Massachusetts Institute of Technology MITES 2017-Physics III

Solutions 6: Electromagnetism and Final Exam Review Assignment

Preface: The first part of this assignment consists of practice problems to review course material. The fi-
nal problem provides an example of determining a magnetic field from an electric field. Use the first five
problems as review (they are not to be handed in). Only turn in Problem 6 on Sunday night.

1. Oscillations Near Equilibrium
A particle of mass m (confined to have position x > 0) is near the stable equilibrium of the potential

A RAY!
Ulr) = P M
What are the units of Ay and A4? If the mass begins at rest a distance ¢, away from the stable equilib-
rium, what is the speed of the particle when it passes the equilibrium position?

Solution:
Because U (z) has units of Joules, A, and A, must have meters of - m? and J-m*, respectively.

Now, we want to find the speed of the particle as it passes through the equilibrium position given that
it started a distance /y away from that position. Let us take z.q to be the equilibrium position. If the
particle is a distance £y away from its equilibrium position, then it is either at the position zeq + ¢ or
Teq — Lo. By conservation of energy, the particle begins with an energy U (zeq + o) (or U(zeq —£o)) and
when it passes the equilibrium position it has energy U(eq) + 2mv?. Thus we have the conservation

of energy equation

1
U(zeq) + vaz = U(@eq + 4o)- )

Solving for v? and employing the Taylor series approximation, we then have

v? = % [U(xeq + £0) = U(req)]

2 1
== {U/(xeq)&) + U (weq) G + 0(@3)} : €)
By the definition of equilibrium, we have U’(z¢q) = 0. We therefore have

U// e
o= /L) @)
m

From Eq.(4) we note, that the speed is the same if we take ¢y — —/;, and thus to this order in the Taylor
series it doesn’t matter whether our particle began at weq — £o OF Zeq + fo-

Now, to use Eq.(@) to find the speed of the particle when it passes the stable equilibrium position, we
need to find the stable equilibrium position first. Computing this equilibrium position, we have

2A 4A 2 2A
_fe/2 4 (A2 + x;) .

Thus, with z > 0, the equilibrium position is zeq = 1/2A4/A;. Computing the second derivative of



U(x) at this position we have

2
— A, @4) , 6)

which indicates that Ay < 0 and Ay < 0 in order for xeq = 1/24A4/A» to be a local minimum. Assum-
inﬂ both of these conditions, we find that the velocity when the mass passes the equilibrium is

v:,/%Aﬂ (Z)Q. )

Using our previous results identifying the units of A, and A4, we can check that this result has the
correct units. Since are computing a speed, the units of the quantity in the parentheses should be
m?/s%. Checking this, we find

i (22)] =[] < ) = [(32)]

m 9 1
= k—g xJ-m* x pv
]
kg & ®)
where we used the fact that ] = kg - m?/s®. Thus we see that Eq.(7) has the correct units.
]

2. Underdamped Oscillator
An underdamped oscillator with phase ¢ = 0 and initial amplitude A, starts off at the position
z(t = 0) = Ap. The natural (i.e., undamped) frequency of the oscillator is wy and the damping time
constant is v = b/2m (with b the damping coefficient). At what time is the speed of the oscillator max-
imum? (Simplify result as much as possible)

Solution:

Our goal is to find the time at which an underdamped harmonic oscillator achieves maximum velocity.
Given that we have an underdamped oscillator with phase ¢ = 0 an initial amplitude A and beginning
at the position z(t = 0) = Ay, we find that the position of the oscillator as a function of time is

x(t) = Age 7" cos(t), )

where Q = \/w? — v2. We want to find the time at which the speed of this oscillator is maximum.
Given the properties of the damped oscillator, this time should be such thatasy — 0,¢; — T/4 =
7/2wy. To find this time, we set the acceleration of Eq.(9) to zero. First, computing the acceleration, we
have

i(t) = —Age 7" [0 cos(Qt) — 2y sin(Qt) — v cos(Qt)] . (10)

Note to self: In a future problem, it would have been better to impose this criteria from the start



Setting this result to and noting that e~ " can never be zero, we have

Q2_ 2
tan(Q) = 2797 , (11)
or
1 wi — 272
t=—tan ' | ). 12
T ( 270 ) (12)
As we expect, as we take v — 0, we have tan~!(---) = tan~!(c0) = 7/2 and t — 7/2wy.
]

. Forced Oscillator

A mass m is attached to a spring of spring constant k. The mass is at an equilibrium of the spring
when it is at position = 0. The mass begins from x = 0 with velocity vg. Two forces F} (t) and F»(t)
are applied to the mass as shown in Fig. [I| What is the position as a function of time z(¢)?

