor
series it doesn’t matter whether our particle began at xeq − `0 or xeq + `0.
Now, to use Eq.(4) to find the speed of the particle when it passes the stable equilibrium position, we
need to find the stable equilibrium position first. Computing this equilibrium position, we have

U ′(x) = 0 = −2∆2

x3
+

4∆4

x5
=

2

x3

(
−∆2 +

2∆4

x2

)
. (5)

Thus, with x > 0, the equilibrium position is xeq =
√

2∆4/∆2. Computing the second derivative of
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U(x) at this position we have

U ′′(x) =
6∆2

x4eq
− 20∆4

x6eq

= 6∆2

(
∆2

2∆4

)2

− 20∆4

(
∆2

2∆4

)3

= −∆2

(
∆2

∆4

)2

, (6)

which indicates that ∆2 < 0 and ∆2 < 0 in order for xeq =
√

2∆4/∆2 to be a local minimum. Assum-
ing1 both of these conditions, we find that the velocity when the mass passes the equilibrium is

v =

√
`20
m
|∆2|

(
∆2

∆4

)2

. (7)

Using our previous results identifying the units of ∆2 and ∆4, we can check that this result has the
correct units. Since are computing a speed, the units of the quantity in the parentheses should be
m2/s2. Checking this, we find[

`20
m
|∆2|

(
∆2

∆4

)2
]

=

[
`20
m

]
×
[
|∆2|

]
××

[(
∆2

∆4

)2
]

=
m2

kg × J ·m2 × 1

m4

=
J

kg =
m2

s2 , (8)

where we used the fact that J = kg ·m2/s2. Thus we see that Eq.(7) has the correct units.
�

2. Underdamped Oscillator
An underdamped oscillator with phase φ = 0 and initial amplitude A0, starts off at the position
x(t = 0) = A0. The natural (i.e., undamped) frequency of the oscillator is ω0 and the damping time
constant is γ = b/2m (with b the damping coefficient). At what time is the speed of the oscillator max-
imum? (Simplify result as much as possible)

Solution:
Our goal is to find the time at which an underdamped harmonic oscillator achieves maximum velocity.
Given that we have an underdamped oscillator with phaseφ = 0 an initial amplitudeA0 and beginning
at the position x(t = 0) = A0, we find that the position of the oscillator as a function of time is

x(t) = A0e
−γt cos(Ωt), (9)

where Ω =
√
ω2
0 − γ2. We want to find the time at which the speed of this oscillator is maximum.

Given the properties of the damped oscillator, this time should be such that as γ → 0, t1 → T/4 =
π/2ω0. To find this time, we set the acceleration of Eq.(9) to zero. First, computing the acceleration, we
have

ẍ(t) = −A0e
−γt [Ω2 cos(Ωt)− 2γΩ sin(Ωt)− γ2 cos(Ωt)

]
. (10)

1Note to self: In a future problem, it would have been better to impose this criteria from the start
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Setting this result to and noting that e−γt can never be zero, we have

tan(Ωt) =
Ω2 − γ2

2γΩ
, (11)

or

t =
1

Ω
tan−1

(
ω2
0 − 2γ2

2γΩ

)
. (12)

As we expect, as we take γ → 0, we have tan−1(· · · ) = tan−1(∞) = π/2 and t→ π/2ω0.
�

3. Forced Oscillator
A mass m is attached to a spring of spring constant k. The mass is at an equilibrium of the spring
when it is at position x = 0. The mass begins from x = 0 with velocity v0. Two forces F1(t) and F2(t)
are applied to the mass as shown in Fig. 1. What is the position as a function of time x(t)?

Figure 1

What should we get as ω → 0? What should we get as FL → 0?

Solution:
Our objective is to find x(t) given the stated initial conditions. We will then consider how the system
should change as ω → 0 and FL → 0. The equation of motion for the above system is

mẍ = −kx+ FR cos(ωt)− FL sin2(ωt). (13)

Defining ω0 =
√
k/m and using the identity sin2 x = (1− cos(2x))/2, we find

ẍ+ ω2
0x =

FR
m

cos(ωt)− FL
2m

(1− cos(2ωt)) , (14)

defining

u ≡ x+
FL

2mω2
0

, (15)

we find
ü+ ω2

0u =
FR
m

cos(ωt) +
FL
2m

cos(2ωt) (16)

