MIT OpenCourseWare
http://ocw.mit.edu

Haus, Hermann A., and James R. Melcher. Solutions Manual for Electromagnetic
Fields and Energy. (Massachusetts Institute of Technology: MIT OpenCourseWare).
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons
Attribution-NonCommercial-Share Alike.

Also available from Prentice-Hall: Englewood Cliffs, NJ, 1990. ISBN: 9780132489805.

For more information about citing these materials or our Terms of Use, visit:
http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms




Solutions Manual

Electromagnetic
ields

andEnergy

£

4

,,,,,,,,

Hermann A. Haus / James R. Meicher







. LN

MG

Solutions Manual
Electromagnetic
Fields and
Energy

Hermann A. Haus

James R. Melcher

Massachusetts Institute of Technology

PRENTICE HALL, Englewood Cliffs, New Jersey 07632






PREFACE TO SOLUTION MANUAL

We are fortunate that electromagnetic aspects of engineering systems are ac-
curately described by remarkably concise and general laws. Yet, a price paid for
the generality of Maxwell’s equations is the effort required to make these laws of
practical use to the engineer who is not only analyzing, but synthesizing and invent-
ing. Key to the maturation of an engineer who hopes to use a basic background in
electromagnetic fields for effectively dealing with complex problems is working out
examples that strike the right balance among a number of interrelated objectives.
First, even in the beginning, the examples should couch the development of skill in
using the mathematical language of field theory in physical terms. Second, while be-
ing no more mathematically involved then required to make the point, they should
collectively give insight into the key phenomena implied by the general laws. This
means that they have to be sufficiently realistic to at least be physically demon-
strable and at best of practical interest. Third, as the student works out a series of
examples, they should form the basis for having an overview of electromagnetics,
hopefully helping to achieve an early maturity in applying the general laws.

In teaching this subject at MIT, we have placed a heavy emphasis on working
out examples, basing as much as 40 percent of a student’s grade on homework solu-
tions. Because new problems must then be generated each term, this emphasis has
mandated a continual search and development, stimulated by faculty and gradu-
ate student teaching assistant colleagues. Some of these problems have become the
“examples,” worked out in the text. These have in turn determined the develop-
ment of the demonstrations, also described in the text (and available on video tape
through the authors). The problems given at the ends of chapters in the text and
worked out in this manual do not include still other combinations of geometries,
models and physical phonemena. These combinations become apparent when the
examples and problems from one chapter are compared with those from another.
A review of the example summaries given in Chap. 15 will make evident some of
these opportunities for problem creation.

After about two decades, the number of faculty and teaching assistants who
have made contributions, at least by preparing the official solutions during a given
term, probably exceeds 100, so individual recognition is not appropriate. Prelim-
inary versions of solutions for several chapters were prepared by Rayomond H.
Kotwal while he was a teaching assistant. However, finally, the authors shared re-
sponsibility for writing up the solutions. Corrections to the inevitable errors would
be appreciated.

Our view that an apprenticeship of problem solving is essential to learning
field theory is reflected in the care which has been taken in preparing this solution
manual. This was only possible because Ms. Cindy Kopf not only “Tex’t” the
manual (as she did the text itself) while taking major responsibility for the art-work,
but organized and produced the camera-ready copy as well. The “Tex macros” were
written by Ms. Amy Hendrickson.
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SOLUTIONS TO CHAPTER 1

1.1 THE LORENTZ LAW IN FREE SPACE

1.1.1 For v; = 0, (7) gives
_le Ry . _ . [2hm
h= 2mE’(t L)Y ,=>t—t;, = <L, (1)
and from (8)
—2heE,
=V 2
80
_ [2(1 x 10-2)(1.602 x 10-19)(10-2) _ a1
v—\/ (9.106 x 10-7) = 5.9 % 10°'m/s (3)
Y4
. E:/ y
z
Figure S1.1.2 - . Fléure S1.1.3
1.1.2  (a) In two-dimensions, (4) gives

md=¢,
T"’z = —¢E, (1)

mdzfy
dt2 = _eEy (2)

so, because vz (0) = v;, while v,(0) =0,
dé, e

o mEa:t + v (3)



1.1.3

1.14

1-2 ' Solutions to Chapter 1

déy _ € .
—dtl_— Eyt (4)

m
To make £,(0) =0 and £,(0) =0

€ = —ﬁE,t’ +ut (5)
&= ‘E%Evtz (6)
(b) From (5), £&; = 0 when ,

t= ': E:" (7)

and at this time
&y = —#Eu(v:;,:)z (8)

The force is
f=g[E+ v X pH] = —¢[Eolx — vspoHoix] (1)
so, f=01if E, = v;uoH,. Thus,

%=°’ %’-’tl=0, %=0 ()

and vg, vy and v, are constants. Because initial velocities in z and y directions are
zero, vz = vy = 0 and v = y;i,.

The force is

= —¢(E+ v X poH) = —e(Eoly + vzpioHols — vapioHoix) (1)
) |
m:;fy =—eE,> § = —-;%’tz (2)
and mdu, dv,
Tl ev.poHy = Jp = Wes (3)
23:—' = —evu,H, = % = —wev, (4)

where w, = ey, H,/m. Substitution of (3) into (4) gives

d?v
g TWevs =0 (5)
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Solutions are sinw.t and cos w.t. To satisfy the initial conditions on the velocity,

dés

Vs = Vo COBWE = —y ()
in which case (3) gives:
. d
Uy = —V, sinw,t = dEt‘ (7)

Further integration and the initial conditions on £ gives

Yo .
= —sinwct
¢ = J2sinw, (8)
&= 2o cos wt — Yo + 2, ' (9)
e We
z
$ 2
4
my _ m}
;= evilo Hy, => r = enoH,
z —_——
v, o —=E H,
D
————
porerer——rer e
/ ’ /
x T

Figure S1.1.4

1.2 CHARGE AND CURRENT DENSITIES

1.2.1 The total charge is

R R 3

4

g= / pAnridr = / %i-dr = np,R> (1)
o o
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1.2.2 Integration of the density over the given volume gives the total charge

a a a
g= / / / &[zz + 4 + 2%|dzdyds
~aJ—avy—a
= 2 / ( +ay? + azz) dydz
—av-—a

Two further integrations give

4p,, / (—- + - + azzz)dz = 8p° [— + —] = 8p,a®

1.2.3 The normal to the surface is iy, so
a
i= / J -ndydz = = (y2 + 22)dydz
—ad—a -ad-a
8J,a%
/ ( a® + a2? —3——
1.2.4 The net current is
. Jo 1 . wJ,a2
s=/(; Jof 2)Zm'dr—Zw “|0 >
1.2.5 (a) From Newton’s second law
mdv, _eEob
i &
where
_ d¢&
T dt
(b) On multiplying (1) by v, '
v d& _ _eEob
Tdr &, or

and using (2), we obtain

dv, | eEobd¢,
mv, - + Ejﬂ: [—m + eEoblng,| =0

(1)

(2)

(1)

(1)

(1)

(2)

(3)



Solutions to Chapter 1
(c) Integrating (3) with respect to ¢ gives
%mv? + eEbiné, =¢;
When t =0,v, =0,&, = b so ¢; = eE,binb and

1 £,
Emvf + cE’oblnT =0

v (r) = \/ fn—eEoblng

J

v, (’;')

The total current, £, must be independent of r, so

Thus,

(d) The current density is

Jr = p(r)v.(r) = p(r) =

1
T 2xrl

Jr

and it follows from (6) and (7) that

P(T) = ZNTIW

1.3 GAUSS’ INTEGRAL LAW OF ELECTRIC FIELD

INTENSITY

(4)

(5)

(6)

(7)

(8)

(9)

1.3.1 (a) The unit vectors perpendicular to the 5 surfaces are as shown in Fig. §1.3.1.

The given area elements follow from the same construction.

(b) From Fig. S1.3.1,

s = - % . Bl —=and = —F
|1,|¢—cos¢—\/m, ie]y = sing = -

r=\/a:2+y2

Thus, the conversion from polar to Cartesian coordinates gives

Al z

= ———ir = A, 1 ( ix +
2meor 2we, \/32 + y2? \/3;2 + 42 \/z

(1)

(2)

L) ©
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§.
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| 7 —ix ,i |
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i:/ I [irs
¢
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1 z
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_i.
z

Figure S1.3.1

(c) On the given surface, the normal vector is i and so the integral is of the z
component of (3) evaluated at z = a.

_ €N 1/’“ a
/eoE da|==a = 2“0‘/; . a2+y2dydz "

MYy AT Ty A
= x t20 (a)l‘“_21r(4+4 =%

Integration over the surface at x = —a reverses both the sign of E, and of the
normal and so is also given by (4). Integrations over the surfaces at y = a and
y = —a are respectively the same as given by (4), with the roles of z and y
reversed. Integrations over the top and bottom surfaces make no contribution
because there is8 no normal component of E on these surfaces. Thus, the total
surface integration is four times that given by (4), which is indeed the charge
enclosed, );.

1.3.2 On the respective surfaces,

q l/a.2
E-da= 0 (1)
47e, 1/b2 .

On the two surfaces where these integrands are finite, they are also constant, so
integration amounts to multiplication by the respective areas.

da— 12y 1 oy
fs B da = F [ Z(2na%) + 1 (2n8%)] = g (@)
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Figure S1.3.2

1.3.3 (a) Because of the axial symmetry, the electric field must be radial. Thus, inte-
gration of E, over the surface at r = r amounts to a multiplication by the
area. For r < b, Gauss’ integral law therefore gives

I p2mc pr r P 1‘3

2xrle B, = / / / pdrrd¢dz = 2xl / 22 dr (1)
oJo Jo 0
_ b
T 4e, b2’ r<b
For b < r < a, the integral on the right stops at r = b.
pob®
r=4€ob2, b<r<a (2)
(b) From (17)
s a b pob2

05 =ip - (0B — € ,E°) = —€,Ep(r=a) = — (3)

4a

(c) Because it is uniform there, integration of the surface charge density given by
(3) over the surface r = @ amounts to a multiplication by the surface area.

/a,da = 0,2mal = —pobzﬂ‘L/Z _ - (4) /

- That this is the negative of the net charge within is confirmed by integrating
over the enclosed charge density.

/Vpdv = /o' /(.)2"/(.)bpo(%)2rd¢dz= ﬂ};ﬁ (5)
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(d) As shown in the solution to Prob. 1.3.1,

ir = (zix +yiy)/ V22 + 42 r=V2z2+y? ()
and substitution into
: 3 /p2\4 .
s { il 1Sl 0
indeed results in the given field distribution.
(e) For the surfaces at z = e,
da = ti,dydz; E-n=E,(z=*c) (8)
while for those at y = *¢,
da = tiydzdz; E-n= Ey(y= %c) (9)

The four terms in the given surface integral are the integrations over the
respective surfaces using the field given by (d) evaluated in accordance with
(8) and (9). According to (1), this integral must give the same answer as found
by integrating the charge density over the enclosed volume. This has already
been done and is given by (5).

1.83.4 (a) Forr <b, (1) gives

4rr?e,E, = / podmridr = K;br (1)
Thus, ,
E, = ge— r<b (2)

Similarly, forb<r <a

4 T 4mpar? 4
4xrie B, = §1rpbbs +/b —%—dr = §1r[b3p,, + (r® — %) pa] (3)

so that
1

bspb b3
E,=3—€o "T"'(T_;_;)Pa]; b<r<a (4)

(b) At r=a, (17) can be evaluated with n = i,,E® = 0 and E® given by (4)

ou=-3[E 4 (o= Sine] ®)

(¢) For r < b, E, is still given by (2), while for b < r < a, (3) has an additional
term on the right 4xb%0,. Thus,

1 [b3p b3 b%o,
E. = 3, [ + f—;;;)Pa ;’, b<r<a (6)

Then, instead of (5) we have

1[6° b® b?
Oy = —— ﬂ_*_(a_;_)pa]_ an (7)

3| a2
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1.3.6
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Pa

</

Figure S1.3.4

Using the volume described in Example 1.3.2, with the upper surface between
the sheets, there is a contribution to the charge enclosed from both the lower sheet
and the volume between that sheet and the position, z, of the upper surface. Thus,
from (1)

. * dz = 20022 12
&E, (Z) — € By =0, + _6/2/’ z=0,+ TI-—,/Z (1)
and the solution for E, gives
B.=E,+ 22+ 222 _(5/2)?] 2)
€0 €08

Note that the charge density is an odd function of z. Thus, there is no net charge
between the sheets. With the surface above the upper sheet, the field given by (1)
with the integration terminated at z = s/2 is just what it was below the lower
sheet, E,.

With the understanding that the charge distribution extends to infinity in the
y and z directions, it follows from arguments already given that the electric field is
independent of y and z and that that part of it due to the charge sheets can result
only in a z directed electric field. It then follows from (1) that if the regions above
and below the charge sustain no electric field intensity, then the net charge from
the three layers must be zero. Thus, not only is

Oa = 20% (1)

but also,
og+top+0o,=0 (2)

From these relations, it follows that

op = —0,/3; 0, = —20,/3 (3)
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1.3.7 The gravitational force has a component in the £ direction, —Mgsin c. Thus,
the sum of the forces acting on the upper particle in the £ direction is
QQ, .
4—“0—6-5—Mgsma—0 (1)

It follows that, for the particle to be in static equilibrium,

_ / QQ
&= dre,Mgsina (2)

1.4 AMPERE’S INTEGRAL LAW

1.4.1 Evaluation of (1) is carried out for a contour having the constant radius, r,
on which symmetry requires that the magnetic field intensity be constant and in
the ¢ direction. Because the fields are statlc, the last term on the right makes no
contribution. Thus,

r r
2nrHy = / Je2mrdr = / 2rxrJ,e~"/%dr (1)
0 0
Solving this expression for Hy and carrying out the integration then gives

H, = %./(') re—"/ody — %az [1 _ c_'/“(l + ::.)] (2)

1.4.2 (a) The net current carried by the wire in the +2 direction must be returned in
the —=2 direction on the surface at r = a. Thus,

) b2J,
7b%J, +2maK, =0=> K, = 2 (1)
a

(b) For a contour at the constant radius, r, (1) is evaluated (with the last term
on the right zero because the fields are static), first for r < b and then for
b<r<a.

2rrHy = / Jo2ardr = xr2J, = Hy = JT r<b (2)
0

2 J,b?
2nrHy = wb*J, = Hy = oy b<r<a (3)
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(c)

143  (a)

From (1.4.16),
H; - H,=K,= H; =K, + H} (4)

This expression can be evaluated using (1) and (3).

b2J, J,b?
He=-""°2.2 _90 5
¢ 2a + 2a (5)
In Cartesian coordinates,
Y z
—_— H,=Hycos¢p = Hy—————= (6
g y=Hgcosd = H, o (6)

Thus, with r = 1/z2 + y2, evaluation of this expression using (2) and (3) gives

To\/22 + Y2 (—yix + ziy) /2% + y? = 2 (—yix + ziy)
H= J,b? (—yix+ziy) _ J,03 (_ i, + zi ) (7)
2/zi4y? (feiry?r | 2=THT) Yix ¥

H,=—Hysing =—Hy

On z =+4c,H -ds=+H iy whileon y = +¢,H - ds = FH - ix so evaluation
of (1) on the square contour gives

_cc[Hz(z, —c) — Hy(z, c)]dz + —cc[Hy(c,y) ~ Hy(~c,y)|dy
= /_cc Jozbz incz ) ng;czjz]dx o
+ /_ Jozb [c2j-y2 _ c2(_+cz/2]dy

The result of carrying out this integration must be equal to what is obtained
by carrying out the surface integral on the right in (1).

j{H.ds=/J-da=wb2JO (9)
C S

The total current in the +2 direction through the shell between r = a and
r = b must equal that in the —z direction through the wire at the center.
Because the current density is uniform, it is then simply the total current
divided by the cross-sectional area of the shell.

I=Jr(a® - 6% = J, = I/n(a® — b?) (1)

Ampere’s integral law is written for a contour that circulates around the z axis
at the constant radius r. The fields are constant, so the last term in (1.4.1)
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(<)

(@)
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is gero. Symmetry arguments can be used to argue that H is ¢ directed and
uniform on this contour, thus

21rrH¢=-—I=>H4,=—I/2m'; 0<r<b

2nrHy = — r(rz—b’)=>H¢=I[ Ll I ] (3)

( 2 - bz) Zrr | G282 2ar

Analysis of the ¢ directed H-field into Cartesian coordinates gives
H; = —Hysin¢ = —Hyy/\/2? + y?

Hy=—Hycos¢p = Hyz/\/22 + y2 (4)
where r = \/22 + y2. Thus, from (2) and (3),

=I(yix—zi,) 1; s 0<+v22+y2<b (5)
2x(2? + y2) —-(%;b—)-; b<r<a

In evaluating the line integral on the four segments of the square contour, on
z = *¢,ds = tiydy and H - ds = +H,(+c, y)dy while on y = *¢,ds = Fi,dz
and H - ds = ¥ H,(z, Fc)dz. Thus,

¢

fcﬂ-ds= _cHy(c,y)dy+/_ —Hy(z, —c)dz

o © e (6)
+/ - y(_c:y)dy+ Hz(z)c)dz

- -

This integral must be equal to the right hand side of (1.4.1), which can be
evaluated in accordance with whether the contour stays within the region
r < b or is closed within the shell. In the latter case, the integration over the
area of the shell enclosed by the contour is accomplished by simply multiplying
the current density by the area of the square minus that of region inside the
radius r = b.

fJ-da=
s

-1 c<b/V2
I+ m,’_—b,-;[(Zc)z — wb? + 4(ab? — cvbZ - c%)]; b/vV2Z<c<b
-I+ F(a.ﬂ_l-ﬁf[(%)z — xb?); b<c<alVv?
(7)
where & = cos~1(c/b). The range b/v/2 < ¢ < b is complicated by the fact
that the square contour overlaps the circle r = b. Thus, the area over which
the return current in the shell passes through the square contour is the area
of the square (2c)?, minus the area of the region inside the radius b (as in the
last case where there is no overlap of the square contour and the surface at

r = b) plus the area where the circle r = b extends beyond the squa.re, which
should not have been subtracted away.
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1.4.5

Solutions to Chapter 1 1-13

(a) The net current passing through any plane of constant z must be zero. Thus,

2maK, o + 2mb K, =1 (1)
and we are given that
Kza = 2K,b (2)
Solution of these expressions gives the desired surface current densities
I I
Kopo=——; 2b = ——r 3
7 w(2a+b)’ b 27(2a + b) (3)

(b) For r < b, Ampére’s integral law, (1.4.1), applied to the region r < b where
the only current enclosed by the contour is due to that on the z axis, gives

—I
2mrHy =—1=> Hy = —; r<b (4)

27r’

In the region b < r < a, the contour encloses the inner of the two surface
current densities as well. Because it is in the z direction, its contribution is of
opposite sign to that of I.

2a
27('7‘H¢ =—I+27bK,, = -—(2a+b) (5)
Thus, I
2a
Hd’__%(—Za-*-b)’ b<r<a (6)

Note that if Ampére’s law is applied where a < r, the net current enclosed is
zero and hence the magnetic field intensity is zero.

Symmetry arguments can be used to show that H depends only on z. Ampére’s
integral law is used with a contour that is in a plane of constant y, so that it encloses
the given surface and volume currents. With z taken to be in the vertical direction,
the area enclosed by this contour has unit length in the z direction, its lower edge
in the field free region z < —s/2 and its upper edge at the location z. Then, (1.4.1)

becomes .

j[ H ds = H,(z) = —K, + Jydz (1)
C —s/2

and for —s/2 < z < 3/2,

2 2J,z

—5/2 s

H; =~K,+

dz=—-K,+ % [22 - (3/2)2] (2)

while for s/2 < 2,
H,=0 (3)



1-14 Solutions to Chapter 1

1.5 CHARGE CONSERVATION IN INTEGRAL FORM

1.5.1

1.5.2

1.53

1.5.4

Because of the radial symmetry, a spherical volume having its center at the
origin and a radius r is used to evaluate 1.5.2. Because the charge density is uniform,
the volume integral is evaluated by simply multiplying the volume by the charge
density. Thus,

d 4 rdp
2 —- -
4nreJ, + E[g?l‘rspo(t)] =0=>J,= —E—d?o (1)

Equation 1.5.2 is evaluated for a volume enclosed by surfaces having area A
in the planes z = z and z = 0. Because the the current density is z directed,
contributions to the surface integral over the other surfaces, which have normals
that are perpendicular to the z axis, are zero. Thus, (1.5.2) becomes

AVL(2) ~ T2 (0)] + S| Azpo(t)] = 0 = J, = —22P2 (1)
From (12),
% e n @3 = () + e =0) = Lz, p)coslwt) (1)

Integration of this expression on time gives
z
0y = ———ginwt 2
,= 2o (2)

where the integration function of (z, y) is zero because, at every point on the surface,
the surface charge density is initially zero.

The charge conservation continuity condition is applied to the surface at r =
R, where J° = 0 and n = i,. Thus,

Jo(¢, z) sinwt + Boy _ 0 (1)
at
and it follows that
t
05 = —/ Jo(4, 2) sinwtdt = -Jo(:;z)coswt (2)
0

1.6 FARADAY'’S INTEGRAL LAW
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1.6.1 (a) On the contour y = sz/g,

d
ds = dziy + dyiy = dz(ix + d—ii,) = da(ix + gi,) (1)
(b) On this contour,
b b I KB
/ E-ds:/ Eoi,-(ix+fi,)dz=/ 2 iz = E,s (2)
a 0 g 0 g

while the line integral from (z,y) = (g,8) [from b — ¢] to (0, s) along y = s is
zero because E - ds = 0. The integral over the third segment, [c — al, is

/ E.ds— / Edy - (—iydy) = —Eys (3)
c 0
so that

fE~ds=Eos—Eos=O (4)
and the circulation is indeed zero.

1.6.2 (a) The solution is as in Prob. 1.6.1 except that dy/dz = 2sz/g?. Thus, the first
line integral gives the same answer.

b g 2 9 E,2
/ E~ds=/ Eoiy'(ix+g—§:ciy)dz=/ ng”dzons (1)
a 0 0

Because the other contours are the same as in Prob. 1.6.1, their contributions
are also the same and the net circulation is again found to be zero.

(b) The first integral is as in (b) of Prob. 1.6.2 except that the differential line
element is described as in (1) and the field has the given dependence on z.

b 9 E,x\,2sz 2E,s 2
/GE-ds=/0 ( ;’ )(g—z)cm:g o z2|g=§Eos (2)

(Note that we would now get a different answer, E,s/2, if we carried out this
integral using this field but the straight-line contour of Prob. 1.6.1.) From
b — ¢ there is again no contribution because E - ds = 0 while from ¢ — a, the
integral is

E,zy

¢ z
[ Bty == =0 g

which makes no contribution because the contour is at £ = 0. Thus, the net
contribution to the closed integral, the circulation, is given by (2).




1-16 ' Solutions to Chapter 1

1.6.83  (a) The conversion to cylindrical coordinates of (1.3.13) follows from the argu-
ments given with the solution to Prob. 1.3.1.

)Y Y ]
i
T 2mer T 27éon/22 + 32 \/z2+y \/z2+y

(b) Evaluation of the line integral amounts to recognizing that on the four seg-
ments,

(1)

ds =iyxdz, iydy, -—i.dz, -i,dy (2)

respectively. Note that care is taken to take the endpoint of the integrals as
being in the direction of an increasing coordinate. This avoids taking double
account of the sign implied by the dot product E - ds.

fE-ds=i[/gE(zo)dz
c 2me,t Sy TV

p (3)
+ fo " Ey(g,y)dy + /k E.(z, h)(—dy) + '/; " Ey(k, y)(—dy)

These integrals become

f E-ds= {ln(g/lc) + %ln.(g2 + h?%) — %lng2 - %ln(hz + ¢?%)
C

(4)
+%ln(h2 + k) — -;—ln(lcz + R+ %lnkz} =0

and it follows that the sum of these contributions is indeed zero.

1.6.4 Starting at (z,y) = (s, 0), the line integral is

f;E-ds= /dEz(z,O)dz+/dEy(d,y)dy—/d E.(z,d)dz
. o’ o. (1)
—/: Ey(O,y)dy+fo Ez(w)dz—fo Ey(s,y)dy

This expression is evaluated using E as given by (a) of Prob. 1.6.3 and becomes

dz 4 g
fE ds_Zweo[/ / d2+y2 ,[, z2+d2dz
dy y _
/ / ,,2.,.,2 /(; 32+y2dy] -

(3)
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I
z
5

°.
S
L]
®

Figure S1.6.5

(a) In view of Fig. S1.6.5, the magnetic field given by (1.4.10)

= l¢(21r'. (1)
is converted to Cartesian coordinates by recognizing that
s s ge . -y z s
= — = 3 . — 2 2
iy sin @i, + cos ¢iy T <+ Jare iy; r=vz2+42 (2)
so that (1) becomes
t [~y z .
= — i 3
27 z2+y2x+zz+y21y] (3)

(b) The surface of Fig. 1.7.2a, shown in terms of the z — y coordinates by Fig.
S1.6.5, can be used to evaluate the net flux as follows.

'R —d3
A= [ omeda=1 [T vy
0

_lpot / V- (), uoh
T o d2+y 2¢

This result agrees with (1.7.5), where the flux is evaluated using a different
surface. Just why the flux is the same, regardless of surface, is the point of
Sec. 1.7.

(c) The circulation follows from Faraday’s law, (1.6.1),

Dy pol di
fc E-de=-2L = Loy gja) S (5)

(d) This flux will be linked N times by an N turn coil. Thus, the EMF at the
terminals of the coil follows from (8) as :

b= 22 in(R /) (6)

(4)

In(R/d)
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1.6.6 The left hand side of (1.6.1) is the desired circulation of E, found by deter-
mining the right hand side, where ds = i, dzdz.

d
f;E-ds—-—E/s,uoH-ds

d /2 w .
=—— / poH,(z,0,2)dzdz (1)
at J_yj2Jo
— ol dH,
= —Ho dt
1.6.7 From (12), the tangential component of E must be continuous, so
nx(E*°~E’)=0=E2—E, =0= E¢=E; (1)
From (1.3.17),
60E3—60E2=60=>E;=?+E2 (2)
(]

These are components of the given electric field just above the y = O surface.
1.6.8 In polar coordinates,
E = E,(sin ¢i, + cos ¢ig) (1)
The tangential component follows from (1.6.12)
Eg(r=R*)=E4(r=R")=E,cos ¢ (2)

while the normal is given by using (1.3.17)

E.(r=R*)= -:—o cos ¢ + E,sin ¢ (3)

1.7 GAUSS’ INTEGRAL LAW OF MAGNETIC FLUX

1.7.1 (2) In analyzing the z directed field, note that it is perpendicular to the ¢ axis
and, for 0 < § < «/2, in the negative # direction.