Fi(t) = Frcos(wt)
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Fy(t) = —Fy, sin?(wt)

Figure 1

What should we get as w — 0? What should we get as F;, — 07
Solution:

Our objective is to find z(t) given the stated initial conditions. We will then consider how the system
should change as w — 0 and F;, — 0. The equation of motion for the above system is

mi = —kx + Frcos(wt) — Fy, sin®(wt). (13)

Defining wo = /k/m and using the identity sin® z = (1 — cos(2x))/2, we find

F F
. 2 R L
i 2L (1~ cos(2
¥+ wix - cos(wt) 5 (1 — cos(2wt)), (14)
defining
Fry,
= 1
u=x+ et (15)
we find P P
. 2 i L
i+ wiu = - cos(wt) + S cos(2wt) (16)

Eq.(16) is a inhomogeneous linear differential equation and can thus be solved using the methods we
discussed in Lecture notes 05. Doing so, we find the general solution

FR FL

u(t) = Acos(wot) + Bsin(wpt) + W cos(wt) + W

cos(2wt). (17)

3



Thus, by Eq.(15) =(¢) is

Fy : Fr
z(t) = — CT: + A cos(wot) + Bsin(wot) + m(w? — w?)

o
2m(wg — 4w?)

cos(wt) + cos(2wt).  (18)

Imposing the initial conditions z(t = 0) = 0 and &(t = 0) = v,, we find the equations

Fr, Fr Fr,
_ A = 1
2mw tAT m(wg — w?) + 2m(wg — 4dw?) 0 (19)
Bwo = Vo, (20)
which yields, for z(t),
_ _Fr (s v Fr (wt) — cos
z(t) = Sma (co&(wot) — 1) + o sin(wot) + (R — o) (cos(wt) COb(OJQt))
Fy,
+ W(Cos@wt) - cos(wot)).

Aswe take w — 0, the force applied to the harmonic oscillator goes to the constant int time F'z. Thus the
equation of motion reduces to something similar to that for a harmonic oscillator hanging vertically in
a gravitational field. Thus, the only change in the standard solution of the harmonic oscillator should
be a shift in the equilibrium value, which is what we find for Eq.(21):

: _ Fr [ wo Frp
ul)lg%)x(t) = + o sin(wot) — = cos(wot). (21)

Taking F1, — 0, would reduce our system to one where only a single external force Fr cos(wt) is
present. The solution would be similar to the case considered in Lecture notes 05, except now we have
a non-zero initial velocity:

F
lim z(t) = o sin(wot) + R

Aim o @R =) ( cos(wt) — cos(wot)) . (22)

. Coupled Oscillator
Two identical springs and two identical masses are attached to a wall as shown in Fig. 2| Find the
normal mode (angular) frequencies and the corresponding normal modes of the system.
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Figure 2

Solution:



We want to find the normal modes and normal mode frequencies (not necessarily in that order) for
the system shown in Eq.(??). The equations of motion for the system are

mil = —k(IJl + k((L’Q - 1'1) (23)
mi’g = 7]43(1’2 — Il). (24)

Writing these equations in matrix form, we have

i\ [ 2w Wi 1
< To ) - ( wi —w? zo )’ (25)

where we defined wy = /k/m. To find the normal mode frequencies we need to solve the eigenvalue-

eigenvector equation
( wd  —w? B )~ B (26)

and compute |Im[a]| (absolute value is needed to ensure positive frequencies). We will then use our
computed values of a? to determine the corresponding normal modes. Finding the characteristic equa-
tion, we have

—2w2 — a? w?
dEt( B L o2 ) = o’ +3wja® + wy =0, (27)
which has the solutions
3++5

ol = —w} < 2\[> . (28)

Thus we find 12 12

o (3+V5 _ [(3-5

Qg = iwg —5 , a_ = iwy 5 , (29)

where oy and «_ can also be equal to the negative of the stated values. Computing [Im[«]|, we find
the normal mode frequencies

1/2 1/2
Wi = wp <3+\/3> , w_ = wy (3_\/§> . (30)