Eq.(16) is a inhomogeneous linear differential equation and can thus be solved using the methods we
discussed in Lecture notes 05. Doing so, we find the general solution

u(t) = A cos(ω0t) +B sin(ω0t) +
FR

m(ω2
0 − ω2)

cos(ωt) +
FL

2m(ω2
0 − 4ω2)

cos(2ωt). (17)

3



Thus, by Eq.(15) x(t) is

x(t) = − FL
2mω2

0

+A cos(ω0t) +B sin(ω0t) +
FR

m(ω2
0 − ω2)

cos(ωt) +
FL

2m(ω2
0 − 4ω2)

cos(2ωt). (18)

Imposing the initial conditions x(t = 0) = 0 and ẋ(t = 0) = v0, we find the equations

− FL
2mω2

0

+A+
FR

m(ω2
0 − ω2)

+
FL

2m(ω2
0 − 4ω2)

= 0 (19)

Bω0 = v0, (20)

which yields, for x(t),

x(t) =
FL

2mω2
0

(
cos(ω0t)− 1

)
+
v0
ω0

sin(ω0t) +
FR

m(ω2
0 − ω2)

(
cos(ωt)− cos(ω0t)

)
+

FL
2m(ω2

0 − 4ω2)

(
cos(2ωt)− cos(ω0t)

)
.

As we takeω → 0, the force applied to the harmonic oscillator goes to the constant int timeFR. Thus the
equation of motion reduces to something similar to that for a harmonic oscillator hanging vertically in
a gravitational field. Thus, the only change in the standard solution of the harmonic oscillator should
be a shift in the equilibrium value, which is what we find for Eq.(21):

lim
ω→0

x(t) =
FR
mω2

0

+
v0
ω0

sin(ω0t)−
FR
mω2

0

cos(ω0t). (21)

Taking FL → 0, would reduce our system to one where only a single external force FR cos(ωt) is
present. The solution would be similar to the case considered in Lecture notes 05, except now we have
a non-zero initial velocity:

lim
FL→0

x(t) =
v0
ω0

sin(ω0t) +
FR

m(ω2
0 − ω2)

(
cos(ωt)− cos(ω0t)

)
. (22)

�

4. Coupled Oscillator
Two identical springs and two identical masses are attached to a wall as shown in Fig. 2. Find the
normal mode (angular) frequencies and the corresponding normal modes of the system.

Figure 2

Solution:
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We want to find the normal modes and normal mode frequencies (not necessarily in that order) for
the system shown in Eq.(??). The equations of motion for the system are

mẍ1 = −kx1 + k(x2 − x1) (23)
mẍ2 = −k(x2 − x1). (24)

Writing these equations in matrix form, we have(
ẍ1
ẍ2

)
=

(
−2ω2

0 ω2
0

ω2
0 −ω2

0

)(
x1
x2

)
, (25)

where we defined ω0 =
√
k/m. To find the normal mode frequencies we need to solve the eigenvalue-

eigenvector equation (
−2ω2

0 ω2
0

ω2
0 −ω2

0

)(
A
B

)
= α2

(
A
B

)
(26)

and compute |Im[α]| (absolute value is needed to ensure positive frequencies). We will then use our
computed values ofα2 to determine the corresponding normal modes. Finding the characteristic equa-
tion, we have

det
(
−2ω2

0 − α2 ω2
0

ω2
0 −ω2

0 − α2

)
= α4 + 3ω2

0α
2 + ω4

0 = 0, (27)

which has the solutions

α2
± = −ω2

0

(
3±
√

5

2

)
. (28)

Thus we find

α+ = iω0

(
3 +
√

5

2

)1/2

, α− = iω0

(
3−
√

5

2

)1/2

, (29)

where α+ and α− can also be equal to the negative of the stated values. Computing |Im[α]|, we find
the normal mode frequencies

ω+ = ω0

(
3 +
√

5

2

)1/2

, ω− = ω0

(
3−
√

5

2

)1/2

. (30)

Now, to find the normal modes themselves. For α2
+, we have the equation(

−ω2
0(1−

√
5)/2 ω2

0

ω2
0 ω2

0(1 +
√

5)/2

)(
A
B

)
= 0 (31)

which yields (
A
B

)
= c+

(
1

(1−
√

5)/2

)
. (32)

Similarly, for α2
−, we have the equation(

−ω2
0(1 +

√
5)/2 ω2

0

ω2
0 ω2

0(1−
√

5)/2

)(
A
B

)
= 0 (33)
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which yields (
A
B

)
= c−

(
1

(1 +
√

5)/2

)
. (34)