H = H,(cos §i, — sin fip) (1)

(b) Faraday’s law, (1.6.1), gives the required circulation in terms of the surface
integral on the right. This integral is carried out for the given surface by
simply multiplying the z component of H by the area. The result is as given.
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(c) For the hemispherical surface with its edge the same as in part (b), the normal
is in the radial direction and it follows from (1) that

poH - ds = (uoH,cos f)rsin 0dirdé (2)

Thus, the surface integral becomes

2% pw/2
/ UoH - da = / / poH,R? cos f sin 8dfd¢
s o Jo (3)

= uoH,R?(2r)(1/2)
so that Faraday’s law again gives
dH,
.dg = — 2”20
f; E.ds pom R 7 (4)
1.7.2 The first only has contributions on the right and left surfaces, where it is of

the same magnitude. Because the normals are oppositely directed on these surfaces,
these integrals cancel. Thus, (a) satisfies (1.7.1).

The contributions of (b) are to the top and bottom surfaces. Because H differs
on these two surfaces (z = z on the upper surface while z = 0 on the lower one),

this H has a net flux. AH
f H.ds= =% (1)
s d

As for (b), the top and bottom surfaces are where the only contributions
can be made. This time, however, there is no net contribution because H does not
depend on z. Thus, at each location y on the upper surface where there is a positive
contribution, there is one at the same location y on the lower surface that makes a
contribution of the opposite sign.

1.7.8 Continuity of the normal flux density,(1.7.6), requires that
[loH;—[lOH1=0=>H:=H1 (1)

while Ampare’s continuity condition, (1.4.16) requires that the jump in tangential
H be equal to the given current density. Using the right hand rule,

Hg'—H2=Ko=>H:=Ko+H2 (2)

These are the components of the given H just above the surface.

1.74 Given that the tangential component of H is zero inside the cylinder, it follows
from Ampére’s continuity condition, (1.4.16), that
Hy(r=R,) =K, (1)

According to (1.7.6), the normal component of u,H is continuous. Thus,

I‘oHr(r = R+) = l‘oHr(r = R—) =H, (2)






SOLUTIONS TO CHAPTER 2

2.1 THE DIVERGENCE OPERATOR

2.1.1

2.1.2

2.1.3

From (2.1.5)
DivA = a(a‘:,) + a(a’;”) + a(a,:,)
= Bl + 20+ 26) )
=2aty+a) (2)
(a) From (2.1.5), operating on each vector
VoA=L ()45 @) =0 1)
VA= Ll - o) =0 (2)

2 a
V-A=A,[—(e™coskr) — — (e *¥sinkz
= Ao[—ke ™ sinkz + ke™* sinkz] =0
(b) All vectors having only one Cartesian component, a (non-constant) function
of the coordinate corresonding to that component. For example, A = i, f(z)

or A = i, g(y) where f(z) and g(y) are not constants. The example of Prob.
2.1.1 is a superposition of these possibilities.

From Table I 18 184 94
A= -— ol i1
VoA=L tA Y I Y e, M
Thus, for (a)
_ 419 5 9
V-A= 7 [r ar(r cos 2¢) 3 (sin 29)] @

= %‘-’[2(:032:)5 —2cos2¢] =0

for (b)
148 19 .
V-A=Ao[;arcos¢—;%sm¢] =0 (3)
while for (c)
A, 18 A,
V-A= 2o = d23r (4)
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2.1.4 From (2),

DivA = lugo AV f A -ds (1)

Following steps like (2.1.3)-(2.1.5)

f A -da ~A¢Az[(r+ %’:)A,(r+ 5?',¢,z)]
S

~ ag8s[(r — 51 Ar(r— 57, 4,9)] 2
N +ArAz[A¢(r,¢+—,z)—A¢(T,¢—%sz)]
+ragar(As (e + ZD) - Au(n b,z )]
Thus, the limit
DivA = lim
rAdAz—0
[("+ Ar)4, ( + Ar:¢’z) (" - _)Ar("_ —,¢,z)]
{'A‘/’Az : rA¢AzAT
o [As(ne+52:2) - Ao(rg— 42,2)] G
rA¢
[A,(T,¢,Z+ H) - A,(r,¢,z — 'A_')]
+ : Az : }
gives the result summarized in Table 1.
2.1.5 From Table I,
dA
VA= 32 (PA) + s a(A.,sm 6) + silnf,?f (1)
For (a)
4,
v oA=2[520) = 226 (2
for (b)
A, 1 98
v =?rsin0%(r2)=o (3)
and for (c)
V-A=Ao[2a (? cos ) — 630(m 9] @
= Ao[—cosﬁ - M] =0
r rsind
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2.1.6 Starting with (2) and using the volume element shown in Fig. $2.1.6,

A0¢)

f A-da= (Ar)(mo)}i,'ﬁnam_.o {( + —)Ao(r + —) sin0APA, (r +
—(r- —)Aa(r - —) sin 0AGA, (r - A— ,6,4)
+ ArrAg[sin (6 + —2—-)A¢(r,0 + —2—,¢)
—sin (0 — —Az—a)A¢(r,0 - %f,eﬁ)]
+ rABAr[Ag(r,6, 6 + %) — Ag(r,0,¢ - %)]}
(1)

(r + &) cosfAo

Figure S2.1.6
Thus,

§s A -ds
(Ar)(rAf)(rsin6A¢)
- i [Vl .00 - 0= 4 (= .00
Ar—0 | r2 Ar
+ lim sing B0+ 5)4o(r0+ 5% ¢) —sin (6 - 57) Ag(r,0 — 52,4)]
A6—0 r Ad

1 [Ag(r0,8+52) — A4(r,0, 6 — 52)] }

V-A=

Adno rEind Ad

(2)



2-4 Solutions to Chapter 2
In the limit

19,, 1 ad,. 1 094,
A=-22 — = i 3
v-A r? 3r(r Ar)+ rsin § 80(31110‘40)_*_ rsinf d¢ 3)

2.2 GAUSS’ INTEGRAL THEOREM

2.2.1

I i;dzdy

A | = iydydz
/ 7

—iydzdr <4f—--- . ——— i Y
ixdydz iydzdz

/ !
i / ; — igdzdy

x

Figure S2.2.1

(a) The vector surface elements are shown in Fig. S2.2.1.

(b) There is no z contribution, so there are only z = +d surfaces, A, = (4,/d)(+d)

and n = +i,dydz. Hence, the first two integrals. The second and third are
similar.

(c) From (2.1.5)

A d L3 . 24,
V-A= d[azz+ayy]-— ¥ (1)

Thus, because V - A is constant over the volume

/ V.AdV = 3‘}'—(2@3 = 16A,d? (2)
v

2.2.2 The surface integration is

A d d d d
A-da=7i§[ / / dy*dydz - / / (—d)y?dydz
s —dJ-d -dJ-d

d d d d
+ / / dz?dzdz — / / (—d)z?dzdz
-dJ—d -dJ—-d

(1)
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From the first integral

= %(2%’) (gd")

The others give the same contribution, so

_ 44,445 164,d?

e 3
To evaluate the right hand side of (2.2.4)
_ A, |9 d _ Ao 2 2
V. -A= ds[azy+a y]—da(y+z)

So, indeed

d rd prd 4 16
/ V- Adv= / / / —5 (v* + 2?)dydzdz = — A, d?
v —ad_at-ad 3

2.3 GAUSS’ LAW, MAGNETIC FLUX CONTINUITY AND
CHARGE CONSERVATION

2.3.1  (a) From Prob. 1.3.1

LN LIS Y
e, tz2 +y2 - 24 y2 Y
From (2.1.5)
A [0 y
V.E_2weo[az(zz+y2)+8y(x2+yz)]
_ A 1 _ 232 + 1 _ 2y2
e T T @R FrE @A

A [y2—22 z? — o ]=0

= 27¢, | (22 + )2 + (=% + y2)2
except where z2 + y?> = 0 (on the z-axis).

(b) In cylindrical coordinates
E= A li
- 2we, T

Thus, from Table I,

V E - —_‘(TEr) +

19Fy 0B, 10 )

3¢ + 9z ror )=0

2xe,

|

(2)

(3)

(4)

(5)

e)

@)

(3)

(4)
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2.3.2 From Table I in cylindrical coordinates with 8( )/8¢ and 8( )/dz =0,
€& 9
VB = =—(rE) (1)
80
) 3 | port/4eb?; r<b
Ve r or { ;ob [4€p; b<r<a (2)
2 /32
_ ] por® % r<b
- { ° 0; b<r<a (3)
2.3.8 Using H = H,(ix + iy) in (2.1.5),
a(1) a(1
Vl.loH I‘oH[() ()]_0 (1)
2.3.4 In cylindrical coordinates (Table I):
143 13H, aH, _1
V-H= rar(rH') r 3¢ + - ra¢ 21rr (1)
2.3.5 If V- u,H = 0 everywhere then the integral of its normal over an arbitrary
closed surface in that region will be zero and
(a)
VuH=0
(b} H,3 H
V. I"OH = __I ===
a Oz a
(c) .
V. ﬂoH = ____.'/_ =0
a 9z

Thus, only (b) will not satisfy (1.7.1)
2.3.6 Evaluation using (2.1.5) gives

E
p=V-eoE=eoa 2 22&2
dz s

which is the given charge density.
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2.3.7 Using V - F in spherical coordinates from Table I with /80 and 8/8¢ =0
_ 18,4, _ 138 ,°dp dpo

ViI=-a5t ) =—5533)=
which, since p, is independent of r, checks with (2.3.3).

2.4 THE CURL OPERATOR

2.4.1 All cases have only z and y components, independent of 2z
I 94, 04
VxA=|£ £ 0] =iL]-" 32 ay’]
A, A, O
Thus
(a)
4o
VxA=2l1-1]=0 (1)
(b)
VxA= —[0 0] = (2)
(c)

V x A= A,[—e " coskz + ke™*¥ cos kz] = 0

(3)

To make a finite curl make a single component having any dependence on a
coordinate perpendicular to the vector

A, = f(=), A, =0, A, =0

(4)
Say,

f(z)=z,z2,z3»VxA=%-£i)=1,2z,3z2 (5)

2.4.2 In all cases A, =0 and 8/32z = 0, so from Table I

14 1904

v =i r

X A =i, T (1)
(3) Thus
(a.):VxA..—-_i.ﬁ[l 6( n2¢)———(rcos2¢)]
d‘'ror

4 (2)
= i.—d°-[—2sin2¢ + 2sin2¢] =0
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(b)=>V><A—1.A,,[———( —rsin ¢) — -——Ecos:ﬁ]
(3)
=ile[_su:¢+¥]=o
©=»Vxa=i () 3 (4

(b) Possible vector functions having a curl make A = A4iy where rdy = f(r) is
not a constant. For example f(r) = r,r2, 7%, in which case

N l 9 ny __ n-—2
VXA_l'rar(r)—nr (5)
2.4.3 From (2)
(curlA), = ltlll'_l.lo'A—a f A . ds (1)

Using contour of Fig. P2.4.3a,

(VxA), = lim {[AzA,(r,¢+ 12) — AzA,(r,¢ — > ,z)]

rA¢Az—0 TA¢AZ
_[ragAg(r,d,2 + 52) — rAbAy(r 8,2 — 4)] 2)
rAdAz
_ 104, 34
T r 8¢ Oz

Using the contour of Fig. P2.4.3b

[ArA,(r, ¢, 2+ 42) — ArA, (r, 4,2 — 42)]
ArAz

_ [AzA,(r+ %,¢,2) - AZA;(T - %L,¢,z)] } (3)

(VxA)y= lim {

ArAz—0

ArAz
0A, _ 0A.
oz ar

(V X A), = Arrlgg—vo

{[(r+ F)AbAs(r+ 5, 4,2) = (r— 57)AdAs(r = 5. 4,2)]

ArrAg

[ArA.(r, ¢+ 42,2) — Ard, (r,¢ — 42,2)] (4)
B ArrA¢
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244
rad A%'/ ar [ (re3a
9 L rsinfAoe —~ 6 ~ f

X5
S SST

(r- %I)Ao
Figure S2.4.4
From (2)
_ . [erAO (T, 0, ¢ + 'A—zé) - TAer(f, 0, ¢ - %Q)]
(VXA) = o biBago {‘ rAfrsin 0A 4
rsin (04 80)AgAy(r0 + 42, 9) —rsin (0~ 4% Apay(r0 - 5.9)]
rAfrsin0A¢

_ 1 JdA, 1 a(sin 0A¢)
" rginf ¢ ' rsinf  Af

(1)
_ . [ArA,(r,0,¢ + 42) — ArA,(r,0,4 — 42)]
(V x A)o - Arninlg'nA¢—->('){ Azrsin 07‘A¢ *
_ [Agsind(r+ 57)Ag(r + 57,6, 4) — Agsing(r— 57) Ag(r ~ 47,6, )]
ArsinfrA¢
_ 1 3A, 19(rd,)
" r(sinf) 3¢ r or
(2)
L [A8(r + A2) Ao (r + 57,6, 8) — A8(r — BZ) A(r — 47,4, 4)]
(VxA)y=  Mm { rAGAT
[ArA, (r,0+ £2,8) — ArA,(r,0 — 82, 4)]
B rAO AT
19, 184,
= 7o) = 1

(3)
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2.4.5 (a) Stokes’ integral theorem, (2.4.1) is

fA-ds=/VxA-da (1)
Cc S
With S a closed surface, C — 0, so
vaA-da=o=/v-(VxA)dv (2)
s v

Because V is arbitrary, the integrand of this volume integral must be zero.

(b) Carrying out the operations gives

d JA, d [0A, aAz a 04
v-(xA) = 2 (2 yy, D (04 34y, 224

0A,
- Ay ] =0 (3)

2.5 STOKES’ INTEGRAL THEOREM

2.5.1 X

A

[

z O~ . = T
g g+ A

Figure 82.5.1
(a) Using Fig. $2.5.1 to construct A - ds,

g+a h
fA-ds=/ A,(z,O)dz+/ Ay(g+ A, y)dy
C g 1]
g+A h
—/ Az, h)dz—f Ay(g,y)dy
g 0

=/g+A(0)d$+/h ﬂ(g+A)2dy (1)

g+a
—/ (0)dz—/ 7 = g?dy
y

= ;—El(g +A)%h — g*h]
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(b) The integrand of the surface integral is

T S
VxA=[a/’5z 0 6]=i,?-ﬁ=i.
0 4, 0

Thus

/SVxA-da=/0 ng 2‘:;’% d °[(9+A)’—92]h (2)

2.5.2 (a) Using the contour shown in Fig. §2.5.1,

ch.dF %[£0+A(O)dz+/(;h(g+A)dy

) ./am(—h)dz - /oh gdy] @

2A.hA
d

7”[(9 + A)h+ hA — gh] =
(b} To get the same result carrying out the surface integral,

i i is
VxA=[6/’5z 8/’:9y 0]—1. 24y 94 "]
4, A, 0
24,
d

A, _
= 7[1'{'1] =

and hence

(V x A)-da= 2?(Ah) @)

o

2.6 DIFFERENTIAL LAWS OF AMPERE AND FARADAY

2.6.1 From Prob. 1.4.2
H=£{—y§x+zi,; » o r<b (1)
2 | —b%y(z? + y) ik + B23(22 + y?) Yy b<r<a
Thus,
0H, 0H,
VxH=1i[—-¥¢ % oy —=]
I [(1-(-1) =2 r<b (2)

== 32 -b -b
{Fbﬁﬁ ey~ i + ol <0 b<r<a

Thus, V X H = J at each point, r.
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2.6.2 Ampére’s differential law is written in cylindrical coordinates using the ex-
pression for V x H from Table I with /3¢ and 3/8z =0 and H, =0, H, = 0.
Thus

. 1 a ° 1 a —rja —rjas
VxH=h-o(rHy) =1a s o-{Jos?[1 - ¢ o1+ )]} = Joe o (1)

2.7 VISUALIZATION OF FIELDS AND THE DIVERGENCE
AND CURL

2.7.1 (a) For p and E given by

= Por,2_ (32
2[5~ (3)) u
the sketch is shown in Fig. $2.7.1
+

il

Figure S2.7.1
VXE= [0 0 /32
(c) The density of field lines does not vary in the direction perpendicular to lines.

+

H

| —t— +
|omet— ¢
| =4
| e 4=

(b)
=0 2)

0 0 E,

2.7.2 (a) From Prob. 1.4.1,

~rfa Ja'2
J; = Joe /; Hy = 2

[1-e/4(1+ )] (1)
and the field and current plot is as shown in cross-section by Fig. 82.7.2.

(b) From Prob. 1.4.4, the currents are a line current at the origin returned as two
surface currents. m
I/m(2a+b); r=a
K, = { I/1r(2a+l;) r=»b (2)
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In the annular regions,

I 1 0<r<b
H"’—_E; {Za/’r(2a+b); b<r<a (3)

This distribution of current density and magnetic field intensity is shown in
cross-section by Fig. S2.7.2.

Figure S2.7.2

(¢) Because H has no ¢ dependence with its only component in the ¢ direction, it
must be solenoidal. To check that this is so, note that /3¢ = 0and 3/3z =0
and that (from Table I)

19

(d) See (c).

2.7.3  (a) The only irrotational field is (b), where the lines are uniform in the direction
perpendicular to their direction. In (a), the line integral of the field around a
contour such as that shown in Fig. $2.7.3a must be finite. Similarly, because
the field intensity is independent of radius in case (c), the line integral shown
in Fig. S2.7.3b must be finite.
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A 2 F/'—_\
C ==+ ===
N | /
1 | \ I
[ | \ 4
1 £
(a) (b)
Figure $2.7.3
2.74 The respective fields are
Oo, 20,,
_ To; 200 1
E eol" + . iy (1)
Oo, Oo,
~ %o, 4 % 2
E €ol + eox, (2)

and the field plot is as shown in Fig. $2.7.4. Note that the spacing between lines is
lesser above to reflect the greater intensity of the field there.

A
V%

Figure S2.7.4

a?

Figure S3.7.5

2.7.56 The respective fields are
H = K,i, + 2K,i, (1)

H = K,iy + Kois 2)

and the field plot is as shown in Fig. S2.7.5. Note that, because the field is solenoidal,

the number of field lines above and below can be the same while having their spacing
reflect the field intensity.

2.7.6 (a) The tangential E must be continuous, as shown in Fig. 52.7.6a, so the normal

E on top must be larger. Because there is than a net flux of E out of the

interface, it follows from Gauss’ integral law [continuity condition (1.3.17)]
that the surface charge density is positive.
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(a) (b)
Figure S2.7.6

(b) The normal component of the flux density uoH is continuous, as shown in Fig.
$2.7.6b, so the tangential component on the bottom is largest. From Ampére’s
integral law [the continuity condition (1.4.16)] it follows that K, > 0.


http:S2.7.6b




SOLUTIONS TO CHAPTER 3

3.1 TEMPORAL EVOLUATION OF WORLD GOVERNED
BY LAWS OF MAXWELL, LORENTZ, AND NEWTON

3.1.1

(a)

Replace z by z — ct. Thus

E = Eoixe_(l"‘ct)’/2a2; H =4 [%Eoiye—(s—ct)”z:z’ (1)

(b) Because 8( )/3z = 8( )/8y = 0 and there are only single components of

3.1.2

each field, Maxwell’s equations reduce to

8Hy _

at

13E,
Bo 8z’

OE,
ot

_128,

€, 02

(2)

Note that we could pick these expressions out of the six components of the laws
of Faraday and Ampére by first writing the left hand sides of 3.1.1-2. Thus,
these are respectively the y and z components of these laws. In Cartesian
coordinates, the divergence equations are automatically satisfied by any vector
that only depends on a coordinate perpendicular to its direction. Substitution
of (1) into (2a) and into (2b) gives

1

VKoo

which is the velocity of light, in agreement with (3.1.16).

c =

(3)

For an observer having the location z = ¢t+ constant, whose position increases
linearly with time at the rate ¢ m/s and who therefore has the constant velocity
¢,z — ct = constant. Thus, the fields given by (1) are constant.

With the given substitution in (3.1.1-4), (with J = 0 and p = 0)

JE 1
—E——;VXH (1)

oH 1
—at———;VXE (2)
0=V .uH (3)
0=-V.¢,E (4)

Although reordered, the expressions are the same as the original relations.



3.1.3

3.14

3-2 Solutions to Chapter 3

Note that the direction of wave propagation is obtained by crossing E into
H. Because it would reverse the direction of this cross product, a good guess is to
reverse the sign of one or the other of the fields. In that case, the steps followed
in Prob. 3.1.1 lead to the requirement that ¢ = —1/,/io€,. We define ¢ as being
positive and so write the solutions with z—ct replaced by 2—(—c)t = z+ct. Following
the same arguments as in part (c) of Prob. 3.1.1, this solution is therefore traveling
in the —z direction.

Figure S3.1.4

The role played by 2 is now taken by z, as shown in Fig. $3.1.4. With the
understanding that the z dependence is now replaced by the given z dependence,
the magnetic and electric fields are written so that they have the same ratio as in
(1) of Prob. 3.1.1. Further, in order to preserve the vector relation between E, H
and the direction of propagation, the sign of H is reversed. Thus,

E = E,i, cos B(z — ct); H=— / -;.lE,,iy cos B(z — ct) (1)

3.2 QUASISTATIC LAWS

3.2.1

(a) These fields are transverse to the coordinate, z, upon which they depend.
Therefore, the divergence conditions are automatically satisfied. From the
direction of the vectors, we know that the z and y components respectively
of the laws of Ampére and Faraday will apply.

8H, d¢,E,
T8z Bt )
dE, _ op.Hy,
%z ot (2)

The other four components of these equations are automatically satisfied be-
cause 3( )/8y =8( )/8z = 0. Substitution of (a) and (b) then gives

B = wy/fliots =

o€

(3)
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in each case.

(b) The appropriate identities are

cos fz coswt = %[cosﬂ(z - %t) + cos f(z + %t)] (4)

sin fz sinwt = -;—[cosﬂ(z - %t) —cos Bz + %t)] (5)

Thus, in view of (3), the fields indeed take the form of the sum of waves
traveling in the +z and —z directions with the speed c.

(c) In view of (a), this condition can be written as

Bl=wy/pocl =wlfc < 1 (6)

Thus, the condition is equivalent to having the electromagnetic delay time
Tem = /¢ short compared to the time 1/w required for 1/2x of a cycle.

(d) In the limit of (c), cos fz — 1 and sin fz — Bz and (a) and (b) become the
given fields.

(e) The electric field of (c) is irrotational and hence satisfies (3.2.1a) but not
3.2.1b) while the magnetic field has curl and indeed satisfies (3.2.2a) but not
3.2.2b). Therefore, in the limit of having the frequency low enough to satisfy

(6), the system is EQS.

(a) See part (a) of solution to Prob. 3.2.1.
(b) The appropriate identities are

sin(fz) sin(wt) = %[cos B(z — %’-t) + cos B(z + %t)] (1)
cos(fz) cos(wt) = %[cosﬂ(z - %t) —cos Bz + %t)] (2)

Thus, because w/f = c, the fields indeed take the form of the sum of waves
traveling in the +2z and —z directions with the speed c.

(c) See (c) of solution to Prob. 3.2.1.
(d) In the limit where |Sl} < 1, the given fields become
E =~ wp, Hoz sin wtiy (3)
H ~ H,coswtiy (4)

Thus, the magnetic field is uniform while the electric field varies linearly
between the source and the “short” at z = 0, where it is zero.

(¢) The magnetic field of (4) is irrotational and hence satisfies (3.2.2b) with J = 0
but not (3.2.2a). The electric field of (3) does have a curl and hence does not
satisfy (3.2.1a) but does satisfy (3.2.1b). Thus, the system is magnetoqua-
sistatic.
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3.3 CONDITIONS FOR FIELDS TO BE QUASISTATIC

3.3.1

(a) Except that it is in the z direction rather than the z direction, the quasistatic

electric field between the plates is, as in Example 3.3.1, uniform. To satisfy
the requirement of (a), this field is

= [v(t)/dlix (1)

The surface charge density on the plates follows from Gauss’ integral law
applied to the plates, much as in (3.3.7).

—oEx(z=d) = —€,vfa; z=4d
Te = {eoE',,.(:c(= 0) .)—_ eov/d;/ z=0 (2)

Thus, the quasistatic surface charge density on the interior surfaces of each
plate is uniform.

Figure S3.3.1

(b) The integral form of charge conservation is applied to the lower and upper

(<)

electrodes using the volume shown in Fig. $3.3.1a. Thus, using symmetry to
argue that K, = 0 at z = 0, for the lower plate
do,zw ze, dv
=0= K =——— 3

at ()=~ % ®)
and we conclude that the surface current density increases linearly from the
center toward the edges. At any location z, it is that current required to
change the charge on the fraction of “capacitor” at a lesser value of z.

w[K,(2) — K.(0)] +

The magnetic field is found using Ampére’s integral law, (3.3.9), with the
surface da = i, da having edges at z =0 and z = 2. By symmetry, H, =0 at
z2=0, so

* Ew dy eoz dv
wl-E,(0) + B0 = [ B~ D o B G) = L2 (g
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(4)

Note that, with this field and the surface current density of (3), Ampére’s
continuity condition, 1.4.16, is satisfied on the upper and lower plates. We
could just as well think of the magnetic field as being induced by the surface
current of (3) as by the displacement current of (3.3.9).

To determine the correction electric field, use Faraday’s integral law with the
surface and contour shown in Fig. $3.3.1b, assuming that E is independent of
z.

d[E.(0) - E.(2)] = /'Hd Shoted i gy B
[B:(0) = Bal2)] = —podz, 2d de?
Because of (a), it follows that the corrected field is
B) =4+ e )52 ©)
=37 2 de?

With the second term in (6) called the “correction field,” it follows that for
the given sinusoidally varying voltage, the ratio of the correction field to the
quasistatic field at at most

Ecorrection — ,uoeo 2 1 d2 l /l'o€ol w
v/d 2 o] dez

(7)
Thus, because ¢ = 1/, /115€5, the error is negligible if

[éw] <1 (8)

B | =

With the understanding that the magnetic field outside the structure is zero,
Ampér’es continuity condition, (1.4.16), requires that

0-Hy=K,=K top plate

H,-0=K,=-K bottom plate (1)

where it is recognized that if the current is essentially steady, the surface
current densities must be of equal magnitude K (¢) and opposite directions in
the top and bottom plates. These boundary conditions also require that

H = —i, K(t) 2)

at the surface current density sources at the left and right as well. Thus,
provided K (t) is essentially steady, (2) is taken as holding everywhere between
the plates. Note that this uniform distribution of field not only satisfies the
boundary conditions, but also has no curl and hence satisfies the steady form
of Ampére’s law, (3.2.2b), in the region between the plates where J = 0.
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(b) The integral form of Faraday’s law is used to compute the electric field caused
by the time variation of K(t).