2 2

Now, to find the normal modes themselves. For o&, we have the equation

( —w%(lw—%\/ﬁ)m " ﬁ/ﬁ)m ) ( ;1 ) o a1

(231):0*((1—1%5)/2)' (32)

Similarly, for o2, we have the equation

( wg(ljgx/g)ﬂ wg(liugx/%)ﬂ ) ( gl ) o )

which yields



which yields

A 1
(5)==(urven): o
Therefore, we find that the normal modes of the system (corresponding to Eq.(30)) are
_ 1 _ 1 (35)
Tla-vee ) Tl )
]

. Fourier Series and Waves

A vibrating string, of mass density i and tension 7, has fixed ends. The string is confined to be within
a domain of length L and begins at y(x,0) = 0 for all possible « in the domain. However, the string
also begins with a transverse velocity given by

. . 2mx 2mx . 3rx
Y(z,0) = vp sin (L) cos (L> + v sin (L> . (36)

What is y(z, t) at time ¢ = ¢t; where
L [p
1= VT (37)
written as a function of z? (Simplify result as much as possible)
Solution:

For the given initial conditions, we see y(z,t) evaluated at ¢ = ¢;. First, we know that the solution to
the wave equation for a wave with fixed ends is

; [ozn cos(wnt) + Bn s1n(wnt)} sin (%x) , (38)
where
Oy, = 2 /L dzy(x,0)sin (mx> and Jé; / dzy(x,0)sin (mx) (39)
m — L 0 y\z, L ) m me y L
Since y(z,0) = 0, we find that a,,, = 0 for all m. Also, given the identity sin(z) cos(z) = 1 sin(2z), we
find A 5
. vy . T . T
y(z,0) = 50 sin (L) + vg sin (L) , (40)
Thus, we find for 3,
_ 2ug L . /mm 1 . [drzx . [ 3mx
Bm = Toon, /0 dx sin (Tx) [2 sin <L> + sin (L)]
_ o
= G o1 + 8am] (41)
Therefore y(z,t) is
(1) = o sin(wat) sin | 220 ) + 22 sin(wgt) sin 27 (12)
y\x, = 2w4 1N(Ww4t ) S111 L ws Smwst ) sin L 5



where w,, = nmv/L. Setting t = L\/u/T/3 = L/3v, we find

3mv L dmv L 4w
= —— = = —— = 4
wgtl I 3v s and OJ4t1 I 3v 3 ( 3)
Therefore, with sin(m = 0), we have
2 . drz\ V3Lvy . [4rx
y(x,t1) = F— sin(47/3) sin <L> = =gy S0 (L) . (44)
n
. Electromagnetism and Vector Calculus
The electric field in a region of space is
E(z,t) = Ey ( cos(kz — wt) X + sin(kz — wt) y), (45)
where FEj has units of electric field, k is the wavenumber, and w is the angular frequency.
(a) Using Faraday’s Law
0B
VXE=—--—, 46
X 5 (46)

determine the magnetic field B(z, t) in this region of space. (Ignore any constants of integration)

(b) From your above results, compute E - B.
(This shows that the electric and magnetic fields are perpendicular.)

Solution:

(a) We will use Faraday’s Law to compute the magnetic field given the electric field in Eq.(45). Doing

so we find
bre y z
VxE= 9 9 9 = —Fokcos(kz — wt)x — Egksin(kz — wt) y
n Jr y 9z | 0 A
Eycos(kz —wt) Epsin(kz —wt) 0

(47)
Setting this equal to the negative of the time-derivative of the magnetic field and integrating, we

have
0B

= /dt [Eok cos(kz — wt) XFEpk sin(kz — wt) y}

= Eok ( —sin(kz — wt) X + cos(kz — wt) y), (48)
w
or with k/w = 1/¢,
E
B(z,t) = 2 ( —sin(kz — wt) X + cos(kz — wt) y) (49)
c

1- .
We note we could have also obtained this result by using B = —k x E where k = 2, the direction
c

of wave propagation.



(b) With Eq.@5) and Eq.(49), we find
E2
E(z,t) - B(z,t) = 70( — cos(kz — wt) sin(kz — wt) + cos(kz — wt) sin(kz — wt)) =0, (50)

as expected for the electric and magnetic field parts of electromagnetic waves are perpendicular.
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