Therefore, we find that the normal modes of the system (corresponding to Eq.(30)) are

v+ =

(
1

(1−
√

5)/2

)
, v− =

(
1

(1 +
√

5)/2

)
. (35)

�

5. Fourier Series and Waves
A vibrating string, of mass density µ and tension T , has fixed ends. The string is confined to be within
a domain of length L and begins at y(x, 0) = 0 for all possible x in the domain. However, the string
also begins with a transverse velocity given by

ẏ(x, 0) = v0 sin

(
2πx

L

)
cos

(
2πx

L

)
+ v0 sin

(
3πx

L

)
. (36)

What is y(x, t) at time t = t1 where

t1 =
L

3

√
µ

T
, (37)

written as a function of x? (Simplify result as much as possible)
Solution:
For the given initial conditions, we see y(x, t) evaluated at t = t1. First, we know that the solution to
the wave equation for a wave with fixed ends is

y(x, t) =
∞∑
n=1

[
αn cos(ωnt) + βn sin(ωnt)

]
sin
(nπ
L
x
)
, (38)

where

αm =
2

L

∫ L

0

dx y(x, 0) sin
(mπ
L
x
)
, and βm =

2

Lωm

∫ L

0

dx ẏ(x, 0) sin
(mπ
L
x
)
. (39)

Since y(x, 0) = 0, we find that αm = 0 for all m. Also, given the identity sin(x) cos(x) = 1
2 sin(2x), we

find
ẏ(x, 0) =

v0
2

sin

(
4πx

L

)
+ v0 sin

(
3πx

L

)
, (40)

Thus, we find for βm

βm =
2v0
Lωm

∫ L

0

dx sin
(mπ
L
x
)[1

2
sin

(
4πx

L

)
+ sin

(
3πx

L

)]
=

v0
2ωm

[
δ4m + δ3m

]
. (41)

Therefore y(x, t) is

y(x, t) =
v0

2ω4
sin(ω4t) sin

(
4πx

L

)
+
v0
ω3

sin(ω3t) sin

(
3πx

L

)
, (42)
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where ωn = nπv/L. Setting t = L
√
µ/T/3 = L/3v, we find

ω3t1 =
3πv

L

L

3v
= π and ω4t1 =

4πv

L

L

3v
=

4π

3
. (43)

Therefore, with sin(π = 0), we have

y(x, t1) =
Lv0
8πv

sin(4π/3) sin

(
4πx

L

)
= −
√

3Lv0
16πv

sin

(
4πx

L

)
. (44)

�

6. Electromagnetism and Vector Calculus
The electric field in a region of space is

E(z, t) = E0

(
cos(kz − ωt) x̂ + sin(kz − ωt) ŷ

)
, (45)

where E0 has units of electric field, k is the wavenumber, and ω is the angular frequency.

(a) Using Faraday’s Law

∇× E = −∂B
∂t
, (46)

determine the magnetic field B(z, t) in this region of space. (Ignore any constants of integration)
(b) From your above results, compute E · B.

(This shows that the electric and magnetic fields are perpendicular.)

Solution:

(a) We will use Faraday’s Law to compute the magnetic field given the electric field in Eq.(45). Doing
so we find

∇× E =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
E0 cos(kz − ωt) E0 sin(kz − ωt) 0

∣∣∣∣∣∣∣ = −E0k cos(kz − ωt) x̂− E0k sin(kz − ωt) ŷ.

(47)
Setting this equal to the negative of the time-derivative of the magnetic field and integrating, we
have

B(z, t) =

∫
dt
∂B
∂t

=

∫
dt
[
E0k cos(kz − ωt) x̂E0k sin(kz − ωt) ŷ

]
=
E0k

ω

(
− sin(kz − ωt) x̂ + cos(kz − ωt) ŷ

)
, (48)

or with k/ω = 1/c,

B(z, t) =
E0

c

(
− sin(kz − ωt) x̂ + cos(kz − ωt) ŷ

)
(49)

We note we could have also obtained this result by using B =
1

c
k̂× E where k̂ = ẑ, the direction

of wave propagation.
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(b) With Eq.(45) and Eq.(49), we find

E(z, t) · B(z, t) =
E2

0

c

(
− cos(kz − ωt) sin(kz − ωt) + cos(kz − ωt) sin(kz − ωt)

)
= 0, (50)

as expected for the electric and magnetic field parts of electromagnetic waves are perpendicular.

�
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