3
ds=—— | pH-d 3
fcmds at/;p. A (3)
X
7,
7,
»” /7
- 5
: [z 2
c

(a) (b)
Figure S8.3.2

So that it links the magnetic flux, the surface is chosen to be in the z — 2 plane,
as shown in Fig. S3.3.2a. The upper and lower edges are adjacent to the perfect
conductor and therefore do not contribute to the line integral of E. The left edge
is at 2 = 0 while the right edge is at some arbitrary position z. Thus, with the
assumption that Ey is independent of =,

oH dK
d[E.(2) — Ez(0)] = —pozda—ty = ”"Zdjt— (4)
Thus the electric field is E;(0) plus an odd function of z. Symmetry requires that
E.(0) = 0 so that the desired electric field induced through Faraday’s law by the
time varying magnetic field is

Ex(z) = o'y (5)

Note that the fields given by (2) and (5) satisfy the MQS field laws in the region
between the plates.

() To compute the correction to H that results because of the displacement
current, we use the integral form of Ampére’s law with the surface shown
in Fig. S3.3.2. The right edge is at the surface of the current source, where
Ampire’s continuity condition requires that Hy(l) = —K (), and the left edge
is at the arbitrary location 2. Thus,

wl=Hy(0) + Hy(s)] = weo o f E.dz (6)
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and so, from this first order correction, we have found that the field is

H,=-K(t) +

we o (2 — 22) d°K
w 2 dit? (™)

(d) The second term in (7) is the correction field, so, at worst where 2 = 0,

|Hcorrected| — eoﬂolzierl (8)
|K] 2 |K|'at?

and, for the sinusoidal excitation, we have a negligible correction if

cololPw? 1,1 2
opelfu? 1L, )

Thus, the correction can be ignored (and hence the MQS approximation is
justified) if the electromagnetic transit time l/c is short compared to the
typical time 1/w.

3.4 QUASISTATIC SYSTEMS

8.4.1 (a) Using Ampere’s integral law, (3.4.2), with the contour and surface shown in
Fig. 3.4.2¢c gives

2nrHy = 2nbK,(t) = Hy = gKo(t) (1)

(b) For essentially steady currents, the net current in the z direction through the
inner distributed surface current source must equal that radially outward at
any radius r in the upper surface, must equal that in the —z direction in the
outer wall and must equal that in the —r direction at any radius r in the lower
wall. Thus,

2nbK, = 27rK,(z = h) = —27aK,(r = a) = —2#rK,(z = 0)
2
:K,(z=h)=gKo;K,(r=a)= %KO;K,.(z=0)= gKo (@)

Note that these surface current densities are what is called for in Ampére’s
continuity condition, (1.4.16), if the magnetic field given by (1) is to be con-
fined to the annular region.

(c) Faraday’s integral law

d
E-ds=——f oH - da 3
fc 5 [ v (3)
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applied to the surface S of Fig. P3.4.2 gives

W[E.(r) — Eu(r = a)] = —oh / * Hydr = —p,

(4)

Because E,(r = a) = 0, the magnetoquasistatic electric field that goes with
(2) in the annular region is therefore

E,=—po

(5)

Again, using Ampére’s integral law with the contour of Fig. 3.4.2, but this time
including the displacement current associated with the time varying electric
field of (5), gives

2rrHy = 2nbK,(t) + eoa%/ E,2xrdr (6)
b

Note that the first contribution on the right is due to the integral of J asso-
ciated with the distributed surface current source while the second is due to
the displacement current density. Solving (6) for the magnetic field with E,
given by (5) now gives

#y = 2K+ L2 (P (D) - 1 - (D) - 11} e

The last term is the correction to the magnetoquasistatic approximation.
Thus, the MQS approximation is appropriate provided that at r = a

Horrection _ 2 l E 2__ _1_ 2 2 2 _1 d2K°
b/a)|Ko| €olod {4[(a) 1] 2(a) l"'(a) |K,|| de? (8)
In the sinusoidal steady state, {8) becomes
1bys

Heorrection _ {32

Muqs

~2C)m(2)

The term in | | is of the order of unity or smaller. Thus, the MQS approxi-
mation holds if the electromagnetic delay time a/c is short compared to the
reciprocal typical time 1/w.

w1 (9)




SOLUTIONS TO CHAPTER 4

4.1 TRROTATIONAL FIELD REPRESENTED BY SCALAR
POTENTIAL: THE GRADIENT OPERATOR AND
GRADIENT INTEGRAL THEOREM

4.1.1  (a) For the potential

|Z
@ = —2(a” +y* +2%) (1)
2V, 4 4
grad = a—;(:mz + yty + 21,) (2)

(b) The unit normal is

Vo _ x:; +y:y -+ Z:s

=i, (3)

n= =
V| /22 +y% + 22
4.1.2 For & = %&zy, we have

Vo . .

E=-Vd= —-a—z(ylx + ziy) (1)
»
(a,a)
- I
0

Figure S4.1.2

Integration on the path shown in Fig. $4.1.2 can be accomplished using ¢ as a
parameter, where for this curve z = t and y = d so that in

ds = i,dz +1iydy (2)
we can replace dz = dt,dy = dt. Thus,
(a,a) a A
/ E-ds= / o i1y - (i + 1) =V, (3)
(010) t=0 a

Alternatively, $(0,0) =0 and ®(a,a) =V, and so (0,0) — ®(a,a) = —V,.
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4.1.3 (a) The three electric fields are respectively, E = —V®,

E=—(V,/a)ix (1)
E = —(V,/a)iy (2)
B= 220 - ui)) ®)

(b) The respective equipotentials and lines of electric field intensity are sketched
in the = — y plane in Figs. S4.1.3a-c.

Figure S4.1.3

(c) Alternatively, the vertical axis of a three dimensional plot is used to represent
the potential as shown in Figs. $4.1.3d-f.
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4.1.4 (a) In Cartesian coordinates, the grad operator is given by (4.1.12). With ® de-
fined by (a), the desired field is

32 0%
9z dy (1)
= _fo [E cos yl,‘ + sin = cos Wyi ]
€ol(r/a)2 + (x/b)?] ' a ) b a b
(b) Evaluation of the curl gives
Y 3E, JE,
VXE= % % 0 [ oz ayz]
E, E 0
2 xz  wy (2)
= [—cos—cos—y - o8 ZZ cos =¥
ab b b a b

so that the field is indeed irrotational.

?y

Figure S4.1.4

(c) From Gauss’ law, the charge density is given by taking the divergence of (1).

OE;  OE,

p=V B =co(ZE+ 5, (3)
— (= /b)?sin _:c_ sin Ty

—po
= x/a)?sin ==

r7ar+ G - (/)
(d) Evalvuation of the tantential component from (1) on each boundary gives; at

z=0,Ey=0; z=40,F,=0
y=0,E;=0; y=ea,E;=0

4)

(e) A sketch of the potential, the charge density and hence of E is shown in Fig.
54.1.5.
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+
+ B+ - - -

Figure S4.1.5

(f) The integration of E between points (a) and (b) in FIg. P4.1.5 should be the

same as the difference between the potentials evaluated at these end points
because of the gradient integral theorem, (16). In this particular case, let
z =t,y = (b/a)t so that dz = dt and dy = (b/a)dt.

b a
—~po nt xt
E-ds= cos — sin —dt
./; eol(7/a)? + (7/b)?] Jaya [a a a
+ T s sin xt cos ——]dt
a a . ot (5)
= Po T sin gt

¢o|(r/a)? + (x/b)?] Joza @

- Po
éol(7/a)? + (x/b)?]

The same result is obtained by taking the difference between the potentials.

@(g, ;,t) — ®(a,b,t) =

Po
el(w/a) + (=)o) ©)

(g) The net charge follows by integrating the charge density given by (c) over the

given volume.

Q= / dv = / / / posin(rz/a) sin(ry/b)dadydz = 4"0“”" M

From Gauss’ integral law, it also follows by integrating the flux density ¢,E-n
over the surface enclosing this volume.

Q =fseoE -nda = [(1r/a)2 + (1r/b)2] {/ ; —sin{wz/a) cos mdz
- /-oa % sin(rz/a)dz + /b § cos 7 sin Tdy (8)

b
T y 4paabd
/0 - sin ~—d. } =3



Solutions to Chapter 4 4-5

(h) The surface cha.rge density on the electrode follows from using the normal
electric field as given by (1).

Tz

70 = By = 0) = [ G @)

Thus, the net charge on this electrode is

_ d p3af4 —Po xoowz, —\/i(a/b)dpo
o= [ f /a7 + o b 2 & 45 = a1 eppyr. (O)

(i) The current ¢(t) then follows from conservation of charge for a surface S that
encloses the electrode.

d ., dg
iJ-nda+E/Vpdu=>t+dt—0 (11)

Thus, from (10), /2
2(a/b)d__ dp,
= (Ja) + (/02 dt (12)

4.1.6  (a) In Cartesian coordinates, the grad operator is given by (4.1.12). With @ de-
fined by (a), the desired field is

ad, ]
ay r T X . T, (1)
= eol(r/a)z + (ﬂ'/b)zl [ sin ZCOS b ylx + z‘ cos ;zsm Zyly]

E=—[ 1,‘+

(b) Evaluation of the curl gives

L i, i
. 0B, OE
VXE= % % 0 =|.( azy—_-i)
E. E, o©
2
- po " inTosin (2)
= eol(n/a)? + (w/b)z][ ab SR gy
+"—r-iisin!'-:z:sinE ]—0
ab a by -

so that the field is indeed irrotational.

(c) From Gauss’ law, the charge density is given by taking the divergence of (1).

oE,

n
3y =2} = pocos — — T cos Ty (3)

b

p=V-e,E
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(d) The electric field E is tangential to the boundaries only if it has no normal
component there.

Ex(oi y) =0, E::(a’ y) =0

Ey(z,0)=0, E,(z,b)=0 (4)

(e) A sketch of the potential, the charge density and hence of E is shown in Fig.
S4.14.

(f) The integration of E between points (a) and (b) in Fig. P4.1.4 should be the
same as the difference between the potentials evaluated at these end points
because of the gradient integral theorem, (16). In this particular case, where
y = (b/a)z on C and hence dy = (b/a)dz

(v)

ht b b
E-ds=/ E.(z,-z)dz + E,(z, ~z)(b/a)d
N [ (Ba(ma)dot By (a, o) b/ c)de)
= Po : L T zdz
T el®/aP+ @/ Sz e e P
—fo

" eol(n/a)? + (x/0)7]

The same result is obtained by taking the difference between the potentials.

(v 3 _ —Po
) Bas (o) - 20) = T + /)] ©

(¢) The net charge follows by integrating the charge density over the given vol-
ume. However, we can see from the function itself that the positive charge is
balanced by the negative charge, so

Q=/Vpdv=o (7)

From Gauss’ integral law, the net charge also follows by integrating the flux
density €,E - n over the surface enclosing this volume. From (d) this normal
flux is zero, so that the net integral is certainly also zero.

Q=f;eoE-nda=0 (8)

The surface charge density on the electrode follows from integrating ¢,E - n
over the “electrode” surface. Thus, the net charge on the “electrode” is

q=fseoE-nda=0 (9)
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4.1.6  (a) From (4.1.2)

ad, 0P

E= —(Elx + a—yiy)

= — A[m cosh mz sin k,y sin k. zi, (1)
+ sinh mzk, cos kyysin k,2iy

+ k, sinh mz sin kyy cos k,zi; ] sinwi

(b) Evaluation using (1) gives

VxE= a/az a/fay a/az

. a&, . (9E,
=‘X[ - ] lv[ 3z (2)

8E., . 80E, OE,
- az]+l'[8z - ay]

= — A sin wt{ix (kyk, sinh mz cos kyy cos k,z — kyk, sinh mz cos k,y cos k,z)
+ iy (mk, cosh mz sin kyy cos k,z — k,;m cosh mz sin kyy cos k, 2)
+ i5(mky cosh mz cos kyy sin k.2 — mk, cosh mz cos k,y sin k, 2)
=0
(3)
(c) From Gauss’ law, (4.0.2)
p=V - E = —¢,A(m® — k2 — k?) sinh masin kyysink,zsinwt  (5)

(d) No. The gradient of vector or divergence of scalar are not defined.

(e) For p =0 everywhere, make the coefficient in (5) be zero.

m? = k2 + k2 (6)

4.1.7 (a) The wall in the first quadrant is on the surface defined by
y=a-g (1)

Substitution of this value of y into the given potential shows that on this
surface, the potential is a linear function of z and hence the desired linear
function of distance along the surface

® = Aa(2z - a) (2)
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To make this potential assume the correct values at the end points, where
z = 0 and ® must be —V and where z = a and ® must be V, make 4 = V/a?

and hence v
= 5(22 - 9% (3)

On the remaining surfaces, respectively in the second, third and fourth quad-
rants

y=z+a, y=—a—2z; y=z—a (4)

Substitution of these functions into (3) also gives linear functions of z which
respectively satisfy the conditions on the potentials at the end points.

Using (4.1.12),

8<I>

E=—(3; )=— 7 (22 — 24iy) (5)

From Gauss’ law, (4.0.2), the charge density is

”) =-—-(2 2)= (6)

Figure S4.1.7
The equipotentials and lines of E are shown in Fig. $4.1.7.

For the given E,

iy
8/8:1: 6/ay 0
Cz —Cy

VxE= = 1.[—( Cy) — —(Cz)] =0 (1)

so E is irrotational. To evaluate C, remember that the vector differential
distance ds = i,dz+i, dy. For ths contour, ds = iy dy. To let the integral take
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account of the sign naturally, the integration is carried out from the origin to
(a) (rather than the reverse) and set equal to ®(0,0) — ®(0,h) = —V.

h 1
-V = / —Cydy = —=Ch? (2)
0 2

Thus, C = 2V /h2.
To find the potential, observe from E = —V® that

ad ad
-a"; = —Cl’, —a—g = Cy (3)

Integration of (3a) with respect to z gives
1
o= -1ca+ (y) (4)

Differentiation of this expression with respect to y and comparison to (3b)
then shows that
3% df

a—y—dy—0y=>f=%y2+D (5)
Because ©(0,0) = 0, D = 0 so that

@ =20z~ ) (©)
and, because ®(0, ) =V, it follows that

®— —%C(Oz — ) (1)

so that once again, C' = 2V /h2.

(<) The potential and E are sketched in Fig. S4.1.8a.

Figure S4.1.8
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Gauss’ integral law is used to compute the charge on the electrode using the
surface shown in Fig. $4.1.8b to enclose the electrode. There are six surfaces
possibly contributing to the surface integration.

f B -nda=gq (8)
s

On the two having normals in the 2 direction, ¢,E -n = 0. In the region above
the electrode the field is zero, so there is no contribution there either. On the
two side surfaces and the bottom surface, the integrals are

q =6 /0'” /h:/m;E(d, y) - ixdydz
+ € /0 ) /;. :/mE(—d, y) - (—ix)dydz (9)

w pd
+ eo/ / E(z, k1) - (—iy)dzdz
0o J-d
Completion of the integrals gives

9= 4wde,\/d? + h?

e (10)
4.1.9 By definition,
A® = grad (@) - Ar (1)
In cylindrical coordinates,
Ar = Arip + rAdiy + Azi, (2)
and
Ap=0(r+ Ar, @+ AD,z + Az) — ¥(r, ¢, 2)
1) L) 8® (3)
= EAr+ %Ad) + a—zAz
Thus,
% aod o . . .
EAr + a—¢A¢ + -gAz = grad @ - (Ari, + rAdiy + Azi,) (4)

and it follows that the gradient operation in cylindrical coordinates is,

P, 1090, o
grad (@) = Fa

rt ;514, + o (5)
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4.1.10 By definition,
A® = grad (®) - Ar

In spherical coordinates,

Ar = Ari. + rAfig + rsin 0Agiy

and
AD=Q(r+ Ar, 0 + Ab, ¢ + Ad) — O(r,0, ¢)
P ad L]
= EAr + WAG + -a-$A¢
Thus,

?I) Ar+ a;{:Aﬂ + 3¢ A¢ = grad () - (Ariy + rAfis + rsin0APiy)

and it follows that the gradient operation in spherical coordinates is,

a<I> 13®, 1 99,
grad(®) = —i, + —% oind %14,

4.2 POISSON’S EQUATION

4.2.1 In Cartesian coordinates, Poisson’s equation requires that

P 9%® 920
v2<1>———=>p_ —eo( 55 + 2)
Substitution of the potential

£o(t) sin X e sin — y

= Col(x/a) + (/o] b

then gives the charge density

=- polt) —(r/a)? sin ~ zsin —2
S (07 U
— (=/b)?sin Ez sin %y]
wy
b

= po(t) sin ? sin —=

4-11

(1)

(2)

(3)

(4)

(5)

(1)

(2)

(3)
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4.2.2 In Cartesian coordinates, Poisson’s equation requires that
324’ 324’
p= —€o ( 2 ) (1)

Substitution of the potential

®= e T T e @)

then gives the charge density

3 .
P = Pocos —zCo8 1y (3)
4.2.3 In cylindrical coordinates, the divergence and gradient are given in Table I as
voasilia)s 12, O (1

au. 1 du, au
Vu= :9— a¢l¢+ (2)

By definition,
13, 8u 1 8 ,13u d ,du
"3 * 7350 59) T 52 (55)

which becomes the expression also summarized in Table L.

Viy=V- Vu— (3)

. L1
r ar( r9¢% T 3.2 (4)
4.2.4 In spherical coordina.tes, the divergence and gradient are given in Table I as
_ 19 1 1 3A¢
v A_ (r 7+ rsind 80 (Aasmﬂ) t e rsinf 3¢ (1)
du 1du 1 Jdu
Wy Yy 4 Louw, 1 Ou
YT e T e remoag” @)
By definition,
18 du 1
Viu=V.(Vu)= 5 —(?
U (Vy) 2 or ar) rs1n0(r a6 sm0) 3
MEMENOA (®
rsind 3¢ ‘rsinf ¢
which becomes the expression also summarized in Table 1.
19 du 1 1 3%

Viy=—

5, .
75" 30) T Eamg 5p )+

2 I a¢2 (4)
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4.3 SUPERPOSITION PRINCIPLE

4.3.1

The circuit is shown in Fig. S4.3.1. Alternative solutions v, and v, must each
satisfy the respective equations

C&_*_Ua

3 T = L)

dvb Vp
o %
@ TR - b0

v

Figure S4.3.1
Addition of these two expressions gives

dvg duvp 1 _
C[W dt]+R[Ua+vb]—Ia+Ib

which, by dint of the linear nature of the derivative operator, becomes

d 1
CE(U" + vp) + E(Ua t+o) =L+ 1

Thus, if I, = v, and I, = v then I, + I, = v, + vp.

4.4 FIELDS ASSOCIATED WITH CHARGE SINGULARITIES

4.4.1 (2) The electric field intensity for a line charge having linear density J; is

Integration gives

(2)

where r, is the position at which the potential is defined to be zero.
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(b) In terms of the distances defined in Fig. S4.4.1, the potential for the pair of
line charges is

Al r+ Al r_ Al r_
d=- In{— ——In(—) = In(— 3
27eo n( ro) + 2we, n( ro) 2me, n(r+) ( )
where
r2 =v2+(d/2)? Frdcos ¢
Thus,
b= A ] 1+ (d/2r)2+ cos ¢

" ame, |1+ (¢/2r)2 — £cos ¢ @

For d < r, this is expanded in a Taylor series

In( J=(l+z)-In(l+y)~z—y (5)

1+=z
1+y
to obtain the standard form of a two-dimensional dipole potential.

Ad cosé

27e, r

[ J—Y

(6)

From the solution to Prob. 4.4.1, the potential of the pair of line charges is

d =

4re,

A ; [1 + (2r/d)? + %cos:ﬁ]
1+ (2r/d)2 — %r cos ¢

(1)

For a spacing that goes to infinity, r/d <« 1 and it is appropriate to use the first
term of a Taylor’s expansion

1+z
(%) ey @
Thus, (1) becomes
A
o= “odrcos é (3)

In Cartesian coordinates, z = rcos ¢, and (3) becomes

2\

o=
meod

z (4)
which is the potential of a uniform electric field.

—-2).
E= weodl" (5)
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4.4.3 The potential due to a line charge is
o= 2 inle (1)
2me, T

where r, is some reference. For the quadrapole,

A ro ro ro ro A rory
P = n——-In—+In——-In—| = —I|ln— 2
21reo[nr1 nr2 nrs nr4] 27e, nrlrs] ( )

where, from Fig. P4.4.3,

2= r2[1 + (d/2r)% — (d/r) sin ¢|

2 = ¢2[1 + (d/27)? + (d/r) cos §]
r2 = r2[1 + (d/2r)? + (d/r) sin ¢]

2 = 12[1+ (d/2r)% — (d/r) cos ¢]

With terms in (d/2r)? neglected, (2) therefore becomes

oo 2 ln{1— (d/r)? c032¢} (3)

47e, 1—(d/r)? sin? ¢
for d < r.
Now In(1 + z) =~ z for small z so In[(1+ z)/(1 + y)] =~ z — y. Thus, (3) is
approximately
_ A 2 2 2 2
o= 41reo[ (d/r)? cos® ¢ + (d/r)? sin” §]
—Ad? .
v [cos® ¢ — sin? ¢] (4)
—Ad?
= 2
47e,r? cos 2¢

This is of the form Acos2¢/y™ with

sy
T 4ze,’
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4.4.4 (a) For r <« d, we rewrite the distance functions as

2= @2 ((5)" +1- Feing] (10
A= @21 + 1+ G cond] (1)
2= @215 + 1+ S eing] (12
2= /2[5 +1- F cosd] (1e)

With the terms (2r/d)? neglected, at follows that

A 1— (4r/d)? cos? ¢ }
4w, ln{ 1— (4r/d)?sin® ¢

(2)

Because In(1 + z) ~ z for z < 1,In[(1 + z)/(1+ y)] 2 z—y and (2) is
approximately

— A (A4 sind g = —
o= ywy d)[cos¢ sin® §] =

42r2
weod2

cos 2¢ (3)

This potential is seen again in Sec. 5.7. With the objective of writing it in
Cartesian coordinates, (3) is written as

o=- 4’\dz [r(cos ¢ + sin @)r(cos ¢ — sin ¢)]

o _ 0
e+ =] = @ - )

T

(b) Rotate the quadrapole by 45°.

4.5 SOLUTION OF POISSON’S EQUATION FOR SPECIFIED
CHARGE DISTRIBUTIONS

4.5.1  (a) With |r —x'| = \/2'2 + y2 + 22, (4.5.5) becomes

@ @ o,(z',y')dz'dy’
e- [ [ (&', y)dz'dy (1)
y'=—aJa'=

—a 47eo\/22 + y'? 4 22
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(b) For the particular charge distribution,

o= T /a /'“ z'y'dz'dy
a?meo Jyr=0 Jar=o /2% + y2 + 22
a
To

/ [Va? +y2 + 22y — Vy? + 2%y']dy’
y'=0

(2)

T a?we,
To complete this second integration, let u? = y'? + 22, 2udu = 2y/dy’ so that

a \/a’-i-—z’ 3 |Va?+z?
/ YV +22dy = / wldu = —
y'=0 z 3 z (3)

1
= 5[(az + 22)3/2 _ z3]

Similarly,

-/;=o IV @) =5[22+ )2 - @+ 27 (4

so that o
@ = 52|20+ Y + 2~ 2(a + )0 (5)
(c) At the origin,
_ % ((2a3)/7 203 = 2olV2 1)
e 3a21reo[(2a ) 27| = 37e, ()

(d) For z > a, (5) becomes approximately

0,2° 24° 3/2 a? 3/2
&~ {1+(z—2+1) -2(5+1) }

3a?re, 0
20,23 2a2 2a2 1/2 a? @@ 1/
=3a201r€o{1+(1+:;)(1+z—2) _2(1+z_2)(1+z_2) / }
For a?/2% « 1, we use (14 z)/2 ~ 1+ 1z and
20,23 242 a2 o2 o2
o= 3a201reo{1+ (1+55) 1+ ) - 201+ 5) (1 + .2;)}
_ 20,2° a_z fo 2a2
_3a21reo{1+(1+z2)[1+ 22 "2_@]} (8)
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Thus, .
20,0
@= 3mey 2z (9)
For a point charge Q at the origin, the potential along the z-axis is given by
Q
P = 10
4me,2z ( )
which is the same as the potential given by (9) if
2
Q=" (11)
(¢) From (5),
8%, _ oo 2 ,2\1/2 4 2 2 4 ,2\1/23
E=-Vo= —5;1. = ﬂ_azeo[z(Za + 2212 4 22 — 22(a? + 22)Y/?)i, (12)

4.5.2  (2) Evaluation of (4.5.5) gives
0o cos0'R?sin §'d¢'dd’
" /, =0 47€,[R? + 22 — 4Rz cos ¢']1/2
o R? sin 26’ d¢’
e, -/;'=o VR2 4 22 —2Rzcosf’

To integrate, let u? = R? F 22 — 2Rz cos§’ so that 2udu = 2Rzsin§’'d§’ and
note that cosf’ = (R2 + 22 — u2) /2Rz. Thus, (1) becomes

(1)

)
b (R? + 22 — u?)du
2,2 (R+2)°
2[(R +2z%)(R+2) - —~—
4eoz ( R 3 (2)
— (R +2%)(z— R) + —"'—3)—]
_ oR?
T 3e,22
(b) Inside the shell, the lower limit of (2) becomes (R — z). Then
0oz
= _32—0 (3)

(¢) From (2) and (3)

= o 2—""—E;—i z>R
= — = ——f, = 3¢, s
E=-Ve=---i { ~%i, 2<R (4)

(d) Far away, the dipole potential on the z-axis would be p/4we,2? for the point
charge dipole. By comparison of (2) to this expression the dipole moment is

4o, R3

P="73 (5)
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4583 (a) To find ¥(0,0,z) we use (4.5.4). For r = (0,0,2) and ' = a point on the
cylinder of charge, |r — r'| = /(2 — 2')2 + R2. This distance is valid for an
entire “ring” of charge. The incremental charge element is then oc2wrRdz so
that (4.5.4) becomes

' ' 0 _ ' _
Q(0,0, z) - / .27 Rdz + 0.2 Rdz (1)
0 4mey\/(2—2')2 + R2 _t4men/(z— 2')2 + R2

To integrate, let ¢ = z — 2',d¢’ = —dz' and transform the limits
ooR = dq ]

z—1 dq"
250[ v/: VQ'2+R"'+ =+ \/q'% + R?

o =

z—1 z (2)
=';°€R[—lnq'+\/R2+q'2 +In|¢’' + vV R2 + ¢ ]
o z z+1
Thus,
5= aoRln (2+ VR? + 22)(z + VR? + 22) ]
2 Lz—l+VE+(z-)2)(z+1+ VR +(2+1)?)

= UZOeR [2in(z + VER? + 22) — In(z~ 1+ VR + (z - 1)?) ®)
—n(z+1+ m)]

2z

| )
r=(,¢,2) — !
(:¢/.7) % Ir — 7|
r = (0,0, 2) ———4,/ T\\*
’d
/ T
z -
p” ™

Figure S4.5.3
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(b) Due to cylindrical geometry, there is no i, or iy field on the z axis.

80, _ haooR [""(”W’TT) ( ey )

E=——i, =
' z+VR? + 22 z—-1+VR+(z—1)?

z 2¢,

=+

o Lt Tt ) @
z+Il+ R+ (z+1)2

. 0o —2 1 1

=1.250[\fR2+zz+\/R7+(z—l)°+Rz+(z+l)2]

(c) First normalize all terms in @ to 2

q,:aoRln[ (1+/1+ B)(1+1/1+ B) ]

2 2 2
L LR+ (1= D)+ bV @/ + (4 D)
(5)
Then, for z > ! and z 3» R,
ao (L+1)(1+1) ]
"= —+1—-)(1+£+1+§)
ln
“ [r(l (z/z)=)] "
2
l [1 (l/ )2] & ln[1+ (¢/2)?]
10_13 L
2, 22
The potential of a dipole with dipole moment p is
™~ p cosf
Daipole’ = Ine, 12 (7)
In our case, cos 8/r? = 1/z%, 50 p = 2x RI? (note the p = qd, ¢ = 27 Rlo,, deys =
).
4.5.4 From (4.5.12),
df2 Ay’
O(z,y,2 =/ 1
(2,9,2) y'=-d/2 47€\/(z —a)? + (y — ¢v')? + 22 ()
To integrate, let u = y' — y so that (1) becomes
o A —y+d/3 du
T 4me, —y-d/2 Vu?+(z—a)? + 22 @)
_ A -y+d/2
= Eln[u + V2 + (z - a)? + 23] —y—df2

which is the given expression.
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4.5.5 From (4.5.12),

Ao ! z'dz’ z'dz’ }
®(0,0, -_—
(0,0,2) = 4r eol { -/;'=o Va2 +(a—2)2 /22 + (a+2)?

- V& +(al +22)}
4.5.6 From (4.5.12),
@ A2'de! ), @ z ,
2(0,0,2) = /,,=_a dme,a(z —2')  4dme.a /;,=_a (-1+ z— ."z')dz (1)
= 4:6 a[—a — zin(z — a) — z + zin(z + a)]
Thus,

®(0,0,2) = Z)] (2)

—2o [2a + zln(z —
€o: z+

Because of the symmetry about the z axis, the only component of E is in the z

direction
ad., A zZ—a 1 1 .
E__—é—z—l'_41reo [ln(z+a)+z{z——a z+a}}l' (3)
Ao ln(z — a) + 2az i
T 4rwe, z+a 22 —a?|"
4.5.7 Using (4.5.20)

A b
oo(d —b) ,
b =— _ I
,/’;l=0 /.$I=_b A21reo(d - I') lnld z ldz dy

_ _oo(d—b) b Mdz'
2me, xz'=-b (d - z')
_ aog;ire b) {- _[ln(d - x’)]2|ib}

_ oo(d—b)

=2 fin(d — B)? - [in(d +5)]%}
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4.5.8 From (4.5.20),

2d ) 0 _ e’
®(d,0) = - / olnld — 2 ), / ooln|d — 2'|dz "

2'=0 27|'€o 1=—2d 21f€o

To integrate let u = d — &’ and du = —dz'.

®(d,0) = /’d oolnudy _ /d oolnudu
d 3

21!'60 d 21'.60
o —-d d
= ——212 {u(ln]u] - 1)|d — u(ln|u| - 1)|3d} (2)
{+]
= 2% 3din3
27e,

Thus, setting ®(d,0) =V gives

27e,V
%= 3din3 (8)

—0, O,
———* -z

— 2d 2d

Figure S4.5.8

4.5.9 (a) (This problem might best be given while covering Sec. 8.2, where a stick
model is developed for MQS systems.) At the lower end of the charge, &, is
the projection of ¢ on a. This is given by

c-a

e = W (1)
Similarly, b
-a
== 2
& a] (2)
(b) From (4.5.20),
[ ade E 0 ade
&= ,/;.=Ec dmeor — 1| /T:? 4reo[r — ') ()
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where
r—r?=¢6+d*

With 0 defined as the angle between a and b,

|d| = |b|siné (4)
But in terms of a and b,
. ,_ |laxDb]
sind = fallb] (5)
so that
axb
d= l fa] I (6)
and
a x bj?
v =y e 22 )

(c) Integration of (3) using (6) and (7) gives

b

fat

|a x b|2

|af?

(8)

4re,

A ln{€+ £+

and hence the given result.

(d) For a line charge A, between (z,y, z) = (0,0,d) and (z,y,2) = (d,d, d),

a = diy + diy
b = (d — z)ix + (d — y)iy + (d — 2)i,
¢ = —zi, — yiy + (d — 2)i,
b-a=d(d— z)+d(d—y)
c-a=-—zd—yd
axb=| & 4 o (©)
d—z d-y d-—=z
= d(d — 2)ix — d(d — 2)iy + d(z — y)is
ja x b = P[2(d— 2)* + (s — )]
(b-a)? = d*|(d ~z) + (d - y))*
(c-a)? = d*(z +y)?

and evaluation of (c) of the problem statement gives (d).
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4.5.11
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This problem could be given in connection with covering Sec. 8.2. It illus-
trates the steps followed between (8.2.1) and (8.2.7), where the distinction between
source and observer coordinates is also essential. Given that the potential has been
found using the superposition integral, the required electric field is found by taking
the gradient with respect to the observer coordinates, r, not r'. Thus, the gradi-
ent operator can be taken inside the integral, where it operates as though r' is a
constant.

- ve—- [ v - - [ Sl

4me,jr — ') ' 47e,
The arguments leading to (8.2.6) apply equally well here

1 __ 1 )
v[lr_rll] - lr_r:lni" (2)

The result given with the problem statement follows. Note that we could just as well
have derived this result by superimposing the electric fields due to point charges
p(r')dv’. Especially if coordinates other than Cartesian are used, care must be taken
to recognize how the unit vector i,., takes into account the vector addition.

(a) Substitution of the given charge density into Poisson’s equation results in the
given expression for the potential.

(b) If the given solution is indeed the response to a singular source at the origin, it
must (i) satisfy the differential equation, (a), at every point except the origin
and (ii) it must satisfy (c). With the objective of showing that (i) is true, note
that in spherical coordinates with no ¢ or ¢ dependence, (b) becomes

S (D)~ =a(r) )

Substitution of (e) into this expression gives zero for the left hand side at
every point, r, except the origin. The algebra is as follows. First,

d /A .- Ax _ Ae~"r
dr\r m)=_—r—e o r2 (2)
Then,
1d Ac _, , e " g Ae™"™"  Ak? fonr Ak?
r"’dr(r +r2) e L e (3)
=0; r#0

To establish the coefficient, A, integrate Poisson’s equation over a spherical
volume having radius r centered on the origin. By virtue of its being singular
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(©)

(a)

there, what is being integrated has value only at the origin. Thus, we take the
limit where the radius of the volume goes to zero.

1im{/v-v<1>du—n2/<1>du}=1im{-l/adu} (4)
v v r—=0 € Jv

r—0

Gauss’ theorem shows that the first integral can be converted to a surface
integral. Thus,

lim { v<1>-da—,c2/V<I>du}=1im{—;1;/"adu} (5)

r—0 s r—0

If the potential does indeed have the r dependence of (e), then it follows that

r
lim [ ®dv=1lim | ®4xr’dr=0 (6)
r—0 Jy r—0 Jo

so that in the limit, the second integral on the left in (5) makes no contribution
and (5) reduces to

)anr? = —4xA = -9 (7)

(4

lim

—Kr
(- Ax oK Ae
r—0 r

- =
and it follows that A = Q/4~e,.

We have found that a point source, Q, at the origin gives rise to the potential

Quo=_2 " (8)

dre, r

Arguments similar to those given in Sec. 4.3 show that (b) is linear. Thus,
given that we have shown that the response to a point source p(r')dv atr =r'
is

p(r') dy e—*l=—r|

")d o=
plr')dv = 4re, |r—r'|

(9)

it follows by superposition that the response to an arbitrary source distribu-

tion is =) e
_ p r’ c_lc r—r
B(r) = fv e (10)

A cross-section of the dipole layer is shown in Fig. S4.5.12a. Because the field
inside the layer is much more intense than that outside and because the layer is
very thin compared to distances over which the surface charge density varies
with position in the plane of the layer, the fields inside are as though the
surface charge density resided on the surfaces of plane parallel planes. Thus,
Gauss’ continuity condition applied to either of the surface charge densities
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shows that the field inside has the given magnitude and the direction must be
that of the normal vector.

7(' Euc = —eN e, (1)

(a) (b)

Figure S4.5.12

(b) It follows from (4.1.1) and the contour shown in Fig. S4.5.12b having incre-
mental length Az in the z direction that

~E2Az + E'Az + Ey(z + Az)d — Ey(z)d =0 (2)
Divided by Az, this expression becomes
dE
—E* 4 b4 g%5y _
E+E+d—"=0 (8)

The given expression then follows by using (1) to replace E, with —ei,gi and
>( recognizing that 7, = o,d.

4.6 ELECTROQUASISTATIC FIELDS IN THE PRESENCE
OF PERFECT CONDUCTORS

4.6.1 In view of (4.5.12),

A(E2)

4re,(a — 2')

©(0,0,a) = /;b

The z dependence of the integrand cancels out so that the integration amounts to
a multiplication.

dz' (1)

8(0,0,6) = o5 (b= ) (2)

The net charge is
a—b

Q=30+t~ ©)

a—¢C
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Provied that the equipotential surface passing through (0,0,a) encloses all of the
segment, the capacitance of an electrode having the shape of this surface is then
given by

(a)

(b)

Q

C=¢&m@

= 27eo(2a — b —¢) (4)

The potential is the sum of the potentials due to the charge producing the
uniform field and the point charges. With r. defined as shown in Fig. S4.6.2a,

q q
d=— — 1
o t+ dmeory 4Ameor— ( )

where
z=rcosf

ry = \ﬂz +(d/2)2 ¥ 2rg- cos

To write (1) in terms of the normalized variables, divide by E,d and multiply
and divide ry by d. The given expression, (b), then follows.

2
: L T T
'
L ) .
'
5 F ! a
i
N | -
1
1
d/? - t .
[
d/2 - :
t
.l o t |l r
{ | 11 1
(b) 0 1 2
r

Figure S4.6.2

An implicit expression for the intersection point d/2 < r on the z axis is given
by evaluating (b) with ® =0 and § = 0.

N | g
T ®

The graphical solution of this expression for d/2 < r(1/2 < r) is shown in
Fig. 54.6.2b. The required intersection point is r = 1.33. Because the right
hand side of (2) has an asymptote at r = 0.5, there must be an intersection
between the straight line representing the left side in the range 0.5 < r.
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(c) The plot of the & = 0 surface for 0 < § < x/2 is shown in Fig. S4.6.2c.

()

Figure S4.6.2

(d) At the north pole of the object, the electric field is z-directed. It therefore
follows from (b) as (0.5 < r)

_ % 9 a8 g g
Br=gy =B = E°az( S ;+§)

3)

__ 3 ]
2= 2
-1 @+d)
Evauation of this expression at y = 1.33 and ¢ = 2 gives E, = 3.33E,.

(e) Gauss’ integral law, applied to a surface comprised of the equipotential and
the plane z = 0, shows that the net charge on the northern half of the object
is g. For the given equipotential, g = 2. It follows from the definition of g that

=92 = __.__q =q=
q=2 yv— => Q = q = 8we,E,d? (4)
4.6.3 For the disk of charge in Fig. 4.5.3, the potential is given by (4.5.7)
Oo
= 2. (VR +27 - |2|) (m
(]

At (0,0, d), .
®(0,0,d) = i":(\/ﬂ2 +d? —d) (2)
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and
g =oomR? (3)
Thus ;
C = q — 2€o7rR (4)
¢(0101 d) VR2+d2—-d
4.8.4  (a) Due to the top sphere,
_ @
By = 47eory (1)
and similarly,
__—Q
e-= 4ATe,ra (2)

At the bottom of the top sphere

__9 Q
@+ = 4me,R ~ 4we,(h— R) (8)

while at the top of the bottom sphere

_ Q@ Q
e- |'=R " 4me,R + 4re,(h — R) (4)

The potential difference between the two spherical conductors is therefore

_220 __ 2 __Q . __R/h
V= dme,R  Ame,(h— R) 21re,,R(1 1—R/h)

(3)

The maximum field occurs at z = 0 on the axis of symmetry where the
magnitude is the sum of that due to point charges.

__—2Qi, _ -2Q,
Bumax = 4me,(h/2)2 —— (4)

(b) Replace point charge Q at z = h/2 by @, = Q% at z = % - ’—f;— and @, =

Q[1— £] at z = h/2. The potential on the surface of the top sphere is now

. Qo Ql _ Q
QtoP - dme R + 41reo(R —_ % 41l'€o(h — R) (5)

The potential on the surface of the bottom sphere is

Qo Q1 Q
4ne,(h — R) t 41reo(h - R- 1:—2 h 4me,R ()

Ppottom =
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The potential difference is then,

41re [(_'h R)] QIO[R—II},—’_;;—RI—R—’]

For four charges Q; = QR/h at z = h/2— R?/h; Qo = Q(1— £) at 2z =
h/2; Q2 =—QR/h at z=—h/2+ R?/h; Q3 = —Q(1— £) at z=—h/2 and

B = Qo Q1 Q2

°P " 4we R 41reoR(1— ) 41reo(h R——- (1)
49
4re,(h — R)

which becomes

Qu-§), _af

Diop = 4me R 4re, R(1 — %) )
___Q(R*/R)  Q(R/A)
dre,(1— £ - B1)  dmeR
Similarly,
_ Q(R/R) Q(R?/R?)
Dbotiom = dme, R + 41reoR(1 - % - %:)
__QR/h ___Q(1-R/k) ©)
4me, R(1- E) 4me,
so that
__2Q [, R _R/h  RR? R
_41reoR{1 h+1_% 1_%_%—;} (10)
__Q [. 2R __R/h  (R/r)?
"e 2“03{1 h T I-RIR T 1-E- (R/h)z} (1)
Q 2we, R
C = V TE, (12)

=1 _2r DN EJh)3
1- 28 + S0 — TR
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4.6.5 (a) The potential is the sum of that given by (a) in Prob. 4.5.4 and a potential due
to a similarly distributed negative line charge on the line at z = —a between
y=—d/2and y=d/2.

o= tn{[g—y+\/(z—a)2+(——y)2+z2]

4re,

-—g—y+\/(z+a)2+(§+y)2 +z2]/

L

-—-é—y+ (z—a)2+(c—l+y)2+z2
| 2 2

:g—y+\/(7z+a)2+(-g—y)2+z2]}

(b) The equipotential passing through (z, y, z) = (a/2,0,0) is given by evaluating
(1) at that point

x ,n{[%+ 95+4£][—%+\/§Zﬁ]} o

Figure S4.6.5
(¢} In normalized form, (2) becomes
{(z-n+ﬁ —12+ @0 +2* ) (~2-n+/(EX )+ @+n) 152
(=2-0+/-1)+@+n)+52) (2-n+/(2=0) 2+ (2-n)+#?)

¢ =
- ln{ (44/1+16)(—4+./9+16) }

(3)
(—4+v/1+16)(4+/0+16)
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where & = ®/9(%,0,0),¢§ = z/a,n = y/a and d = 4a. Thus, @ = 1 for
the equipotential passing through ($,0,0). This equipotential can be found
by writing it in the form (¢, n) = 0, setting n and having a programmable
calculator determine £. In the first quadrant, the result is as shown in Fig.
S84.6.5.

The lines of electric field intensity are sketched in Fig. S4.6.5.

The charge on the surface of the electrode is the same as the charge enclosed
by the equipotential in part (c), @ = A;d. Thus,

[d+ va2 + d?][—d + V942 + d?| }
[—d + va? + d?|[d + V9a? + d?|

C= :\“7‘1 = 41reod/ln{ (4)

4.7 METHOD OF IMAGES

4.7.1

4.7.2

(a)
(b)

(<)

(a)

The potential is due to @ and its image, —Q, located at 2 = —d on the z axis.

The equipotential having potential V' and passing through the point z =a <
d,z = 0,y = 0 is given by evaluating this expression and taking care in taking
the square root to recognize that d > a.

_Q 1 1., @ 2a
V_41reo(d—a d+a)_41re,,(d2—az)

(1)
In general, the equipotential surface having potential V is

_9Q 1 : 1
‘4«eo[\/z2+y=+(z—d)ﬂ \/z2+y2+(z+d)=] @

The given expression results from equating these last two expressions.

The potential is infinite at the point charge and goes to zero at infinity and in
the plane z = 0. Thus, there must be an equipotential contour that encloses
the point charge. The charge on the electrode having the shape given by (2)
must be equal to @ so the capacitance follows from (1) as

(3)

The line charge and associated square boundaries are shown at the center
of Fig. S4.7.2. In the absence of image charges, the equipotentials would be
circular. However, with images that alternate in sign to infinity in each di-
rection, as shown, a grid of square equipotentials is established and hence
the boundary conditions on the central square are met. At each point on the
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boundary, there is an equal distance to both a positive and a negative line
charge. Hence, the potential on the boundary is zero.

“
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Figure S4.7.2

(b) The equipotentials close to the line charge are circular. As the other boundary
is approached, they approach the square shape of the boundary. The lines of
electric field intensity are as shown, terminating on negative surface charges

on the surface of the boundary.

(2) The bird acquires the same potential as the line, hence has charges induced
on it and conserves charge when it flies away.

(b) The fields are those of a charge Q at y = h,z = Ut and an image at y = —h
and z = Ut.

(c) The potential is the sum of that due to Q and its image —Q.

Q[ 1 1 ](1)

T are, VeVt w_hP 2 JE-UPt Rt

(d) From this potential

y =

@ _ @ { y—h
dy  dmeo, | (z— Ut)2 + (y — h)2 + 223/2

_ y+h }
[(z - Ut)? + (v + h)? + 22]3/2

Thus, the surface charge density is
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0, = €5, = Qeo[ z_hz 57
y=o  47€o [[(z — Ut)2 + A2 + 223/
- h ] 3)
[(z — Ut)2 + A2 + 22]3/2

- —Qh
~ 2x((z — Ut)? + h2 + 22]3/2
(e) The net charge g on electrode at any given instant is

_rr —Qhdzdz
= /=o /::o 2x[(z — Ut)? + h2 + 22]3/2 (4)
If w <h, i /, ohods .
1= | o 2nl(z = UB2 + 2P

For the remaining integration, 2’ = (z — Ut), d2’ = dz and

1-Ut /
_ ~Qhwdz
= /_,,, 2n]z + h2]/? (6)
Thus Q - Ut Ut
w —
= _m[\/(z v i m | OO T h’] 7)

(f) The dahsed curves (1) and (2) in Fig. 54.7.3 are the first and second terms in
(7), respectively. They sum to give (3)

(b)

Figure S4.7.3
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(g) The current follows from (7) as
_dg _ Qu —Uh? + Uh?
Ta T [((— Ut + W2P72 " [(Ut)? + k273

t 2rxh
and the voltage is then v = —iR = —Rdg/dt. A sketch is shown in Fig.
S4.7.3b.

(8)

4.74 For no normal E, we want image charges of the same sign; +X at (—a,0) and
—A at (—b5,0). The potential in the z = 0 plane is then,

&= ——-Z-A—ln(az + y2)1/2 + —2—'\—ln(b2 + y2)1/2
27e, 27e,
A a2 +y2 (1)

27e, ye +y?

4.7.5  (a) The image to make the z = 0 plane an equipotential is a line charge —A at
(z,9) = (—d,d). The image of these two line charges that makes the plane
y = 0 an equipotential is a pair of line charges, +A at (—d,—d) and —X at
(d,—d). Thus

®= -—F'\eo—ln[(z _dP+(y—d) - 4—1:‘;;»4(3; +d)P + (v +d)?]

+ 41:\eoln[($ —d +(y+d)’ + Z%;‘"((z +dP+ -4 (1

_ A ,n{ [(z—4d)* + (y + 9)%)[(=z + d)* + (y — d)?] }
4o L [(z—d)? + (y— d)?|[(= +d)% + (v + d)?

(b) The surface of the electrode has the potential

_ 2 flUe=dP +(a+d)?[(a+d)?+ (a—d)?| | _
o) = ool [ = el A G =Y @
Then c _x_ dre, _ 2me, "
length ~ V In { ;l-r‘i;*-ﬁ‘;-‘fi”} = ln[ﬁﬁ'—%] )

4.7.8 (a) The potential of a disk at z = s is given by 4.5.7 with z — 2 — s
¥(z>s)= 2> [VEP + (2 9)7 — |z —s] (1)

The ground plane is represented by an image disk at z = —s; (4.5.7) with
2z — 2z + s. Thus, the total potential is

= L [VBTE P -l ol - VETET Bt lerel] @
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(b) The potential at z=d < s is

<I>(z=d<s)=%[\/R2+(d—a)3—|d—s|—\/R2+(d+s)2+|d+a|]
= S (BT A= (o - &)~ VT @F T +5+d)
=;T°[\/m+2d—- R2 4 (d+3)?] =V

(3)
Thus,
C= Q_ 2¢,m R?
V VR +(d-s)?2-/R2+(d+3s)2+2d
4.7.7 From (4.5.4),
2r pR (7% d 2r sR __Gar
8(0,0,a) = / Terdrdd + /' %Frrdrdé
¢=0 Jr=0 dxeo /12 + (h—a)2  Jo=0Jr=0 4me,\/7? + (h + a)2

_ 0o R r3dr R r2dr
" 2R [,/,=o r2 + (h — a)? - /r'=0 2+ (h+ a)’]
P [52'1(\/1:2 T h—ap

h—a
~ VR +(h+a)?) + (k- 4)21"(—\/R2—+—(hﬁ)
+ht a)zln(R+ VR + (h+a)_2)]

h+a

1
The total charge in the disk is @
(R oo 2x
Q= / —=-rdrd$ = —R%q,
$=0 J r=0 R ¢ 3 °
Thus,
Q R
C=f/_= 2nR%, 3/ E[ R? + (h —a)?
— VR + (h+a)?]

2 h—a
+(h—a) ln(—RaT\/._ﬁ)
+ (b +a)2in( B+ m)}

(h+a)
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4.7.8 Because there is perfectly conducting material at z = 0 there is the given line
charge and an image from (0,0,—d) to (d,d,—d). Thus, for these respective line
charges

a = di, + diy
f = (d— z)ix + (d — y)iy + (Ld — 2)is
¢ = —zi, — yiy + (2d - 2)i, (1)
b-a=dfd-2)+(d~y)]
c-a=—zd—yd
a x b = d(+d — 2)ix — iyd(+d — 2) +1.d[(d — y) — (d — )]
la x b] = d%(xd — 2)? + d*(+d — 2)® + &*[(d — y) — (d — 2)]?
The potential due to the line charge and its image then follows (c) of Prob. 4.5.9.

L]

__A ln{Zd—z—y+\/2[(d—z)2+(d—y)2+(d—z)2]

dreo —z—-y+ V222 + 42 + (d - 2)?] (2)
. —z—y+ V22’ +¢* +(d+ )% }
2d — z—y+/2[(d—z)2 + (d— y)2 + (d + 2)?]

4.8 CHARGE SIMULATION APPROACH TO BOUNDARY
VALUE PROBLEMS

4.8.1 For the six-segment system, the first two of (4.8.5) are
|4
S1101 + S1202 + S1303 + S1404 + S1505 + S1606 = 7 (1)
v
82101 + S2202 + S2303 + S2404 + S2505 + S2606 = 2 (2)
Because of the symmetry,
01 =03 = —04 = —0g, Oy = —03 (3)

and so these two expressions reduce to two equations in two unknowns. {(The other
four expressions are identical to (4).)

(atsecguzgaegd[a]-Va]
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Thus,
o1 = -2%[(522 — 825) — (S12 — S15)] ()
o3 = %[(su + 813 — 814 ~ S16) — (Sa21 + S23 — S24 — Sz6))] (6)
where
D = (S11 + S13 — S14 — S16)(S22 — S25) — (S21 + S23 — S24 — S26)(S12 — S15)

and from (4.8.3) .
C= V(b/3)[20’1+0’2] (7)
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5.1 PARTICULAR AND HOMOGENEOUS SOLUTIONS TO
POISSON’S AND LAPLACE’S EQUATIONS

5.1.1

5.1.2

5.1.8

The particular solution must satisfy Poisson’s equation in the region of in-

terest. Thus, it is the first term in the potential, associated with the charge in
the upper half plane. What remains satisfies Laplace’s equation everywhere in the
region of interest, so it can be called the homogeneous solution. It might also be
made part of the particular solution.

(a)

(b)

c)

(a)

(b)

The charge density follows from Poisson’s equation.
V2¢=—£=p=pocosﬂz (1)

The first term does not satisfy Laplace’s equation and indeed was responsible
for the charge density, (1). Thus, it can be taken as the particular solution
and the remainder as the homogeneous solution. In that case,

Pocos Bz
@, = oTﬂz_‘i
0,

and the homogeneous solution must satisfy the boundary conditions

_ Pocos Bz cosh By

@ = €f? coshpfa (2)

Po :;:2/33 (3)

We could just have well taken the total solution as the particular solution.

Puly=—a)=q(y=a)=-

&, =8 &,=0 (4)

in which case the homogeneous solution must be zero on the boundaries.

Because the second derivatives with respect to y and z are zero, the Laplacian
reduces to the term on the left. The right side is the negative of the charge
density divided by the permittivity, as required by Poisson’s equation.

With C; and C; integration coefficients, two integrations of (b) give

— _ 4o (z—d)f
T od%, 12

+ Ci1z + G2 (1)

Evaluation of this expression at each of the boundaries then serves to deter-
mine the coefficients

C1=——_; Cz= (2)
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and hence the given potential.

(c) From the derivation it is clear that the Laplacian of the first term accounts
for all of the charge density while that of the remaining terms is zero.

(d) On the boundaries, the homogeneous solution, which must cancel the potential
of the particular solution on the boundaries, must be (d).

(a) The derivatives with respect to y and z are by definition zero, so Poisson’s
equation reduces to

2P Po . XT
& =, () (@
(b) Two integrations of (1) give
d?
= Eain () + Gz + G 2)

and evaluation at the boundaries determines the integration coefficients.
C2=0; C,=v/d (3)
It follows that the required potential is

pod? . 7z Vz
con? sin (—d— + — (4)

d = ]

(c) From the derivation, the first term in (4) accounts for the charge density while
the remaining terms have no second derivative and hence no Laplacian. Thus,
the first term must be included in the particular solution while the remaining
term can be defined as the homogeneous solution.

d?

Po .
= sin
P gom3 (

z Vz
) W= (5)

(d) In the case of (c), it follows that the boundary conditions satisfied by the
homogeneous solution are

B1(0) = —B,(0) = 0; Bu(d) =V - B,(d) =V (6)

(a) There is no charge density, so the potential must satisfy Laplace’s equation.
E = (—v/d)i, = —3®/3=

= 8))

(b) The surface charge density on the lower surface of the upper electrode follows
from applying Gauss’ continuity condition to the interface between the highly
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(<)

(@)

5.16 (a)

(b)

conducting metal and the free space just below. Because the field is zero in
the metal, v

0, = 6,[0 — E¥] = % (2)
The capacitance follows from the integration of the surface charge density
over the surface of the electrode having the potential v. That amounts to

multiplying (2) by the area A of the electrode.

q=Aa,=%u=CV (3)

Enclose the upper electrode by the surace S having the volume V' and the
integral form of the charge conservation law is

fJ-nda+i/pdV=0 (4)
s dt Jy

Contributions to the first term are confined to where the wire carrying the
total current ¢+ into the volume passes through S. By definition, the second
term is the total charge, g, on the electrode. Thus, (4) becomes

. dq
G+ _9
1+ It (5)

Introduction of (3) into this expression then gives the current

. dv
1 —-CLEZ (6)

Well away from the edges, the fields between the plates are the potential
difference divided by the spacings. Thus, they are as given.

The surface charge densities on the lower surface of the upper electrode and
on the upper plus lower surfaces of the middle electrode are, respectively

€oV1

o1 =6(0+ Ey) = =g} om= €(0+ Ep) = €o(vy — v2)/d (1)

Omm = —€o(v1 — v2) /d+ €ova/d (2)

Thus, the total charge on these electrodes is these quantities multiplied by
the respective plate areas

q1 = wlo1(L — 1) + opl] (3)

gz = €lwoy, (4)

These are the expressions summarized in matrix notation by (a).
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5.2 UNIQUENESS OF SOLUTIONS OF POISSON’S EQUATION

5.3 CONTINUITY CONDITIONS

5.3.1

5.3.2

(a)

(b)

(a)

(b)

In the plane y = 0, the respective potentials are
®%(0) = V cos Bz = ©°(0) (1)

and are therefore equal.

The tangential fields follow from the given potentials.
E? = BV sin fzeP¥; EP = BV sin fzePV (2)

Evaluated at y = 0, these are also equal. That is, if the potential is continuous
in a given plan, then so also is its slope in any direction within that plane.

From Gauss’ continuity condition applied to the plane y = 0,

ad* 4t
Oy = —€, - = 28V cos Bz 3
: [ oy~ 3y ), =2V < (3)

and this is the given surface charge density.

The y dependence is not given. Thus, given that E = —V®, only the z and 2
derivatives and hence z and z components of E can be found. These are the
components of E tangential to the surface y = 0. If these components are to
be continuous, then to within a constant so must be the potential in the plane
y=0.

For this particular potential,

E; =—BV cosPzsinfz; E, =—FV sinfzcos Pz (1)

If these are to be the tangential components of E on both sides of the interface,
then the z — z dependence of the potential from which they were derived must
also be continuous (within a constant that must be gero if the electric field
normal to the interface is to remain finite).
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5.4 SOLUTIONS TO LAPLACE’S EQUATION IN CARTESIAN
COORDINATES

5.4.1 (a) The given potential satisfies Laplace’s equation. Evaluated at either z =0 or
y = 0 it is zero, as required by the boundary conditions on these boundaries.
At z = g, it has the required potential, as it does at y = a as well. Thus, it is
the required potential.

(b) The plot of equipotentials and lines of electric field intensity is obtained from
Fig. 4.1.3 by cutting away that part of the plot that is outside the boundaries
at 2 = a,y = a,z = 0 and y = 0. Note that the distance between the
equipotentials along the line y = a is constant, as it must be if the potential
is to have a linear distribution along this surface. Also, note that except for
the special point at the origin (where the field intensity is zero anyway), the
lines of electric field intensity are perpendicular to the zero potential surfaces.
This is as it must be because there is no component of the field tangential to
an equipotential.

5.4.2 (a) The potentials on the four boundaries are
®(a,y) =V(y+a)/2a; ®(—a,y)=V(y—a)/2a

&(z,a) =V(z+a)/2a; ®(z,—a)=V(z—a)/2a (1)

(b) Evaluation of the given potential on each of the four boundaries gives the
conditions on the coefficients

|4 |4
B(+a,y) = EEy:!:—;::tAa+By+C’+Dzy

<I>(:c,:i:a)=2—:-z:b%=Az:l:Ba+C+Dzy (2)

Thus, A= B =V /2a,C = 0 and D = 0 and the equipotentials are straight
lines having slope —1.

= o (s+3) (s

(c) The electric field intensity follows as being uniform and having z and y com-
ponents of equal magnitude.

E=-Vé= -%’;(ixﬁ,) @)

(d) The sketches of the potential, (3), and field intensity, (4), are as shown in Fig.
S5.4.2.
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(e)
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(b)
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Flgure S5.4.2

To make the potential zero at the origin, C = 0. Evaluation at (z,y) = (0,4a)
where the potential must also be zero shows that B = 0. Similarly, evaluation
at (z,y) = (a,0) shows that A = 0. Evaluation at (z,y) = (a,a) gives D =
V/2a? and hence the potential

\4
d= ﬁzy (5)

Of course, we are not guaranteed that the postulated combination of solu-
tions to Laplace’s equation will satisfy the boundary conditions everywhere.
However, evaluation of (5) on each of the boundaries shows that it does. The
associated electric field intensity is

V .
E=-Vd= —m(yix + ziy) (6)

The equipotentials and lines of field intensity are as shown by Fig. 4.1.3 inside
the boundaries z = +a and y = +a.

The given potential, which has the form of the first term in the second column
of Table 5.4.1, satisfies Laplace’s equation. It also meets the given boundary
conditions on the boundaries enclosing the region of interest. Therefore, it is
the required potential.

In identifying the equipotential and field lines of Fig. 5.4.1 with this configu-
ration, note that k = x/a and that the extent of the plot that is within the
region of interest is between the zero potentials at z = —x/2k and z = «/2k.
The plot is then adapted to representing our potential distribution by multi-
plying each of the equipotentials by V,, divided by the potential given on the
plot at (z,y) = (0,5). Note that the field lines are perpendicular to the walls
at z = +a/2.
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5.4.4  (a) Write the solution as the sum of two, each meeting zero potential conditions
on three of the boundaries and the required sinusoidal distribution on the
fourth. .

. wysinh[Z(a — z)]

® = V,sin (?) S(Y) 4 Vesin a  sinh(r) W

sinh(x)

(b) The associated electric field is

E-= —;Z:’h%rj{ [cos(wz/a) sinh(ry/a)  sin(ry/a) cosh [~ (a - z)]]ix

+ [sin(rz/a) cosh(ny/a) + cos(ry/a) sinh [%(a - z)]]i,}
, (2)

Figure S5.4.4
(c) A sketch of the equipotentials and field lines is shown in Fig. $5.4.4.

5.4.5 (a) The given potential, which has the form of the second term in the second
column of Table 5.4.1, satisfies Laplace’s equation. The electrodes have been
shaped and constrained in potential to match the potential. For example,
between y = —b and y = b, we obtain the y coordinate of the boundary #(z)
as given by (a) by setting (b) equal to the potential v of the electrode, y = 5
and solving for 5.

(b) The electric field follows from (b) as E = —V®.

(c) The potential given by (b) and field given by (c) have the same (z, y) depen-
dence as that represented by Fig. 5.4.2, To adjust the numbers given on the
plot for the potentials, note that the potential at the location (z,y) = (0,a)
on the upper electrode is v. Thus, to make the plot fit this situation, multiply
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(4)

(a)
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each of the given potentials by v divided by the potential given on the plot at
the location (z,y) = (0, a).

The charge on the electrode is found by enclosing it by a surface S and using
Gauss’ integral law. To make the integration over the surface enclosing the
electrode convenient, the surface is selected as enclosing the electrode in an
arbitrary way in the field free region above the electrode, passing through the
slits in the planes z = %I to the y equal zero plane and closing in the y = 0
plane. Thus, with y; defined as the height of the electrode at its left and right
extremities, the net charge is

Y1

wn
q= deo/ —E.(z = —l)dy + deo/ E.(z=1)dy
=0 =0

!
+ deo/ —Ey(y =0)dz

==

Y1 1
= ___z')dvreo [/ — sin = sinh ﬂdy (2
2bsinh (%) 0 2b 2b
Y1 l
+ /(; —sin % sinh %dy
!
+ /_l —cos %dz]
Note that b k
sinh ky;, = ﬂ—a'; —sinh? ky + cosh? ky = 1 (3)
cos kl

and (2) becomes the given result.

Conservation of charge for a surface enclosing the electrode through which
the wire carrying the current < passes requires that 1 = dq/dt. Thus, given the
result of (d) and the voltage dependence, (e) follows.

Reversing the potentials on the lower electrodes turns the potential from an
even to an odd function of y. Thus, the potential takes the form of the first
term in the second column of Table 5.4.1.

® = Acosh (%) cos g—:— (1)

To make the potential be v at (z,y) = (0, a), the coefficient is adjusted so
that
coshky =T

cosh ka’ 2b (2)

The shape of the upper electrode in the range between £ = —b and £ = b is
then obtained by solving (2) with ® = v and y = 5 for 7.

1 -t [cosh ka]

® =vcoskz

- (3)

7 = —cos
coskz
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(b) The electric field intensity follows from (2) as

E= cosh a [— sin(kz) cosh(ky)ix + cos kz sinh kyiy ] (4)

(c) The equipotentials and field lines are as shown by Fig. 5.4.2. To adjust the
given potentials, multiply each by v divided by the potential given from the
plot at the location (z,y) = (0, a).

(d) The charge on the electrode segment is obtained by using Gauss’ integral law
with a surface that encloses the electrode. This surface is arbitrary in the field
free region above the electrode. For convenience, it passes through the slits
to the y = 0 plane in the planes z = +l and closes in the y = O plane. Note
that there is no electric field perpendicular to this latter surface, so the only
contributions to the surface integration come from the surfaces at z = +l.

VI vk .
g = 2de, /(; [cosh a sin(kl) cosh(ky)] dy

2de,v
cosh ka

With the use of the identities

(5)

sin kl sinh ky,

cosh ka

cosh(ky;) = ekl cosh? ky, —sinh? ky, = 1 (6)
(5) becomes
_ . 2dev sin cosh(ka)]?
g=Cv= cosh ka ° \/[ cos ki M
(e) From conservation of charge,
. dv .
t= C’EE = —CVuw sinwt

5.5 MODAL EXPANSIONS TO SATISFY BOUNDARY
CONDITIONS

5.5.1 (a) The solutions superimposed by the infinite series of (a) are chosen to be zero
in the planes z = 0 and z = b and to be the linear combination of exponentials
in the y direction that are zero at y = b. To evaluate the coefficients, multiply
both sides by sin(mnz/a) and integrate from z=0toz=a

./(; b(z, 0)sm(— dz—EA smh(— )sm I‘-ﬂ sin :zdz (1)

n=1
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(b)

(b)

(a)

Solutions to Chapter 5

The mtegral on the right is zero except for m = n, in which case the integral
of sin?(nxz/a) over the interval z = 0 to z = a gives the average value of
1/2 multiplied by the length a, a/2. Thus, (1) can be solved for the coefficient
Ap, to obtain (b) as given (if m — n).

In the specific case where the distribution is as given, the integration of (b)

gives
3a/4
asmh(— '""’) / Vi sm(—)d

2V1 [ cos m ] 3a/4
nr sinh (22) a

which becomes (c) as given.

An=
(2)

al4

This problem illustrates how the modal approach can be applied to finding
the solutions in a rectangular region for arbitrary boundary conditions on all
four of the boundaries. In general, four infinite series would be used, each
with zero potential on three of the walls and with coeflicients to match the
potential boundary condition on the fourth wall. Here, the potential is zero
on two of the walls, so only two infinite series are used. The first is zero in
the planes y = 0,y = b and z = a and, because the potential is constant in
the plane z = 0, has coefficients that are as given by (5.5.8). (The roles of a
and b are reversed relative to those in the section for this first term and the
minus sign results because the potential is being matched at z = 0. Note that
the argument of the sinh function is negative within the region of interest.)
The coefficients of the second series are similarly determined. (This time, the
roles of z and y and of a and b are as in the section discussion, but the surface
where the uniform potential is imposed is at y = 0 rather than y = b.)

The surface charged density on the wall at z = a is
ad
0, = €5|—Egz(z = a)] = —eoa(z =a) (1)

Evaluation using (a) results in (b).

For arbitrary distributions of potential in the plane y = 0 and z = 0, the
potential is taken as the superposition of series that are zero on all but these
planes, respectively.

o= ZA sm(——)smh[—-—(y b)]

n=1

+ E B, sin ( sinh [—(z - a)]

The first of these series must satisfy the boundary condition in the plane
y=0,

(1)

&(z=0)= Z Apsinh (- — ( (2)
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where

o0~ {3l o e e e ®

Multiplication of both sides of (2) by sin(mnz/a) and integration from z =0
to z = a gives

a/2 a
%f zsin (s dz + 2V.,/ sin (Cor ) dz
a 0 a 6/2 a

Ve [* .
-—— Zsin (
a a /2 a

=A,,,§sinh(—-'"—a’ﬂ)

mnz

)dz (4)

Integration, solution for A4,, — A, then gives A, = 0, n even and for n odd

8V, sin (%’5)

An = a3 g (225) )

Evalution on the boundary at z = 0 leads to a similar term with the roles of
V. and a replaced by those of V;, and b, respectively. Thus, B,, = 0 for n even

and for n odd
8V, sin (%f)

B =~ 2 i (22) (©)

(b) The surface charge density in the plane y = b is
od
0s = €o|—Ey(y =b)] = 50"3;(3/ = b)

-3 (40 (%) sin (Z22) - B, (%) sinh [(%7) (2 - )]

n=1
odd

(6)

where A, and B, are given by (5) and (6).

5.5.4 (a) Far to the left, the system appears as a parallel plate capacitor. A uniform
field satisfies both Laplace’s equation and the boundary conditions.

Vy

E=—Ki,=><1>a= y] (1)

d

(b) Because the uniform field part of this solution, ®,, satisfies the conditions far
to the left, the aditional part must go to zero there. However, the first term
produces a field tangential to the right boundary which must be cancelled by
the second term. Thus, conditions on the second term are that it also satisfy
Laplace’s equation and the boundary conditions as given
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(<)

(d)

(a)

(b)

Solutions to Chapter 5

Because of the homogeneous boundary conditions in the y =0 and y = d
planes, the solution is selected as being sinusoidal in the y direction. Because
the region extends to infinity in the —z direction, exponential solutions are
used in that direction, with the sign of the exponent arranged to assure decay
in the —z direction.

[+ +]
), = Z A, sin (E;Lg) enre/d (2)
n=1
The coefficients are determined by the requirement on this part of the poten-
tial at = 0.
Vy . (nTyY
——d— ='§1Ansm(—d—-) (3)

Multiplication by sin(m=y/d), integration from y = 0 to y = d, solution for
A,, and replacement of A,, by A,, gives

2V 2V
A, =2 =y 4
n = —cosnm mr( ) (4)

The sum of the potentials of (1) and (2) with the coefficient given by (4) is

(e)-

The equipotential lines must be those of a plane parallel capacitor, (1), far to
the left where the associated field lines are y directed and uniform. Because
the boundaries are either at the potential V or at zero potential to the right,
these equipotential lines can only terminate in the gap at (z, y) = (0, d), where
the potential makes an abrupt excursion from the zero potential of the right
electrode to the potential V of the top electrode. In this local, the potential
lines converge and become radially symmetric. The boundaries are themselves
equipotentials. The electric field, which is perpendicular to the equipotentials
and directed from the upper electrode toward the bottom and right electrodes,
can then be pictured as shown by Fig. 6.6.9¢ turned upside down.

The potential far to the left is that of a plane parallel plate capacitor. It
takes the form Az + B, with the coefficients adjusted to meet the boundary
conditions at z =0 and z = a.

V. 2z
Oy — —c0) = &, = —23(1 -=) (1)
a
With the total potential written as
®=0,+ 9, (2)
the potential ®; can be used to make the total potential satisfy the boundary
condition at y = 0. Because the first part of (2) satisfies Laplace’s equation

and the boundary conditions far to the left, the second part must go to zero
there. Thus, it is taken as a superposition of solutions to Laplace’s equation
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that are gero in the planes y = 0 and y = a (so that the potential there as
given by the first term is not disturbed) and that decay exponentially in the
—y direction.

oy = Z Ansin (1‘?)e""y/“ (3)

At y = 0,9(z,0) = &4(z). Thus, Bp(z,0) = ®4(z) — Pa(z) and evaluation
of (3) at y = 0, multiplication by sin(mnz/a) and integration from z = 0 to
z = a gives

[ [oata) - 20 - 2 s ™2z = A @

from which 1t follows that
2V,.
- —/ ®4(z) sin (——-)dz - { o ; ::\é(:ln (5)

Thus, the potential between the plates is
®=-2(1- —) + Z Ap sin (—)e'"’”/" ()

where A,, is given by (5).

The potential is taken as the sum of two, the first being zero on all but the
boundary at z = a where it is V,y/a and the second being zero on all but the
boundary at y = a, where it is V,z/a. The second solution is obtained from the
first by interchanging the roles of =z and y. For the first solution, we take

Z A, sm(mr:u smh( ) )

sinh nm
n=1

The coefficients follow by evaluating this expression at £ = a, multiplying by
sin(mmy/a) and integrating from y =0 to y = a.

V.

2% sin (m) dz = An(a/2) (2)
0 a a
Thus,

2V,
A, = -Zo(_g)n
L/ T8 ®)

The first part of the solution is given by substituting (3) into (1). It follows that
the total solution is

2= 2 B Ll Tuin (U2%) inh (%22) + in (") ok (25)] 4

nx sinh(nw
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(a) The total potential is sero at y = 0 and so also is the first term. Thus, &,
must be gero as well at y = 0. The first term satisfies the boundary condition
at y = b, so ®; must be zero there as well. However, in the planes z = 0
and z = a, the first term has a potential Vy/b that must be cancelled by the
second term so that the sum of the two terms is zero. Thus, ®; must satisfy
the conditions summarized in the problem statement.

(b) To satisfy the conditions at z = 0 and z = a, the y dependence is taken
as sin(nxy/b). The product form z dependence is a linear combination of
exponentials having arguments (nxy/b). Because the boundary conditions in
the z = 0 and z = a planes are even about the plane z = a/2, this linear
combination is taken as being the cosh function displaced so that its origin is
at z = a/2.

&= Z_:A,, sin (72) cosh [ 5~ ( - 2)] (1)

Thus, if the boundary condition is satisfied at z = g, it i3 at z = 0 as well.
Evaluation of (1) at z = a, multiplication by sin(m~xy/b) and integration from
y = 0 to y = b then gives an expression that can be solved for A,, and hence

An
_ 2V (-1 2)
nx cosh(nma/2b)
In terms of these coefficients, the desired solution is then
Vy — . (DAY nw a
®= T+'§Ansm (—b—-) cosh [T(z— E)] (3)

5.6 SOLUTIONS TO POISSON’S EQUATION WITH

5.6.1

BOUNDARY CONDITIONS

The potential is the sum of two homogenous solutions that satisfy Laplace’s
equation and a third inhomogeneous solution that makes the potential satisfy Pois-
son’s equation for each point in the volume. This latter solution, which follows from
assuming &, = ®,(y) and integration of Poisson’s equation, is arranged to give gero
potential on each of the boundaries, so it is up to the first two to satisfy the bound-
ary conditions. The first solution is zero at y = 0, has the same z dependence as the
wall at y = d and has a coefficient that has been adjusted so that the magnitude
of the potential matches that at y = d. The second solution is zero at y = d (the
displaced sinh function is a linear combination of the sinh and cosh functions in
column 2 of Table 5.4.1) and so does not disturb the potential already satisfied by
the first term at that boundary. At y = 0, where the first term has been arranged
to make no contribution, it has the same y dependence as the potential in the y =0
plane and has its coefficient adjusted so that it has the correct magnitude on that
boundary as well.
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The particular solution is found by assuming that the particular potential
is only a function of y and integration of Poisson’s equation twice. With the two
integration coefficients adjusted to make the potential of this particular solution
zero on each of the boundaries, it is the same as the last term in (a) of Prob. 5.6.1.
Thus, the homogeneous solution must be zero at y = 0, suggesting that it has
a sinh function y dependence. The =z dependence of the potential at y = d then
suggests the z dependence of the potential be made sin(kz). With the coefficient of
this homogeneous solution adjusted so that the condition at y = d is satisfied, the
desired potential is

® = &, sinh kz sm:ky ( —d) (1)

(a) Inthe volume, Poisson’s equation is satisfied by a potential that is independent
of y and 2,

3%®,

dz2

Two integrations give the particular solution

V2%, =

= —-—cosk(z—&) (1)

= Po_ -
o, = b k(z — 6) . (2)
E, = 22 sin k(z — 6)i (3)
P ek x

(b) The boundary conditions at y = +d/2 are
E;=Eps + Epe = E,coskz (4)

Because the configuration is symmetric with respect to the £ — z plane, use
cosh(ky) as the y dependence. Thus, in view of the two z dependencies, the
homogeneous potential is assumed to take the form

®;, = [Asin kz + B cosk(z — 6)] cosh ky (5)
The condition of (4) then requires that
Eup = —[Acos kz — Bsin k(z — §)}k cosh ky (6)
and it follows from the fact that at y = d/2 that (3) + (6) = (4)
A= —E,[kcosh(kd/2); B = —p,/e.k?cosh(kd/2) (7)

so that the total potential is as given by (d) of the problem statement.
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(c)

5.6.4 (a)

(b)

(c)

Solutions to Chapter 5

First note that because of the symmetry with respect to the z plane, there is
no net force in the y direction. In integrating pE, over the volume, note that
E; is

cosh kh

cosh ("7")

In view of the z dependence of the charge density, only the second term in this
expression makes a contribution to the integral. Also, p = p,cosk(z — §) =
Ppolcos kb cos kz — sin k sin kz] and only the first of these two terms makes a
contribution also.

2nfk pd/2
/ / Po cos kb cos kzlih(—l:z—)Eo cos kzdydz )
d/g COS. )
= [27poE, cos k& tanh(kd/2)] /K>

E;,= _eeoik sink(z — §) + —— v [FBocoskz — —-sink(z — §)]  (8)

ek

For a particular solution, guess that
® = Acosk(z — §) (1)

Substitution into Poisson’s equation then shows that 4 = p,/e,k? so that the
particular solution is

= Po_ -
o, = i3 k(z — 6) (2)
Aty=0
& = -0, = _ep;;z cos k(z — 6) (3)
O
while at y = d,
O = k2 6) (4)

The homogeneous solution is itself the sum of a part that satisfies the condi-
tions

@, (y=d)=V,coskz, ®,(y=0)=0 (5)
and is therefore -
®, =V, cos kz——— smh kz (6)

and a part satisfying the conditions

®2(y=d) = kg: §); @2(0)= _ep;;z cosk(z—6) (7)
which is therefore
cosh k(y — £)
&, = —Po_ _gceshkly—3)
2 k2 cos k(z — ) cosh(kd/2) (8)
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Thus, the total potential is the sum of {2), (6) and (8).

sinh ky
T hkd )

4
® = - cosk(z — 6)

1 cosh k(y —
€.k

2)
2
ook (de) ] +Vocosk

(d) In view of the given charge density and (9), the force density in the z direction
is

F, = ﬁ’—sink(z — &) cos k(z — §) [1 -

o

cosh k(y — £ ]
cosh (524) (10)

sinh ky

sinh kd

+ pokVo sin kz cos k(z — §)

The first term in this expression integrates to zero while the second gives a
total force of

fo= pokVo /hlk /dsinka:cosk(z—5) sinh kydydz (11)
® ™ sinhkd J, 0 "

With the use of cosk(z — §) = cos kz cos k§ + sin kz sin k§, this integration

gives
_ (cosh kd — 1) sin k6
fo = pomVo T ik kd (12)
5.8.5 By inspection, we know that if we look for a particular solution having only

a y dependence, it will have the same y dependence as the charge distribution
(the second derivative of the sin function is once again a sin function). Thus, we
substitute Asin(ry/b) into Poisson’s equation and evaluate A.

pob?® . ,my
0, = £ s (%) 8

The homogeneous solution must therefore be zero on the boundaries at y = b and
y = 0 and must be —p,b? sin(my/b)/e,n2 at = = +a. This latter condition is even
in z and can be matched by the solution to Laplace’s equation

) cosh(rz/b)

@, = Asin (H cosh(mwa/b) (@)

b

if the coefficient, A, is made
A= —pob?[e,x? (3)

Thus, the solution is the sum of (1) and (2) with A given by (3).
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5.6.6  (a) The charge distribution follows from Poisson’s equation.
—e_ —V’d’,,=>p--e,,Vsmﬂ:l:sm-——(ﬁ2 b2) (1)
0

(b) To make the total solution satisfy the sero potential conditions, the homo-
geneous solution must also be zero at y = 0 and y = b. At z = 0 it
must also be gero but at £ = a the homogeneous solution must be &; =
~V sin(ry/b) sin fa. Thus, we select the homogeneous solution

sin 7Y sinh(xz/b)

P; = Asin b m ()

make A = —V sin fa and obtain the potential distribution

v (FU . _ ., sinh(xz/b)
® =V sin ( y ) [sm Bz —sin ﬂa———sinh(ra/b) (3)
5.6.7 A particular solution is found by assuming that it only depends on z and

integrating Poisson’s equation twice to obtain
_ bz

QP - 660 ( l ls ) (1)

The two integration constants have been assigned so that the potential is zero at
z = 0 and = = . The homogeneous solution must therefore satisfy the boundary
conditions

Dp(z=0)=Pp(z=1) =
nly = ) = (5 - %) @

The first two of these are satisfied by the following solutions to Laplace’s equation.

0= 3 dnsin () R ED ®

This potential has an even y dependence, reflecting the fact that the boundary
conditions are even in y. To determine the coefficients in (3), note that the second
pair of boundary conditions require that

T Ao =L ®

!
Po 3 . MAT
6601./0 z” sin —— dz (5)
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or
28%p,

An= €o(nm)3

(-n*
Thus, the required potential is

nrz cosh (27%)

‘I’=Fe:__l3) Z (M)sp: (=1)" sin T cosh (2) (6)

(a) The charge density can be found using Poisson’s equation to confirm that the
charge density is that given. Thus, the particular solution is indeed as given.

(b) Continuity conditions at the interface where y = 0 are
o* = @° (1)

e ad @)
dy 3y

To satisfy these conditions, add to the particular solution a solution to Laplace’s
equation in the respective regions having the same z dependence and decaying
to zero far from the interface.

®° = Acosfze™ (3)
o’ = 6—0—(79{‘_’_—&!2—) cos fze®Y + B cos fzeP (4)
Substitution of these relations into (1) and (2) shows that
A= (-3 (5)
B= ﬁ(l +3) (6)

and substitution of these coefficients into (3) and (4) results in the given
potential distribution.

(a) The potential in each region is the sum of a part due to the wall potentials
without the surface charge in the plane y = 0 and a part due to the surface
charge and having zero potential on the walls. Each of these is continuous in
the y = O plane and even in y. The =z dependence of each is determined by
the respective z dependencies of the wall potential and surface charge density
distribution. The latter is the same as that part of its associated potential so
that Gauss’ continuity condition can be satisfied. Thus, with A a yet to be
determined coefficient, the potential takes the form

cosh fa

VBB o Bz — Asinh f(y — a)sinf(z—z,); O<y<a )
V:z::ﬂa cosﬂz - ASinhﬂ(y+ a’) Sinﬂ(z - zo); —a<y<?0
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The coefficient is determined from Gauss’ condition to be

__o-o

2¢,f cosh fa (2)

[8<I>“ il
—€ -

—_ =o,8infB(z—z,) => A=
ay ay]y:O ﬂ( )

(b) The force is

z+2n/B
fo=d / 0o sin B(z — 7o) Ea (y = 0)dz (3)

From (1),

sin Sz o, 8inh fa

Eely=0) = Vﬂcosh Ba " 2¢,cosh fa

cos Bz — z,) (4)

The integration of the second term in this expression in (3) will give no con-
tribution. Substitution of the first term gives

_ do Vg [etnlP dr

"~ cosh fa J, sin f(z — 7o) sin fzdz = GOV'B(F)

cos Bz,

cosh fa ()

fa

(d) Because the charge and wall potential are synchronous, that is U = w/f, the
new potential distribution is just that found with z replaced by z — Ut. Thus,
the force is that already found. The force acts on the external mechanical
system (acts to accelerate the charged particles). Thus, U f, is the mechanical
power output and —U f, is the mechanical power input. Because the system
is loss free and the system is in the steady state so that there is no energy
storage, —U f, is therefore the electrical power output.

Electrical Power Qut = ~U f, = -U dO',,VﬂE cos Ao

B cosh Ba (6)

(¢) For (8) to be positive so that the system is a generator, 3 < Bz, < 37"

5.7 SOLUTIONS TO LAPLACE’S EQUATION IN POLAR
COORDINATES

5.7.1 The given potentials have the correct values at r = a. With m = 5, they
are solutions to Laplace’s equation. Of the two possible solutions in each region
having m = 5 and the given distribution, the one that is singular at the origin is
eliminated from the inner region while the one that goes to infinity far from the
origin is eliminated from the outer solution. Hence, the given solution.
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(a) Of the two potentials have the same ¢ dependence as the potential at r = R,
the one that is not singular at the origin is

= Zreing= Ly (1)

Note that this potential is also zero on the y = O plane, so it satisfies the
potential conditions on the enclosing surface.

(b) The surface charge density on the equipotential at y = 0 is

A (2)

o, =€ .Ey, = —eo-a—y R

and hence is uniform.

The solution is written as the sum of two solutions, ¢ and ®°. The first of
these is the linear combination of solutions matching the potential on the outside
and being zero on the inside. Thus, when added to the second solution, which is zero
on the outside but assumes the given potential on the inside, it does not disturb
the potential on the inside boundary. Nor does the second potential disturb the
potential of the first solution on the outside boundary. Note also that the correct
combination of solutions, (r/b)> and (b/r)> in the first solution and (r/a) and (a/r)
in the second solution can be determined by inspection by introducing r normalized
to the radius at which the potential must be zero. By using the appropriate powers
of r, this approach can be used for any ¢ dependence of the given potential.

From Table 5.7.1, column two, the potentials that are zeroat ¢ =0and ¢ =
are
rt™ sin m¢ (1)
with m = nx/a,n = 1,2,... In taking a linear combination of these that is sero
at r = g, it is convenient to normalize the r dependence to a and write the linear
combination as

D= A(r/a)'""/"‘ sin (1:;—‘75) + B(a/r)'"'/‘" sin (—'{—'ﬁ) (2)
where A and B are to be determined. It can be seen from (2) that to make & =0
at r = a, A = —B and the solution becomes

@ = A[(r/a)"™/* — (afr)"/*] sin (=2 (3)
a

Finally, the last coefficient and n are adjusted so that the potential meets the
condition at r = b. Thus,

_ /el — (o) ey
® = Wt fayre = (a5

(4)
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5.7.5 To make the potential zero at ¢ = 0, use the second and fourth solutions in
the third column of Table 5.7.1.

cos[pln(r)]sinh pg, sin[pln(r)]sinh pg (1)

The linear combination of these solutions that is zero at r = a is obtained by
simply normalizing r to a in the second solution. This can be seen by using the
double-angle formula to write that solution as

Asin[pln(r/a)]sinh pg = Asin|pin(r) — pin(a)]sinh pé
= A{sin[pin(r)] cos(pin(a)] (2)
— cos|pln(r)]sin[pin(a)]} sinh pé
This solution is made to be zero at r = b by making p = nn/in(b/a), where n is

any integer. Finally, the last boundary condition at ¢ = 0 is met by adjusting the
coefficient A and selecting n = 3.

A =V/sinh[3ra/in(b/a)] (3)
5.7.6 The potential is a linear combination of the first two in column one of Table
5.7.1.
_ _ |4 3my 2¢

This potential and the associated electric field are sketched in Fig. $5.7.6.

Figure S5.7.6



Solutions to Chapter 5 5-23

5.8 EXAMPLES IN POLAR COORDINATES

5.8.1

Either from (5.8.4) or from Fig. 5.8.2, it is clear that outside of the cylinder,
the 2z = 0 plane is one having the same zero potential as the surface of the cylinder.
Therefore, the potential and field as respectively given by (5.8.4) and (5.8.5) also
describe the given situation.

Intuitively, we would expect the maximum electric field to be at the top of
the cylinder, at r = R, ¢ = x/2. From (5.8.5), the field at this point is

Epax = 2E, (1)

and this maximum field is indeed independent of the cylinder radius. To be more
rigorous, from (5.8.5), the magnitude of E is

|B| = Eo¢ (2)

where

€ = \/[L+ (R/r)2]2 cos? 6 + [1 — (R/r)2]2 sin?

If this function is pictured as the vertical coordinate in a three dimensional plot
where the floor coordinates are r and ¢, its extremes are located at (r,$) where
the derivatives in the r and ¢ directions are zero. These are the locations where
the surface represented by (2) is level and where the surface is either a maximum,
a minimum or a saddle point. Thus, to locate the coordinates which are candidates
for giving the maximum, note that

%% = %{—[1 + (B/r)?1? + [1 = (B/r)*|*} cos $sing = 0 (3)
and 5 E )
gg = ?oz—g—{[l + (R/r)?)? cos® 0 + [1 — (R/r)?]sin® 6} = 0 (4)

Locations where (3) is satisfied are either at

$=0 (5)
or at
¢=r/2 (6)
with r not equal to R or at
r=R (7)

with ¢ not given by (5) or (6). Putting (5) into (4) shows that there is no solution
for r while putting (6) into (4) shows that the associated value of r is r = R. Finally,
putting (7) into (4) gives the same location, r = R and ¢ = /2. Inspection of (5)
shows that this is the location of a maximum, not a minimum.
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5.8.2 Because there is no ¢ dependence of the potential on the boundaries, we use
the second m = 0 potential from Table 5.7.1.

&= Alnr+ B ' (1)

Here, a constant potential has been added to the In function. The two coefficients,
A and B, are determined by requiring that

Vi = Alnb + B (2)

V, = Alna+ B (3)
Thus,
A= (Vo — W) /In(a/b)
B = {Vyina — Vgin b} /in(a/b) (4)
and the required potential is
BV In(r/b) v In(r/b) Y

*In(a/b) In{a/b) (5)
= [Vain(r/b) — Viin(r/a)]/in(a/b)

The electric field follows as being

Ci(Va—W) 1

i ™Y Py (6)

and evaluation of this expression at r = b shows that the field is positive on the
inner cylinder, and everywhere else for that matter, if V, < V;,.

5.8.3 (a) The given surface charge distribution can be represented by a Fourier series
that, like the given function, is odd about ¢ = ¢,

o, = 2—: onsinnm(d — 0,) (1)

where the coefficients o, are determined by multiplying both sides of (1) by
sin mn (¢ — ¢,) and integrating over a half-wavelength.

$o+m $o+m 00
/ 0,($) sinm(¢—0,dp = / Z onsinn($—¢,) sin m(d—0,)dé (2)
do ¢,

o n=1
Thus,
On=_7 n odd (8)
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(b)

(c)

and o, = 0,n even. The potential response to this surface charge density is
written in terms of solutions to Laplace’s equation that i) have the same ¢
dependence as (1), ii) go to zero far from the rotating cylinder (region a) and
at the inner cylinder where r = R and are continuous at r = a.

_S~o, [l@/R)" ~ (RlaP IR/ ooy gy a<r
¢‘§“&mmmmw—wmw} (6-blpcrca

odd

The coefficients ®,, are determined by the “last” boundary condition, requir-
ing that

ao° 6@"]r=a (5)

alr=a) = |G -5y
Substitution of (1), (3) and (4) into (5) gives

20,a
€omn?

(6)

n

The surface charge density on the inner cylinder follows from using (4) to
evaluate

Ao €02 )
5 |r=R = —% z ®,n(R/a)"sinn(¢ — 0,) (7)
bad

o,(r = R) = —¢,

Thus, the total charge on the electrode segment in the wall of the inner cylin-
der is

q=w/ o,(R)Rd¢ = —ZQn[cosnﬂo—cosn(a—-eo)] (8)

0 i

where

do,wa
T

Qn = ZL2 (R o)

The output voltage is then evaluated by substituting 6, — ¢ into (8) and
taking the temporal derivative.

vp = —Ro% =-0R, ; nQn[sin nQ¢ + sinn(a — )] 9)

odd
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The Fourier representation of the square-wave of surface charge density is
carried out as in Prob. 5.8.3, (1) through (3), resulting in

= Z onsinnw(p — 0,) (1)

ns=l
odd

where 4
Op = &; n odd
nr

The potential between the moving sheet at r = R and the outer cylindrical wall at
r = a, and inside the moving sheet, are respectively

o= $ o { R/

n=1
odd

r<a

}smn(qS 00)a<r<R 2)

where the coefficient has been adjusted so that the potential is zero at r = R and
continuous at the surface of the moving sheet, where r = g. The coefficients are
determined by using Gauss’ continuity condition with the surface charge density
written as (1) and the potential given by (2);

—o(Gr - 5r) = —eoula/ B (2 (0/R) + (/]

+ 2 (/R [0/ R - (R/a)"] = 22

(3)

which implies that

_ 20,0
P = nire, 4)
The surface charge on the detection segment is
o . 40 .
Oy = €0~ ,-= =— ,Z_:l ;;o(a/R)”‘“ sin n(¢ — 0,) (5)

odd

and so the total charge on that segment is

q=w/(-)a oolr = R)Rd$ = _ZQ,,[cos nf, — cosn(a — 6,)] ()

where 4 R L
Qn = 2= (a/R)™

Finally, with 8, = (¢, the detected vc_)lta.ge is therefore
dg > . .
Yo = —Roﬁ =—-QR, Z nQp[sin nQt + sin n(a — 0t)] (7)

n=l

odd
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Of the potentials in the second column of Table 5.7.1, the requirement that the
potential be zero where ¢ = 0 selects the two that vary as sin(m¢) while the fact that
the space of interest extends to the origin precludes those with negative exponents,
for m > 0, the last two. The potential will be zero at ¢ = a if m = nx/d,n = 1,2,.
Thus, candidate potentials are

o= An(r/R)™/*sin (#) (1)

m=1

Evaluated at r = R, this potential takes the form of a Fourier series, used here to
represent the uniform potential.

V= f: A, sin (1;5?) (2)

m=1

Mult1pl1catlon by sin(gr¢/a) and mtegra.tmn from¢p=0todp=a glves an expres-
sion which can be solved for the coefficients in (2).

a
_E cO8s (g?)] =Aq% = A” = i:_-,__ {l/n; n odd (3)
0

gm 0; n even
Thus, (1) and (3) are the given answer.

Far from r = R, the field becomes that of a pair of electrodes extending from
the origin to infinity in the planes ¢ = 0 (with zero potential) and ¢ = a (with
potential V). The associated electric field is ¢ directed and simply the voltage V'
divided by the distance ar between the electrodes, following lines of constant r.

14
Vs B(r—o0)= i (1)

@(r — oo0)
Although this potential satisfies the boundary conditions on the “wedge” electrodes,
it does not satisfy the boundary conditions over the surface at r = R. On that
surface, the potential should be the constant V. To satisfy this boundary condition,
we add to (1) a potential that is zero on the surfaces ¢ = 0 and ¢ = o where (1)
already satisfies the boundary conditions and that goes to zero at r — oo, where
(1) is also the correct potential.

243 Anle/RY sin (2 ) (@

The coefficients A,, are determined from evaluating (2) on the electrode at r = R,

where
+ E Apsin (n1r¢ (3)
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The first term on the right in (3) is transferred to the left, both sides of the expres-
sion multiplied by sin(mn¢/a) and both sides integrated from ¢ =0 to ¢ = a to
obtain

V{ - %r- cos (m1r¢) - (mo:r)z [sin m;r¢ - m;r¢ cos (m;r¢)] }0 = A——';'o—‘ (9)

This expression can be solved for the coefficient, which (with m — n) is
An=— (5)

Evaluated using this coefficient, (2) is the desired potential.

(a) From the four equations in the second column of Table 5.7.1, the sin functions
satisfy the boundary conditions that ® = 0 at ¢ =0 and ¢ = 2xr if m =
n/2,n = 1,2,... With the understanding that n is positive, the solutions
with exponents —m are excluded so that the potential is finite as » — 0.
Thus, the remaining potential is the superposition of the modes

&= Au(r/R)"?sin (g¢) (1)

n=1

(b) The boundary condition at r = R requires that

o0
. (N
Vo= E A, 8in (54;) (2)
n=1
Multiplication of both sides of this expression by sin(p$/2) and integration
ives
g 2w m asd 2r n m
/ Vosin (54)dé = / A sin (7¢) sin (7-¢)d¢ (3)
0 no1vo
or

2
- o[cos(mn) — 1] = 14, (4)
so that it follows that A,, = 0,n even and for n odd
et ©)

Substitution of this coefficient into (1) then gives the desired potential.
oo
_ 4Vo n /2 . n
d= }: mr (r/R)™/?sin ( 5 ¢) (6)

n=1
odd
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(¢) The associated electric field follows from this expression as

Wo=1[, nr¥?t  n . nri-t n
E=‘T,,2_:.Z[’EW’“‘(E”)+’¢5F/‘2°°3(5¢)] )
odd

a S
é

S —R &
(b)
(o)

Figure S5.8.7

A sketch of the lead term in (6) and (7) is shown in Fig. S5.8.7a. The potential is
finite at the tip of the fin but the electric field intensity varies as 1/4/r at the tip.
On the surface S; shown in Fig. $5.8.7b, the surface charge density follows from
(7) as

4e,V, <= 1r3-1
Balnd=0)=-=2=3 o ®)
odd
On the circular cylindrical surface S2 at radius a, also shown in Fig. S5.8.7b,
4e,V, o=~ 1a%"! | 'n
GOE,-(T' = a, ¢) == o z—; 5 Rn/2 sm (5¢) (9)
oda
while on surface Ss,
46V, o= 1731

~6Ep=—~2 ZERn/z (10)

n=1
odd


http:85.8.7a
http:85.8.7b
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5.8.8

5.8.9
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The total charge represented by the first mode in the series is therefore

R

2€o [ / —1/2dr - / a -1/2 Sin(¢/2)ad¢ _ / T_I/Zdr] — SG;VO (11)
a

(d) The potential and field distribution is sketched in Fig. S5.8.7b.

The potential takes the form of (5.8.15) with azimuthal coordinate displaced
so that ¢ — ¢, — ¢.

T I F=A ) B

n=1

Evaluated at ¢ = 0, this expression is then the same as (5.8.15) evaluated at ¢ = ¢,.
Thus, the coefficients are the same as given by (5.8.17). For n even, Ap, = 0 and for

n odd
A,, = 4vin(a/b)/nxsinh [ ———d,) (2)

in{a / b)
The radial distribution R, (r) is governed by (5.7.5).

d, dR.\
ro(r=3 )+p2R, =0 (1)

Multiplication of this expression by another of the eigenfucntions and the weighting
factor 1/r and integration results in the expression

b .
Bpn d dBny a1 _

/a [ ro(r dr)+p,,rR,.R,,.]dr—0 (2)

With the identification udv = d(uv) — vdu where
du=d(rZn) o R, 3)

Eq. (2) can be integrated by parts
dR, e * dR,dR,, 2 [*1

T—-R ] —fb (r—dTT)dT-l-pn./l; ;R,,R,,,dr =0 (4)

This same procedure can be repeated with the roles of n and m reversed. Substrac-
tion of the resulting expression from (4) gives

r[dR" R,.% +(p,, pm)/ ~RoRndr=0 (5)

If boundary conditions require that the first term is zero, or in particular that
R, (a) = 0 and R,,(b) = 0, then the orthogonality condition follows.

(v2 — 220 /; %R..R...dr =0 (6)


http:S5.8.7b
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5.9 THREE SOLUTIONS TO LAPLACE’S EQUATION IN

5.9.1

5.9.2

5.9.83

SPHERICAL COORDINATES

(a) The given surface potential has the same § dependence as for the uniform
field potential of (5.9.4) and the dipole field potential of (5.9.3). With the
coeflicients of these potentials adjusted to match the given potential at r = q,

o= { Yo nie QO

(b) A sketch of ® and E is shown in Fig. 6.3.1.

(a) The surface charge density has the same § dependence at r = a as the discon-
tinuity in the normal derivative of the potential. This suggests representing
the potentials inside and outside the sphere with the same § dependence as
the given surface charge distribution. In addition, these potentials must be
finite at the origin and at infinity. The natural choices are the uniform field
potential given by (5.9.4) inside the sphere and the dipole potential of (5.9.3)
outside the sphere.

_ JA(a/r)?cos8; a<r
®= {A(r/a) cosf; r<a ®
The coefficients have already been adjusted so that the potential is continuous
at r = a. Gauss’ continuity condition then requires that
. (6@“ ad
—€o

1 2
ar _W)r:a—aocosaﬁ—eo[;*_;]A_ao (2)

so that A = 0,a/3¢, and the potential is as given with the problem.

(b} In Example 6.3.1, the potentials inside and outside the sphere take the same
form as in (1) [(6.3.9) and (6.3.8)] and satisfy boundary conditions which take
the same form as used here [(6.3.6) and (6.3.7)]. Indeed, we will see in Sec.
6.3 that with the polarization density given the polarization charge density is
specified and the determination of the associated potential and field is much
the same as in this chapter when the charge is specified. Hence, Fig. 6.3.1
portrays the potential and field.

Because the given charge density does not depend on ¢, the potential is also
independent of ¢. In that case, Poisson’s equation in spherical coordinates reduces

to
19 od 1 a,. od Pocos
35('2 ar) rzsinﬂﬁ(smo—a_ﬂ)_— € (1)
First, given the dependence of the charge density on 4, look for a particular solution
having the form &, = Ar® cosf. Substitution into (1) then shows that p = 2 and
= —po/4€, 80 that a particular solution is

Po 2
o, = —— 0
p 4!eor cos (2)
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5.10.1

5-32 Solutions to Chapter 5

The sum of this potential and a solution to Laplace’s equation must satisfy the
condition that the potential be zero at r = a. Again, for the ¢ dependence of the
particular solution, it is natural to take a uniform field as the homogeneous solution.
Thus, with B an adjustable coefficient,

<I>=—:—°r2cosﬂ+Brcos0 (3)

€o

and by requiring that the total potential be zero at r = g, it follows that B =
Poa/4¢, 80 that the potential is as given with the problem statement.

Because the given charge density does not depend on ¢, the potential is also
independent of ¢. In that case, Poisson’s equation in spherical coordinates reduces

to

190,88 1 508 gy
75" 3r) * Famg o (0 5) = ¢ /e)" cos (1)
First, given the dependence of the charge density on 8, look for a particular solution
having the form (r/a) cos§. Substitution into (1) then shows that p = m + 2 and
A = —p,a?/eo(m+ 1)(m + 4) so that a particular solution is

_ poa2
ot )T )

¢, = (r/a)™*2cos (2)

The sum of this potential and a solution to Laplace’s equation must satisfy the
condition that the potential be zero at r = a. Again, for the § dependence of the

particular solution, it is natural to take a uniform field as the homogeneous solution.
Thus, with B an adjustable coefficient,

® =&, + B(r/a) cos ¥ (3)

and by requiring that the total potential be zero at r = a, it follows that the
required potential is

®= eo(m;q;‘(lm_'_ 9) (r/a)[(r/a)™* — 1] cos® (4)

THREE-DIMENSIONAL SOLUTIONS TO LAPLACE’S
EQUATION

Given the zero potential surfaces at y=0and y =b and at 2 =0 and z = w,
it is natural to construct the solution from product solutions having the form

. mMTY . nmwz
® = X(z)sin y Bn = (1)

81
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where, to satisfy Laplace’s equation
X(z) = {sinh kmn®

cosh kynz

and

kmn = V/(mn/b)? + (nx/w)?
The boundary conditions on the surfaces at z = 0 and z = a are the same. Thus, if
X (z) is chosen to be even about an origin at z = a/2, the potential that satisfies the
condition of being v at z = 0 will also be v at z = a. Thus, X(z) is made a linear
combination of the solutions given with (1) which is the cosh function displaced so
that its argument is sero where z = a/2.

X(z) = Amn cosh km,.(z - %) (2)

The solution therefore takes the form of (a) given with the problem. At z = 0, the
condition at z = 0 requires that

o0 [ -]
kmnay, . ,mry, ., 2
v= Z ZAm,,cosh( n;n )sm(T sm(T) (3)
Note that this expression is the same as (11) if the sinh(kp,,b) is replaced by
cosh(knna/2) and z/a — y/b. The evaluation of the coefficient using the orthogo-
nality of the product solutions is therefore essentially the same as given by (5.10.11)-
(5.10.15), resulting in (b) as given with the problem.

m=1n=1

Given the z and z dependence of the surface charge density, which is the
same as that of the components of E in the z direction on either side of the surface
y = a/2, look for solutions of the form

. (MET\ . (A2
| @ = ¥(y) sin (ZZ) sin () (1)
where
__ ) sinh kyy
Y(y) = {cosh k11y
and

k11 = \/ (‘ll'/a.)2 + (W/b)2

To satisfy the continuity conditions at y = b/2, the potential function is given a
piece-wise representation. The function in the upper region must be zero at y = b,
so Y (y) is chosen as a sinh with its argument displaced to y = b. In the lower region,
the sinh function with its origin at y = 0 does the job. Thus,

o= {*Baly ? oo () ;

At y = b/2, the potential must be continuous and Gauss’ continuity condition must
be satisfied.

—~A sinh(knb/Z) = Bsinh(k11b/2) (3)
—€ok11(A — B) cosh(ky15/2) = o, (4)

It follows that the coefficients in (2) are
A= —B = —0,/2¢,k11 cosh(k11b/2) (5)
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In each case, the solution can be regarded as the superposition of a particular
solution to Poisson’s equation and a homogeneous solution to satisfy the boundary
conditions. The determination of representation begins with the selection of the
former.

As a first solution, select a particular solution that is only z dependent. Then,
Poisson’s equation reduces to )

el )
dz €o

and the particular solution that (for convenience) is also gero at z =0 and z = a is

=_Po 2 4 =Po p(r
o, 2% +Az+ B 2€o:c(:l: a) (2)

With this potential satisfying the boundary conditions on two of the surfaces, the
homogeneous solution must assure satisfying the conditions on the remaining four
surfaces. This is done by adding to (2) solutions designed to satisfy the conditions
at y = 0 and y = b while being zero at all the other surfaces and therefore neither
disturbing the already satisfied conditions at z = 0 and z = a nor those to be
satisfied by the next homogeneous solution. To satisfy both the conditions at y = 0
and y = b, the y dependence is taken as even about y = b/2. A second homogeneous
solution is then added to this one to assure satisfaction of the conditions at 2 = 0
and z = w/2 while not disturbing the potential at the other four surfaces. Thus,
the potential takes the form

o ] - .
2:0 I(z - a) + Z Z By, cosh kmn(y - 5) sin (?I) sin (r;—”z)

m=1n=1

o=

=1n= (3)
+ Z E Cmn cosh km,.(z - %) sin (%r—z) sin (%y

m=1n=1

The coefficients B,,,, and C,,,, are determined by requiring that the potential indeed
be zero on the surfaces y = 0 and z = 0 (and hence also at y = b and z = w).

=) = 3 Bom o (B2 s ()i () 4
m=1n=1
i SUEPIPILLETC SENCERICOMINC

The coefficients therefore follow from the same procedure as illustrated by (5.10.11)
through (5.10.15). For m or n even the coefficients are zero. For m and n odd,

= Po . . (MT
Brn = m(“/"’f)/o z(z — a)sin (—a—z)dz o
_ —Po 8a2
™ 2egcom (59 /) e
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C, =———(4/mr)f z(z—a)sm(———-z)d:c

™ ™ 2¢, cosh (E'“—) ™
= ——)( / ﬂ')( )

2¢, cosh (h'“——

Two more solutions are obtained by replacing the role of z with that of y and of z.
As a fourth solution, expand the charge distribution in a three dimensional Fourier

) sin (=7 sin () (8)

o o0 o0

=2 2 2R

m=1n=1q=1

The coefficients R,,,q follow by multiplying by

sin (r1r ( )31 (u.1rz)
a
integrating over the volume and solving for R,,,. Then, with rsu — mnq,

16p
Rmnq = mnq;S (9)

for m and n and g odd and zero for m or n or g even. Given this (z, y, 2) dependence
and given that the second derivative of each of the sinusoids results in the same

sinusoidal function, we are motivated to look for a particular solution having the
same form,

oo o0 [+ o]
P = Z ZEanqsm

m=1n=1gqg=1

1rz) sin (n—:—) sin (q ) (10)

Substitution of this expression into Poisson’s equation shows that term by term it
is not only a solution to Poisson’s equation (and therefore a particular solution) if

2 Rmnq 2 (11)
eo[(22)* + (22)” + ()]

but satisfies the boundary conditions as well.

<I>mnq =






SOLUTIONS TO CHAPTER 6

6.1 POLARIZATION DENSITY

6.1.1  (a) From (6.1.6), the polarization charge density is
pp ==V -P=P,fsinfz (1)

(b) The polarization surface charge density at the respective surfaces follows from
(6.1.7) evaluated at the respective interfaces.

o4 = -1 - (P% — PY)

= {—(O—Pocosﬂz) = P,cosfz; y=d (2)
= _(POCOSﬂ:B—O):—Pocosﬂz; y=0

6.2 LAWS AND CONTINUITY CONDITIONS WITH
POLARIZATION

6.2.1 (a) Given the polarization density, the polarization current density follows from

(6.2.9).
3, = %—l: = 2% cos fa(i + i) )

The polarization charge density is as found in Prob. 6.1.1.
(b) Substitution of these quantities into (6.2.10) gives

ap,
at

9pp
at

+V.J,= ﬂsinﬂz—%ﬂsinﬂ:l::O (2)

6.3 PERMANENT POLARIZATION

6.3.1 (a) The polarization charge density between the electrodes is
pp=—V -P=P,fsinfz (1)

Thus, at each point between the electrodes,

vig = o _Fob sin Az (2)

€ €




(b)

Solutions to Chapter 6

and a particular solution is gotten from

3% P,p
- = o, 3
5a2 . sin Az => ﬂ osmﬂz (3)
To satisfy the boundary conditions, use the homogeneous solutions Az
® = Az + —>sin fz (4)
ﬂ €
which satisfies &(z = 0) = 0. To make &(z =a) = —
Vv P,
=—t— 5
A s Fea sin fa (5)
so that (6.3.4) becomes
P, O (. z , z
® . (sin Bz - sin Ba) " (8)
x
¢=-V
£ a
[ N ’ !
P = P,cos Bzix ®=0
Figure S6.3.1
In this case,
pp ==V -P=P,sinfy (7
and
3%, __BP, _P ®)
dy? €o r €B

Boundary conditions at z = 0 and z = a, are satisfied by ® = —V z/a. Thus,
we let

P, . z
Q—Jsmﬂy—V;+Q1 (9)
Then ®; must be —(P,/e.f)sin Py at z = 0 and z = a. Such a solution to
Laplace’s equation is symmetric about z = a/2;

= eﬂ-smﬂy— £ + Acosh f(z — —) sin By (10)
O,
To satisfy boundary conditions
Po 1
A= —— ———— 11
€0 cosh (£2) (1)

Thus, from (6.3.4) and (6 3.5),

Q——S]_nﬂ [I_M]_E

cosh (%) a



6.3.2

Solutions to Chapter 6 6-3

The polarization charge density inside the rectangular region is
T, R
=-V -P=P, —sin— 1
Po o sin —z (1)
The potential is therefore a solution to

V2@ = — P, gin z (2)
ae, a

that satisfies the zero potential boundary conditions. Two of these conditions are
satisfied by the particular solution to (6.3.2) that follows from assuming that it,
like the charge distribution, only depends on =z.

d?®, x .«
dz2 = —Poa—e-; sln ;3 (3)

Two integrations, with the integration constants adjusted to make the potential at
2 = a and z = 0 zero then give the particular solution

P =P,——gin=z - (4)

T, G

The homogeneous solution must also be gero on these boundaries and cancel this
particular solution when evaluated at y = +b.

‘a . w '
B (z, 1) = _Po;ez sin ~z (5)

Because these conditions are even in y, and because of the former boundary con-
ditions, the potential is therefore taken as having a cosh dependence on z and the
potential distribution suggested by the conditions of (6.3.5) at y = +b.

n

cosh Ty
E) (6)

cosh .

a . 7
P, =—-P,—sin—z
s G

The required potential is then the sum of the particular and homogeneous solutions,
(6.3.4) and (6.3.6).

h X
o= P,,”Leosin "z[1 = :y] | (1)
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6.8.8 (a) First,

ap, _
pp__V'P__ay =0 (1)
and
a b 27
Osp = —n - [P*—P°| = P,cos [(T)z] (2)
¥
—_

P = P, cos[(2n/A)z]r,

Figure $6.8.3

(b) The & above and below must satisfy Laplace’s equation and the boundary
conditions that at y =0

o° = ° (3)
3 3ot 2
GOE: - EOE: = —EOE z=0 * ‘o ay z=0 - Po o8 [(Tﬁl)z] (4)

To these ends, and to make ® — 0 at y — +oo, make

o= P":_ cos (-211[:0) eT(2mu/4) (5)
6.3.4 In the region —a < y < 0, the divergence of the polarization density is zero

and so the polarization charge density is zero as well. Thus, in both regions (a)
and (b), the potential must satisfy Laplace’s equation. Boundary conditions on the
potential are that it be the given values at y = +a, that it be continuous at y =0
and that it satisfy Gauss’ continuity condition at y = 0. This condition requires
that

ao° 6<I>"]
[ ay ay y=0 °® ( )
where the polarization surface charge density follows from
Osp = —1 - (P® — P?) = —[0 — P,sin f(z — z,)] = P,sin f(z — z,) (2)
Thus, the fields are the same as if there were an unpaired surface charge density
Osu = Posinf(z — z,) in the plane y = 0. With the identification of o, — P,

the physical situation is the same as considered in Prob. 5.6.12 and the solution as
outlined there.
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The given polarization density is uniform, so there is no volume polarization
charge density. The polarization surface charge density at the cavity interface is

Osp=—n-(P*—P% = —i, -i,P, = —P,cosf (1)
Thus, the boundary conditions at r = R are
o* = o° (2)

n - (e,E® — ,Eb) = ¢,E® — €,E% = 0, — P,cosf (3)

On the right in this last expression is the sum of the polarization and unpaired
surface charge densities. Superposition can be used to find the potentials due to
the respective terms on the right and then their sum can be taken. Symmetry and
Gauss’ integral law give the electric field due to the uniform unpaired surface charge
density.

4xe,r2 ES = 4nR%g, = E* = -1—(R/ r)20, (4)
€o

There is no electric field intensity inside, so the potential there is what it is on the
surface. Thus,

Reo
%g. r < R
L E R N 5
{ B r2R )
To find the potential from the second term in (6.3.3), assume that
AE cosf
®= k
{ Af—: cosf ©

where the coefficient has been adjusted to satisfy (6.3.2). Substitution of these
expressions into (6.3.3) then gives

P.R
A=— 3 (n

The sum of (6.3.5) and (6.3.6) with the latter evaluated using (6.3.7) is the given
potential,

In polar coordinates, the uniform y directed polarization density is
P = Pyiy = P,(cos ¢i, — sin ¢iy) (1)

Because the divergence of P is zero in the volume, the only polarization charge is
a surface charge density at r = R. This is

osp = —1 - cos(P* — P';) = —P,cos ¢ (2)
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The equipotential boundary condition in the plane y = 0 is met by assuming
solutions

o = %cos ¢; ® = DBrcos¢ (3)

Boundary conditions at r = R are

od° 3<I>" Osp A
—[31' T Tar ,=n_?:=>(F+B)°°3¢——Pocos¢ (4)
A
7 =BR ()

Simultaneous solution for the coefficients gives

_ P,R? _ 5
A=—- 9 B=- D) (6)
and hence,
«a_ PRR . _ PR~
P = — 2 rcosqﬁ, D = 2 Rcos¢ (7

The fields in regions (a) and (b), respectively above and below the interface,
are taken as uniform. Because the line integral of EE between the electrodes is zero,

aE2 +bEE =0 (1)
At the interface, there is a polarization surface charge density
ow=—(P2-PY) =P, (2)
Thus, Gauss’ continuity condition requires that
co(Bz — E2) = Po (3)

Solution of (6.3.1) and (6.3.3) then gives

(4)
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6.3.8‘ (a) The polarization charge density is
pp=-V -P=-V.Vy=-V (1)

where ¢ = P,r cos(¢ — a) is a solution to Laplace’s equation. Thus, p, = 0.

(b) The surface polarization charge density at r = b is
Opp = —M0- (PI - P”) =ip - VP,rcos(¢ — a) = P,cos(¢ — a) (2)

It is assumed that there is no unpaired surface charge density on this interface,
so the boundary conditions are

®l(r=a)=0 (3)
&' (r=b) = ®'(r =) (4)
€ E! — e,EIT = P,cos(¢ — a) (5)

Solutions to Laplace’s equation that have the same dependence as the right
hand side of (6.3.5) take the form

= {A075) = folcond =) ©

r/b) cos(¢ — a

Here, the solution that is infinite at the origin has been omitted and the two
contributions to the outer potential adjusted to satisfy (6.3.3). Substitution
of (6.3.6) into (6.3.4) and (6.3.5) then gives

RES-g U

2¢,a ‘a

b a
B=aG-3 ="
Thus, (6.3.6) and (6.3.7) are the given potentials.

6.3.9 (a) Note that the scalar function inside the gradient operator is a solution to
Laplace’s equation. Thus,

pp =~V -P=—V2P,(r™/r™ ) cosmg] =0 (1)

and there is no polarization charge density in the volume of the rotor. However,
at the interface there is a surface polarization charge density given by

Opp = —11 - (P? — P?) = Pb(r = b) = P,mcos m¢ (2)
(b) Boundary and continuity conditions are

P*(r=a)=0; ®*(r=10)=%r=10) (2)
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(4)
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[_ (r=15)- aai:b(r = b)] = P,mcos m¢ (3)

Given the ¢ dependence of o,,, solutions to Laplace’s equation are assumed
to take the form

®* = A[(r/a)™ — (a/r)™] cos m¢ (4a)
o = A(r/b)"[(b/a)™ — (a/b)™] cosmé (4b)

where a linear combination of solutions has been selected in the annular region,
(a), that satisfies the zero potential condition at r = a and the coefficients
have been arranged so that the potential is continuous at »r = b. The last of
the boundary conditions then determines A.

P,mcosm¢ = —eoAsz(a/b)"' cosmp => A= —%(b/a)m (5)

Thus, the potential is

bP, m - (a/r)™ r<a
= 3, /) °°””"‘{(/b)"~[(b/a)m) Ly, 155°° @

With the substitution ¢ — ¢ — (¢, at a given instant in time there is only a
shift in the origin of ¢. Because the field laws do not involve a time rate of
change, they are satisfied by the new solution. To stay at a point of constant
¢ — 1t and hence constant P requires being at the angular position ¢ = Qt+
constant. Thus, the new solution is one that represents the fields associated
with a rotor having the angular velocity .

From (6.3.6), the surface charge density on the wall at r = a is

oo o
Tou = €05 (r=a)= —b—Izi(b/a)'"szcos m(¢ — Qt) (7

The net charge on the segment is then

0
g=1 / osuadd = —1bPy(b/a)™ [ sin(~mQt) — sinm( — % - 0t)]
-n/m
= IbP,(b/a)™ [sin(mQt) — sin(x + mQt)] (8)
= 2IbP,(b/a)™ sin(mQt)
and hence the output voltage is

v, = ——R% = —2lbP,R(b/a)™m cos(mQt) (9)
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6.3.10 (a)

(b)

(c)

The potential in regions (a) and (b), respectively 0 < z and z < 0, take the
form of (6.6.26) and (6.6.27) with V = 0 in the latter because both of the
electrodes are grounded over their full length in the z direction and a — d.

ZVe & sm—y (1)

= E Ve € % gin %Ey (2)

n=1

The coefficient in these expressions, V,,, has been adjusted so that the po-
tential is continuous at the interface. Given V (y), these coefficients follow by
evaluating either of these expressions at y =0

f: V, sin Lz—ry =V(y) (3)

multiplying by sin(m#y/d) and integrating from y =0 to y = d.

d
Vi = 2 / V(y)sin mydy (4)
dJo d

Given V(y), this integral can be evaluated and the coefficients needed to
complete (1) and and (2) determined.

In addition to the continuity of potential which is already satisfied by (1) and
(2), the continuity condition at z = 0 is

ao* 3d*

Bs Ty “ow=Fo (5)

_eo

With P, now the given quantity, substitution of (1) and (2) into (5) gives
Z: Vo (2602(;:) sin 1:—:Iy =P, (6)
n=1

The coefficients are evaluated in this case by the same procedure as leading
to (4).

- sin E = ﬂ [1 - (_l)m]
Vm = 2eainn/d)] /o Fosin —rydy = = = (M

Evaluated using this coefficient, (1) and (2) become the given potential.



6.3.11

6-10 Solutions to Chapter 6

In region (b), the potential must satisfy Poisson’s equation with the charge
density found in Prob. 6.1.1.

V2%b = _Fp sin Az (1)

€o

while in region (a) it satisfies Laplace’s equation. At the interface, the potential
must be continuous and satisfy Poisson’s continuity condition for the polarization
surface charge density found in Prob. 6.1.1.

—€o [aaq: (y=4d)- aa;{:(y = d)] = P,cos iz (2)

Finally, the potential must go to zero as y — oo and be zero in the plane y = 0. The
particular solution to (1) is taken as depending only on z. Thus, two integrations
give
P,
b_ Lo .

<I>p = of sin Sz (3)
The z dependence of the potential due to the surface charge density is cos(8z)
while that due to the volume charge denisty is sin(8z). The potential is taken as
the sum of potentials due to these two sources, ¥ = O, + ,. The potential due to
the surface charge satisfies Laplace’s equation in each region and takes the form

3, = { A,e=P(v=9) cos Bz

A, 5%}%8— cos Sz (4)

Here, the coefficients have been adjusted to make the potential continuous at y = d,
while the sinh function satisfies the zero potential boundary condition at y = 0. The
coefficient is determined by requiring that Gauss’ continuity condition be satisfied
with the surface charge density given by (2).

—eoA,[—B — Bcoth(Bd)] cos(Bz) = P,cos(fz) = A,
_ P, (5)
" €.P[1 + coth(Bd))

The part of the potential due to the bulk charge takes the form

_ A,e~Pv=9) 5in(8z)
@, = { f‘b—[l + B, sinh(By) + C, cosh(By)] sin(Lz) (6)

where the solution in the lower region has been taken as the sum of the particular
solution, (3), and two solutions to Laplace’s equation. This-part of the potential

must also be zero at y = 0, so C = —1. In addition both the potential and its
normal derivative must be continuous at y = d.
P,

A, = j[l + B, sinh(Ad) — cosh(Bd)] (7)

0,
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iy ?[B., cosh(Ad) — sinh(8d) (8)
Simultaneous solution of these expressions gives (sinh® z — cosh® z = —1).
_ Po __ [cosh(Bd) — 1]
Av = < BTcosh(8d) + simh(5d)] ©)

_ cosh(Bd) + sinh(Bd) — 1
" cosh(Bd) + sinh(Bd)

Finally, the total solution is the sum of (4) and (6) with the coefficients given by
(5), (9), and (10).

(10)

6.4 POLARIZATION CONSTITUTIVE LAWS

6.4.1 In terms of the number density N, the polarization density is given by
P=Ngd = (e~ ¢)E (1)

It follows that the separation d of single electronic charges needed to account for
the given polarization is

(e—e)E _  (1.5)(8.85 x 10~12)(107)

4= "Ny ~ [6x10%/8)105(1.6 x 10-)

=1.1x 10714 (2)

This is less than 1/1000 of a dimension typical of an atom.

6.5 FIELDS IN THE PRESENCE OF ELECTRICALLY LINEAR
DIELECTRICS

6.5.1  (a) The divergence of €E is zero
d v

and the curl of E, a uniform field, is as well. Given that the field is normal
to the perfectly conducting boundaries, which extend to infinity, it follows
that the solution, which does indeed satisfy the relevant field laws, is uniquely
specified.

(b) On the upper surface of the lower electrode in the regions to right and left,

0, = e..%; €b§ (2)
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It follows that the net charge on the lower electrode is

v
g = acéq—

v
3t bcebz = S(aea + bep)v (3)

and hence the capacitance is as given.

(c) In this case, the surface charge density on the lower electrode is

oy = €(2) ()

and so the net charge on the lower electrode is

q=cf 0udz = —/ &o(1+7)ds —(fﬂ%)u (5)

so that C is as given.

6.5.2 A uniform electric field, E = (v/d)iy is irrotational and satisifies Gauss’ law
with the permittivity varying with z, a direction perpendicular to the proposed
electric field.

/]
V. ¢E= -a—!;[ea(l+acosﬂz)§] =0 (1)

Thus, E is indeed uniform and
D, = €q(1 + acos ﬂz):)—i (2)

This is also the density of unpaired surface charge on the lower electrode, so the
total charge on that electrode is

!
q= c/ el + acosﬂa:)gdz
0 (3a)
= a [:: + ] smﬂz} v=Cv

C= %‘1 [1+ %sin Bi] (3b)

6.5.3 (a) Because the field is independent of z and z,

aD,
VD= (1)

and from this it follows that Dy = D,(t).
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(b) In terms of the given distribution of permittivity,

Dy =e, [1 +xa(1+ %)]Ey (2)

This expression can be solved for E, and hence for the y dependence of E,.
To determine the unknown D,, that expression is integrated from the lower
to the upper electrode and the result equated to the voltage.

i i
D,dy Dyl (14 2x4)
E,d =v=/ y =Y n 3
-[) vy 0 €o[l'i'Xa.(l“' ’,{')] €oXa (1+Xa) ( )

The total charge on the lower electrode, and hence C, follows from this result

g=AD, = [“’Xl"" in ((1112;:))]0 (4)

Because the field is independent of z and z,

8D
V-D="T=9 1
dy (1)

and from this it follows that D, = Dy(t). This means that
Dy = epe_y/dEy(y: t) = Dy(t) (2)

is independent of y and can be solved for E,. The voltage is then

! 1
v= / Eydy = &/ e Yy = Byg(l - e_'/d) (3)
0 €p Jo €p

and this expression can be solved for Dy, which is the surface charge density on the
lower electrode.
Aeg,

(a) For each, the electric field intensity in each region takes the form E =i, A/r
[the potential takes the form & = Ailn(r)]. In the first case, the integral of
this field between the electrodes must be the same whether it is taken in the
dielectric or in the free space region. Thus, in the first case,

0= / “ A 4 = Ain(a/b) = E = i,v/rin(a/b) (1)
p T

Note that this solution satisfies the conditions that the tangential field be
continuous at the dielectric-free space interfaces and that the normal D be
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continuous (there is no normal D). The field is normal to the circular cylinder
electrodes and so these are equipotentials, as required. In the second case, the
coefficient A has a different value in each of the regions. The two coefficients
are found by requiring that

B A ® Az
v= f Ay [ 224 — ain(R/B) + Agin(a/r) 2)
b T R T
and that at the interface
eﬂ = eoﬁ (3)
R R
Thus, in the second case, '
E= irv 1; b<r<R (1)
[in(R/b) + &in(a/R)]r e/e;; R<r<a

(b) The capacitance follows from integrating the surface charge density over the
inner electrode. In the first case,

g =l[abeE,(r = b) + (27 — a)be By (r = b)] = Cy; (5a)

C = l[ae+ (27 — a)¢,]/In(a/b) (58)

while in the second case

g=12xbD,(r=b) = Cv; C = 2xle/[In(R/b) + f—zn(a/n)] (6)

Based on experience in the special case where the wedge is of uniform permit-
tivity (so that the spatial variations in permittivity are bumps at the interfaces)
postulate that the electric field is no different than if the dielectric wedge were not

present.
E = [v/rin(a/b)]ir : (1)

Because the electric field is perpendicular to the gradient in permittivity, there is
no induced polarization charge, (8.5.9), and hence no distortion of this field by the
dielectric. The field of (1) has no divergence (and of course no curl) and hence does
satisfy the bulk conditions throughout the volume. It also has no tangential value
on the boundaries, as required. The given capacitance follows from integrating the
unpaired surface charge over the surface of the inner electrode.

I p2x v
9= /(; /; (ea + € cos® ¢)Wbd¢dz
_ [21rea + T
=’ Tin(a/b)
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6.6 PIECE-WISE UNIFORM ELECTRICALLY LINEAR

DIELECTRICS
6.6.1 Given that the imposed potential takes the form
®(r — 00) = —E,rcosf (1)
assume postentials of the form
=— orcosﬂ+%cosﬂ; r>R (2)
<I>=B1-cos0=(ER+—4—).—”—cosﬂ' r<R (3)
R ° R?’R ’

Here, the coefficients have already been adjusted to make the potential continuous
at r = R. The remaining condition is that

oo P

g Tz =0 ()
from which it follows that E,R® ( )
€ — €p

A=————7 5

: (2€0 + €) (5)

The given potentials follow from substitution of (5) into {2) and (3).

6.6.2 (a) Assume a potential within the cavity that is consistent with the dipole being
at the origin with the addition term satisfying Laplace’s equation while having
the same f dependence as the dipole and being finite at the origin. Outside
the cavity, the potential again has the # dependence of the dipole and goes to
gero at infinity.

4me, r

Ac"’jo, a<r

(1)

Potential continuity and continuity of normal D at r = a requires that the
coefficients A and B satisfy

&= {—L°°'9 cos? + Breosl; r<a

1 —L2
Eal-E) .
a® 41ra
Thus,
- 3p . B= —2p ( ) (3)
4m(eo + 2¢)’ 4xa® (eo + 2¢)
so that the required potential is
2 \&-1)
pPeost |- 1p2) T8 (4)

4re, 3
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The electric field follows as

6i 1 (&1 in 0
E— r— a, i cosfi, + P 1ras sinfips, r<a (5)

41!'60 cosalr+ + umoio’ a<r

(b) In the limit € — oo, the tangential electric field at r = a becomes

lim — — —f =~ > =0 (6)

6f1 r '
lim @ =R ( - _ T
€—+00 e dmwe, \r2 a3 (7)
(c) I the cavity is regarded as an equipotential at the outset, it follows from (1a)
that
p 1 _ __ b
4re, a? + Ba=0=B= 4me, a3 (8)

in agreement with what was obtained by taking the limit, (7).

8.6.3 From (5.8.4), the potential around a perfectly conducting rod of radius R in
a uniform electric field is
r R
=—E,R(— - =
¢ E.R( R ) cos ¢ (1)
The potential for a two-dimensional electric dipole is given by (a) of Prob. 4.4.1.
_ Nd cos¢
T 2me, r (2)
Comparison of these expressions shows that the induced two-dimensional dipole
moment is
\d = (27e,R%)E, (3)
The density of the rods is (1/s%) per unit area and therefore the polarization density
is
27e, R?
(A;d/sz) = : Es = €XcEa (4)
6.6.4 The dielectric spheres have induced dipole moments that follow from (a) of
Prob. 6.6.1. ( )
e —
4 R3 A& — €0} 1
p = dme,E, (€5 + 2¢,) (1)

Using the arguments of (6.6.6)-(6.6.9), it follows that the equivalent permittivity is

e=1+ 4«(1:/3)3%’3—) (2)
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Writing the potential in the upper region as that of the point charge ¢ at
y = h and its yet to be determined image at y = —h, both on the y axis, we have

(Sec. 4.4)
o L i O<y (1)
T 4me, &§ y<o0
where

re =Vz2+ (y—h)2+2% r_ =122+ (y+ h)?+ 23

In their respective regions, these have been chosen to satisfy Poisson’s equation (in
the upper region) and Laplace’s equation. At the interface, where y = 0 in (1), the
potential must be continuous for all z and 2

9— % =4a (2)

and the normal electric flux density must be continuous (there is no unpaired surface
charge density)

€a(q+ q) —€vga =0 (3)

Simultaneous solution of these expressions gives the relations for g, and gq; sum-
marized by (b) in the problem. To determine the force on the charge caused by
the surface polarization charge it induces at the interface of the dielectric, compute
the electric field at y = h,z = 0,z = 0 using (1) and ignoring the self field (it can
produce no net force on itself) and multiply by q.

f=iy9E,(z=0,y=h,z=0) (4)
Thus, the force is one of attraction, as given.

In the upper half space, the particular solution is that of a line charge. Because
it has the same z dependence of its potential in the y = O plane, a homogeneous
solution is added to this which is the potential of an image line charge at (z,y) =

(0, —h).
& = - /T = W - 5 /FF B W

2meq

In the lower half space, the potential is taken as that due to a line charge located

at (z,y) = (0, ). A
o = —ﬁzm/ﬁ +(y—h)? (2)

The coefficients, A; and A; are now adjusted to satisfy the continuity conditions on
the potential and the normal dielectric flux density in the y = O plane.

eiln 22+h2+%31n\/:1:2+h2= ?\/:c"’+h2 (3)
a a b

,\_hi_ A _h.z____ ,\_hz
AErm e ETe s M mee “
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Because each of the terms in one or the other of these expressions has (by design)
the same z dependence, the boundary conditions can be satisfied by adjusting the
coefficients. Simultaneous solution gives
Aa = Mea — €b)/(€a + ) (8)
Ap = 2€b)\/(€a + Gb) (5)
In the limit where €, — oo the field in the upper region, (5), becomes that of a line
charge over a ground plane, where the image line charge is equal in magnitude and
opposite in sign to that of the line charge and the field lines are perpendicular to
the surface. In the opposite extreme where the upper region has a very large ¢, the
field lines in the upper region tend to have no normal component. One way to see
this is to observe that in the limit ¢, — co the image line charge becomes equal to
the line charge.

(a) The uniform electric field that would exist if the permittivities were equal is
written in polar coordinates as

® = —E,rcos¢ = E = E,(cos ¢i, —sin ¢iy) (1)
(b) The surface polarization charge density induced by this imposed field is
Opp = —P3+ P = —(¢; — &) B,
= eb(l - E'—"—)E‘, = kepE,cos ¢ (2)
€b

(c) The potential induced by this surface charge density is of the form
cosd,
- { AWRQ’ r>R (3)
A(r/R)cos¢; r<R
where the outer solution leaves the field as that imposed at infinity and the

coefficients have been adjusted to insure continuity of the potential at the
surface. The continuity condition from Gauss’ law then gives

adpe Lk
—( a? - Gb—;) = KGbEOCOS¢ (4)
hence ER
A= ”—2-— (5)

Substitution of this coeflicient into (3) confirms the given potential.

(d) The exact solution given by (6.6.21) and (6.6.22) is first written in terms of

K.
R
<I>“=—REocos¢[%—?zfn] (6)
o = —REocos¢[%%}£—)] (7)
To linear terms in «, note that
K & 2(1-k) K
2-x 2 2-x 172 (8)

Using these expressions in (6) and (7) gives the same approximate expressions
for the potential as given with the problem.
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6.6.8  (a) If the dielectric is uniform, then so is the electric field.
v_ .
En i,-&- =4, E, (1)

(b) From (6.6.25), if (1) approximates the electric field then the approximate
polarization surface charge density is

€
Oap = €0 Eo(1— é) = ¢.nE, (2)

(c) For € < €4, 0,p < 0. Thus, the distribution of surface charge density and
hence electric field is as shown in Fig. $6.6.8.

LT 1T 11 1) ‘\\ V]
PETeky VY L
(a) (b)

Figure S6.6.8

H——]|

4

(d) For the second case, the polarization surface charge density is as sketched in
Fig. 56.6.8b.

6.6.9 (a) The potential is represented as a piece-wise continuous function. In regions
(a) and (b) where the permittivity is uniform, it is expanded in solutions to
Laplace’s equation that have zero potential on the boundaries. To satisfy the
potential boundary condition to the left, V is added to the potential in region

(b).

f:_An_—_sinh[%(z a)] n( y) 0<z<a

P = sinh(nra/d) (1)
o~ ., sinh [2F(z + a)] nr .
Z B sinh(nra/d) m( d ¥)+V; —a<z<0
n=1

Continuity of D, at the interface requires that
eaAn(nd )coth (mra) = —B,.eb( )c th (mra (2)

which gives

__%
B, = - A, (3)
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(b)
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To make the potential continuous at z = 0, the constant V is expanded in
the same Fourier series as representing the y dependence in the other terms
in (1).

V= i: Cpsin (Tdﬁ) (4)

Multiplication by sin(mny/d) and integration on y from 0 to d then gives an
expression that can be solved for the coefficients.

W
— ) 3y nodd
Cn { 0; neven (5)

The potential continuity condition is then satisfied by each term in the series.
4V

A,=B,+—; nodd (6)
nw

It follows from (3) and (6) that the coefficients in (1) are A, = B, =0 for n
even and for n odd.

v 1 w1 0
nrl+efe’ 0 nrlte/e

n =

In sketching ® and E, as shown in Fig. $6.6.9a for the case where the permit-
tivities are equal, note that the potential varies from V to 0 across the gaps.
Every other point on the boundaries is either at potential V or potential 0.
Thus, equipotentials all terminate and originate in the gaps. The equipoten-
tial ® =V /2 is in the z = 0 plane. Thus, the potential and field lines in each
region are as shown in Fig. 5.5.3.

The surface charge density is given by using (6.6.25) with E approximated by
what it would be if the permittivities were equal.

€
Oop = €0 Ex(1 — e—z (8)

In the case where ¢,/€e, > 1, 0,p < 0, as illustrated by Fig. S6.6.9b. Some
of the field lines originating to the left terminate in the negative o,, on the
interface. Thus, the dielectric to the right tends to shield out the field. With
€af/€s < 1, the surface charge density is positive, and the field tends to be
shielded out of the material to the left.

With ¢; 3> ¢, the surface becomes an equipotential and the field is concen-
trated in the region to the left, as shown in Fig. $6.6.9c¢.
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Figure S6.6.9

(e) With e > €q, the field is shielded out of the region to the left. The field looks
much as in Fig. 56.6.9c except that the fields are on the right rather than the
left. The equipotential ® = V /2 is in the z = 0 plane. Thus, the potential and
field lines in each region are as shown in Fig. 5.5.8.

6.7 SMOOTHLY INHOMOGENEOUS ELECTRICALLY
LINEAR DIELECTRICS

6.7.1 Far from the lower end, the system becomes a pair of parallel plates having
the potential difference V' separated by a dielectric having its permittivity gradient
in the y direction. Thus, as y — oo, the potential becomes simply

By — 00) =V = (1)

The product solutions throughout the region between the plates are as developed
in Example 6.7.1. From those, we add to (1) those that are sero at z = 0 and
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z = a (so as not to disturb the fact that (1) already satisfies the conditions on the
potential there) and that go to zero as y — oo [again, so that the potential there
becomes (1)].

®= ZV el 7=V (#/2) +(nn/a)?ly iy —z+V— (2)

To determine the coefficients, V,,, (2) is evaluated at y = 0 and set equal to the
potential there.

(o]
nmw z
V= Vpsin—z +V-— 3
nE=1 nsin —z + V- (3)

Multiplication by sin(mrz/a) and integration from z = 0 to z = a then gives the
coefficients and hence the potential.

V.= 2 /:V(l - -Z—) sin -r-lal:z:dz = (2/n7)V (4)

a

The solutions to (6.7.2) for the given distributions of permittivity are as found
in Example 6.7.1 with the roles of £ and y interchanged. In the region to the left,
B — —f. Because the system extends to infinity in the +z directions, exponential
solutions are selected in each of the regions that decay to zero at infinity.

Z A, el §-V(8/2)*+(nn/a)?]z iy —y 0<z

o= (1)
Y (a— [-£+v/(8/2)* +(nn/a)?)z o DT
a(a y)+"z=:ane sin —y; z<0

Continuity of D, gives one condition on the coeflicients.
[epe”*ELlzmo0 = [epe™P* Ef]s=0 = Bn = —Aa (2)

To match the potential in the z = 0O plane, the first term in the solution to the left,
in (1b), is expanded in the same series as the other terms.

a—y) ZC sin -—y (3)

The coefficient is found by multiplying this expression by sin(m#y/a) and integrat-
ing from y = 0 to y = a.
2V
Cn=— (4)

n
It follows from (2) and (4) that

A, =-B, = — (5)
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6.7.3 (a) The polarization charge density is approximately

de

pp=—V:[(e— €)E] = =V - (e — €,) Eoly] = —E'oa—y- "

2
= oeaxp-a—g exp[—(z? + ¥ + 2?)/a?)

(b) For E,xp > 0, the field induces positive and negative regions of charge density
in the upper and lower regions respectively. These are centered on the y axis
where the function yexp(—y?/a2) peaks, at y = a/v/2. Thus, some of the
field lines entering from below in Fig. S6.7.3 terminate on the negative charge
while some leaving at the top originate on the positive charge. The field is
that of a diffuse dipole.

by

+
+++
+

|
1
t

Figure S6.7.3






SOLUTIONS TO CHAPTER 7

7.1 CONDUCTION CONSTITUTIVE LAWS

7.1.1

If there are as many conduction electrons as there are atoms, then their num-
ber density is

26 3
_ HA:P _ (6.023x 123;8.9 x10°) _ 8.4 1028ele(::3°ns (1)
The mobility is then

o 5.8 x 107
B==N_q_ = (8:4x 10%)(1.6 x 10-19)

The electric field required to produce a current density of 14/cm? is

N_

=4.3x107° (2)

E="=_—"——=17x10"%/m (3)

Thus, in copper, the velocity of the electrons giving rise to this current density is
only
v =pu_E = (43x107%)(1.7x 107%) = 7.4 x 10" "m/s (4)

7.2 STEADY OHMIC CONDUCTION

7.2.1

Boundary conditions on the conducting region are that ® = 0,& = v on
the perfectly conducting surfaces at r = a and r = b respectively and that there
is no normal current density on the insulating surfaces where z = 0,z = d. The
latter are satisfied by a potential that is independent of the axial coordinate, so
an appropriate solution to Laplace’s equation, arranged to be zero on the outer
electrode, is

® = Aln(r/a) (1)
The coefficient is adjusted to make the potential v on the inner electrode so that
A =v/in(b/a) and (1) becomes

, ® = vin(r/a)/in(b/a) (2)
The current density is
vo 1
J,- = O'E,- = —W; (3)
and so the total current is
. 27bdo 1 27od v
§=2mbdJr = —ln(b/a) b In(a/b) ) (4)

Thus, R is as given,
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7.2.3

7.24

7-2 Solutions to Chapter 7

The net current passing through the wire connected to the inner spherical
electrode, ¢, must be equal to the net current at any radius r.

i= / J-da = 4xr?0E, = E, = (1)
s

4mor?
Thus, « i
t dr t 1 1
o= [ Bar= s [ F =l 2

By definition v=1iR so R = (} — 1)/4ro.

(a) Associated with the uniform field is the potential
v
=—-(y-4d (1)

If the surrounding region is insulating relative to that between the elec-
trodes, the normal component of the current density on the conductor surfaces
bounded by the insulating surroundings is zero. The potential is constrained
on the remainder of the surface enclosing the conductors, so the solution is
uniquely specified. Provided the laws are satisfied everywhere inside the con-
ducting region, the solution is exact. The given solution does indeed satisfy
the boundary conditions on the surfaces of the conducting region. In the case
of (a), the potential and normal component of current density must be contin-
uous across the interior interface. Further, in the uniformly conducting regions
of (a), Laplace’s equation must be satisfied, as it is by a uniform field. In the
case of (b), (7.2.4) is satisfied by the given potential.

(b) The total current is related to v by integrating the current density over the
surface of the lower conductor.

c(aga +bov) | _

. v v
1= J%c + J%c = oaac + obbcz = 7 Gv (2)
(c) A similar calculation gives the resistance in the second case.
! l
. ov _¢ z _ 206lc
t—c/o dzdz—daav/(; (1+l)dz— 2d v=Gv (3)

The potential in each of the uniformly conducting regions takes the form
*=-Ap+C; ®®=-Bp+F (1)
where the four coefficients are adjusted to make the potentials zero and v on the

respective electrodes, and make both the potential and the normal current density
continuous at the interface between the conductors. On the surfaces at r = @ and
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r = b, the current density must be zero, as it is for the potential of (1) because the

electric field 150 (4/r)
__1o® _[(A/r)is
B=-1% { (B/r)e (@)
has no radial component. Rather than proceeding to determine the four coefficients

in (1), we work directly with the electric field. The integration of E from one
electrode to the other must be equal to the applied voltage.

T A « B
—r—+-2-r-;- v (3)

Further, the current density must be continuous at the interface.

A _ o,B
Oa r = r (4)
It follows from these relations that
A=2v/x(1+0q/0b) (5)

The current through any cross-section of the material [say region (a)] must be equal
to that through the wire. Thus,

i=d/:a.,E¢dr= [ = id::/ab),/. dr]v_ Gv (6)

and the resistance is

2do,
G=ﬂ_(1+00)l (/b) (7)
7.2.5 (a) From (7.2.23) 4
G= Ado/‘/(; (1 + %)dy = mé_:—:z— (1)

(b) We need the electric field, which follows from (7.2.19) by using the result of
(1) to evaluate J, = /A = Gu/4’

= —(1+ D)o )

Thus, the unpaired charge density is evaluated using (7.2.8).

pu=_e(1+§)a(1+§)i[( . ]_ G

Oo Ao, dy 1+¥) " Acea
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7.2.7

7.2.8

7-4 . Solutions to Chapter 7

(a) The inhomogeneity in permittivity has no effect on the resistance. It is there-
fore given by (7.2.25).

(b) With the steady conduction laws stipulating that the electric field is uniform,
the unpaired charge density follows from Gauss’ law.

1
pu=v-eE=v-(e§i,,)=gae fa¥

d3y = da (13+1) t))

At a radius r, the area of the conductor (and with r = @ and r = b, of the
outer and inner electrodes, respectively) is

A = 27721 — cos(a/2)] (1)

Consistent with the insulating surfaces of the conductor is the requirement that
the current density and associated electric field be radial. Current conservation
(fundamentally, the requirement that the current density be solenoidal) then gives
as a solution to the field laws

oE, [21rr2(1 — cos g)] =1 (2)
and it follows that
e ®
T 270,(1 — cos 2) rd
The voltage follows as
a
v= / E.dr = i(a® — %) /610, (1 — cos %)bsa (4)
b

and this relation takes the form 1 = vG, where G is as given.

There can be no current density normal to the interfaces of the conducting
material having normals in the azimuthal direction. These boundary conditions are
satisfied by an axially symmetric solution in which the current density is purely
radial. In that case, both E and J are independent of ¢. Then, the total current is
related to the current density and (through Ohm’s law) electric field intensity at
any radius r by

t = 2radrJ, = 2rado,aE, (1)
Thus, .
t
E,=—-8o—
"7 2rado,a )
and because ( b)
t(a—
/ Eedr = 21rado’oa =v ()

G = 2nadaes,/{a — b) (4)
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7.3 DISTRIBUTED CURRENT SOURCES AND ASSOCIATED

7.3.1

7.8.2

FIELDS

In the conductor, the potential distribution is a particular part comprised of
the potential due to the point current soruce, (6) with i, — I and

r=1v22+(y— k)2 + 22

In order to satisfy the condition that there be no normal component of E at the
interface, a homogeneous solution is added that amounts to a second source of the
same sign in the lower half space. Of course, such a current source could not really
exist in the lower region so if the field in the upper region is to be given some
equivalent physical situation, it should be pictured as equivalent to a pair of like-
signed point current sources in a uniform conductor. In any case, this second source
is located at r = 1/22 + (y + h)2 + 22 and hence the potential in the conductor is as
given. In the lower region, the potential must satisfy Laplace’s equation everywhere
(there are no charges in the lower region). The field in this region is uniquely
specified by requiring that the potential be consistent with (a) evaluated at the
interface
2]
(1)

dxo/z2 + h2 + 22

and that it go to zero at infinity in the lower half-space. The potential that matches
these conditions is that of a point charge of magnitude ¢ = 2I¢/o located on the y
axis at y = h, the given potential.

&(z,y=0,2) =

(a) First, what is the potential associated with a uniform line current in a uniform
conductor? In the steady state

}[ J.da=0 (1)
s
and for a surface S that has radius r from the line current,

K,

2xor

Ky =2nrJ, = 2nroE, = E, = (2)

Within a constant, the associated potential is therefore
®=—-—In(r) (3)

To satisfy the requirement that there be no normal current density in the
plane y = 0, the potential is that of the line current located at y = h and an
image line current of the same polarity located at y = —h.

@ = — K [E TR + /P 5 (u— W) (@)
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Note that the normal derivative of this expression in the plane y = 0 is indeed
zero.

(b) In the lower region, the potential must satisfy Laplace’s equation everywhere
and match the potential of the conductor in the plane y = 0.

By =0)=-Bin/zm s 12 (5)
L2

This has the potential distribution of an image line current located at y = h.
With the magnitude of this line current adjusted so that the potential of (5)
is matched at 2 =0,

L —%ln\/zz +(y—h)? (6)

the potential is matched at every other value of z as well.

7.3.3 )First, the potential due to a single line current is found from the integral form
of (2).
2rorE, = K= E, = Ki (1)
v T 2xor
Thus, for a single line current,
__K
o= - Inr (2)
For the pair of line currents, spaced by the distance d,
__K _ _ __K dcos ¢ Kidcos ¢
o= v [In(r — dcos ¢} — Inr] = o In [1 -— ] ~ (3)
7.4 SUPERPOSITION AND UNIQUENESS OF STEADY
CONDUCTION SOLUTIONS
7.4.1  (a) At r =", there is no normal current density so that
Lr=t=0= (=) =0 (1)

while at r = a,

Jp = —Joco80 = —c-a—-(r a) (2)
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(b)

(a)

Because the dependence of the potential must be the same as the radial deriva-
tive in (2), assume the solution takes the form

cos @

®d = Arcosf + B 3
’

(3)
Substitution into (1) and (2) then gives the pair of equations
1 -26-21[4]_TJo
o 5] 3= 1) 8
from which it follows that
A= Jofo[1~ (b/a)’]; B =Job*/20(1— (b/a)’] (5)

Substitution into (3) results in the given potential in the conducting region.

The potential inside the hollow sphere is now specified, because we know that
the potential on its wall is

®(r = b) = 3J,b/20(1 — (d/a)| (6)

Here, the origin is included, so the only potential having the required depen-
dence is
® = Crcosf (7)

Determination of C by evaluating (7) at r = b and setting it equal to (6) gives
C and hence the given interior potential. What we have carried out is an
“inside-outside” calculation of the field distribution where the “inside” region
is outside and the “outside” region is inside.

This is an example of an inside-outside problem, where the potential is first
determined in the conducting material. Because the current density normal
to the outer surface is gero, this potential can be determined without regard
for the geometry of what may be located outside. Then, given the potential
on the surface, the outside potential is determined. Given the ¢ dependence
of the normal current density at r = b, the potential in the conducting region
is taken as having the form

= (Ar+ rg;) cosf (1)

Boundary conditions are that

oot
J,- = —U? =0 (2)

at r = a, which requires that B = a®4/2 and that

ot
oo = Jocosf (3)
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at r = b. This condition together with the result of (2) gives A = J,/o[(a/b)®—
1}. Thus, the potential in the conductor is

@* = T2 1L 4 da/r)?) costl(a/8)* ~ 1] (@)

(b) The potential in the outside region must match that given by (4) at r = a.
To match the 6 dependence, a dipole potential is assumed and the coefficient
adjusted to match (4) evaluated at r = a.

a 3J,a
¢ = W{;m(ﬂ/")2 cosf (5)

(a) This is an inside-outside problem, where the region occupied by the conductor
is determined without regard for what is above the interface except that at the
interface the material above is insulating. The potential in the conductor must
match the given potential in the plane y = —a and must have no derivative
with respect to y at y = 0. The latter condition is satisfied by using the cosh
function for the y dependence and, in view of the z dependence of the potential
at y = —a, taking the z dependence as also being cos(fz). The coefficient is
adjusted so that the potential is then the given value at y = 0.

_ Vcosh By

ob cosh fa cos Bz (1)

(b) in the upper region, the potential must be that given by (1) in the plane y =0
and must decay to zero as y — oo. Thus,

cos Bz
=V —Py
cosh ﬂae

(2)

The potential is zero at ¢ = 0 and ¢ = n/2, so it is expanded in solutions to
Laplace’s equation that have multiple zeros in the ¢ direction. Because of the first
of these conditions, these are solutions of the form

® « rE"sinnd (1)

To make the potential zero at ¢ = /2,

n12r-=1r,21r,...:“»n=2,4,...2m; m=1,203,... (2)

Thus, the potential is assumed to take the form

o= Z (Amrz"' + er_z'”) sin 2m¢ (3)

m=1



7.4.5

Solutions to Chapter 7

At the outer boundary there is no normal current density, so

57(' =a)=0
and it follows from (3) that
2mAma®™ ! —2mBpa ™! = 0= B,, = Ana'™
At r = b, the potential takes the form
[~ -]
D= Z Vmsin2m¢ = v
m=1

The coefficients are evaluated as in (5.5.3) through (5.5.9).
/2
V,.E/ vein2nfdd = =; nodd
4 Jo n

= Vi = S = A" 4 Bab™ ™ = A (B + 047"

Thus,
Ap = 4v/mxb®™([1 — (a/b)*™)

Substitution of (8) and (5) into (3) results in the given potential.

7-9

(4)

(5)

(6)

(7)

(8

(a) To make the ¢ derivative of the potential zero at 4 = 0 and ¢ = a, the ¢
dependence is made cos(nw$/a). Thus, solutions to Laplace’s equation in the

conductor take the form

P = i [A..(r/b)(""'/“) + B,.(b/r)(""/“)] cos (_f_la1f_¢)

where n =0, 1,2,... To make the radial derivative zero at r = b,
B, = A,

so that each term in the series

@ = i An[(r /b)) 4 (b/r) (/)] cos ( %é)

(1)

(2)

(3)

satisfies the boundary conditions on the first three of the four boundaries.
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(b) The coefficients are now determined by requiring that the potential be that
given on the boundary r = a. Evaluation of (3) at r = a, multiplication by
cos(mn¢/a) and integration gives

[+

- / * f: An[(a/8)"*1%) 4 (b/a)(n/o)]

n=0 (4)
cos (n—:’i) cos (mTw)drﬁ

a/2 a
__;/(; cos(mw¢)d¢+ g‘/;/zcos (—”;—wcﬁ)dzﬁ

20 , ;mm
= _;—ﬂ'- s1n (—2—)

and it follows that (3) is the required potential with

- 2v : nx nr/a nr/a
An = =22 gin (") /[(a/5)""/* + (8/a)"/] (5)
7.4.6 To make the potential zero at ¢ = 0 and ¢ = x/2, the ¢ dependence is made

sin(2n¢). Then, the r dependence is divided into two parts, one arranged to be zero
at r = a and the other to be zero at r = b.

@ =) {Aal(r/a)™ ~ (a/r)*"] + Bal(r/b)*" — (b/r)*"}sin(2nd) (1)

Thus, when this expression is evaluated on the outer and inner surfaces, the bound-
ary conditions respectively involve only B,, and A,,.

®(r =a) =vy = Y _ Bn(a/b)*" — (b/a)?"]sin 2n¢ (2)
n=1
O(r=>b)=v, =Y An[(b/a)*" — (a/b)*"] sin2n¢ (3)

To determine the B,’s, (2) is multiplied by sin(2m¢) and integrated

/2 n/2 o
/ v, sin 2méd¢d = f Z By [(a/b)?™ — (b/a)?"]sin 2ngsin 2medd  (4)
0 0 n=1

and it follows that for n even B, = 0 while for n odd

Bo = 4va/nw](a/6)™ — (b/a)?" (5)
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A similar usage of (3) gives
An = vy /nr(b/a)’" — (a/5)*"] (6)

By definition, the mutual conductance is the total current to the outer electrode
when its voltage is zero divided by the applied voltage.

' talve=0 do [™? 30 _doa

G = =—— — ad / EA —sm2n¢d¢ (7

vp v Jo Jr 'r=a

and it follows that the mutual conductance is

16d0'
I L RTCET: )

n=l nml
odd odd

7.5 STEADY CURRENTS IN PIECE-WISE UNIFORM
CONDUCTORS

7.5.1 To make the current density the given uniform value at infinity,
Jo
®—+ ——rcosf; r—oo (1)
Oa

At the surface of the sphere, where r = R

a%° a%°
a — b = —
JE=J) =0, 5 = %5, (2)
and
o* = @b (3)

In view of the 6 dependence of (1), select solutions of the form

<I>“=—%rc 0+A°°” @" = Brcosf (4)
a
Substitution into (2) and (3) then gives
JoR® (0q — ov) Jo 80a
A=-— = e Be=—e___ - 5
oa (204+0b)’ 0a (204 +01) (5)

and hence the given solution.
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These are examples of inside-outside approximations where the field in region

(a) is determined first and is therefore the “inside” region.

(a)

(b)

(c)

(d)

If op 3 04, then
®%(r = R) s constant =0 (1)

The field must be —(J,/0,)i; far from the sphere and satisfy (1) at r = R.
Thus, the field is the sum of the potential for the uniform field and a dipole
field with the coefficient set to satisfy (1).

o [ — (/] cost @

P s —

At r = R, the normal current density is continuous and approximated by
using (2). Thus, the radial current density at r = R inside the sphere is

a
Je(r=R)=J2(r=R) = —oag

3 L-=R = 2J,cosd (3)

A solution to Laplace’s equation having this dependence on # is the potential
of a uniform field, ® = Br cos(f). The coefficient B follows from (3) so that

_3LR
44

o

(r/R)cosé (4)

In the limit where o}, > 04, (2) and (4) agree with (a) of Prob. 7.5.1.

In the opposite extreme, where o, 3 o3,
JHr=R)=0 (5)

Again, the potential is the sum of that due to the uniform field that prevails
at infinity and a dipole solution. However, this time the coefficient is adjusted
80 that the radial derivative is zero at r = R.

R

3%~ — a‘f £ + 3 (R/r)?] cost (6)

To determine the field inside the sphere, potential continuity is used. From
(6), the potential at r = R is & = —(3RJ,/20,)cosf and it follows that
inside the sphere

b 3RS
& =~ 2 oo (r/R)cosd (7)

In the limit where o, 3> o3, (a) of Prob. 7.5.1 agrees with (6) and (7).
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(a)

(b)

(c)

(d)

The given potential implies a uniform field, which is certainly irrotational and
solenoidal. Further, it satisfies the potential conditions at z = 0 and 2 = I
and implies that the current density normal to the top and bottom interfaces
is gero. The given “inside” potential is therefore the correct solution.

In the “outside” region above, boundary conditions are that
O(z=0,2) = —vz/l; ®(z,0) =0;
z
®(a,2)=0; &(—l,z)=v(1- ;) (1)

The potential must have the given linear dependence on the bottom horizontal
interface and on the left vertical boundary. These conditions can be met by
a solution to Laplace’s equation of the form zz. By translating the origin of
the z axis to be at z = a, the solution satisfying the boundary conditions on
the top and right boundaries is of the form

<I>=A(a—z)z=—%(a—z)z (2)

where in view of (1a) and (lc), setting the coefficient A = —v/l makes the
potential satisfy conditions at the remaining two boundaries.

In the air and in the uniformly conducting slab, the bulk charge density, p,,
must be zero. At its horizontal upper interface,

Ou = €E% — B = —c,vz/la (3)

Note that z < 0 so if v > 0, o, > O as expected intuitively. The surface
charge density on the lower surface of the conductor cannot be specified until
the nature of the region below the plane z = —b is specified.

The boundary conditions on the lower “inside” region are homogeneous and
do not depend on the “outside” region. Therefore the solution is the same as
in (a). The potential in the upper “outside” region is one associated with a
uniform electric field that is perpendicular to the upper electrode. To satisfy
the condition that the tangential electric field be the same just above the
interface as below, and hence the same at any location on the interface, this
field must be uniform. If it is to be uniform throughout the air-space, it
must be the same above the interface as in the region where the bounding
conductors are parallel plates. Thus,

v,

s (4)

The associated potential that is zero at z = 0 and indeed on the surface of
the electrode where z = —za/l is

E=g’ix+
a

v v
= ;I + 72 (5)
Finally, instead of (3), the surface charge density is now

Ou =€ov/a
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7.5.4 (2) Because they are surrounded by either surfaces on which the potential is con-
strained or by insulating regions, the fields within the conductors are deter-
mined without regard for either the fields within the square or outside, where
not enough information has been given to determine the fields. The condi-
tion that there be no normal current density, and hence no normal electric
field intensity on the surfaces of the conductors that interface the insulating
regions, is automatically met by having uniform fields in the conductors. Be-
cause these fields are normal to the electrodes that terminate these regions,
the boundary conditions on these surfaces are met as well. Thus, regardless
of what d is relative to a, in the upper conductor,

E=-i,2; ®=—z J=-oli, (1)
a a a
while in the conductor to the right
., v v v,
E=—i,2 o=ly I=—ol (@)

(b) In the planes y = a and z = a the potential inside must be the same as given
by (1) and (2) in these planes, linear functions of z and of y, respectively. It
must also be zero in the planes z = 0 and y = 0. A simple solution meeting
these conditions is

v
P=Azy= ;;zy (3)

Figure S7.5.4

(c) The distribution of potential and electric field intensity is as shown in Fig.
857.5.4.

7.5.5 (a) Because the potential difference between the plates, either to the left or to

the right, is zero, the electric field there must be zero and the potential that
of the respective electrodes.

$* +0asz—o00; B vvasz— —oo (1)

(b) Solutions that satisfy the boundary conditions on all but the interface at z = 0
are

=Y dne ¥ sin "'y (2)

n=1
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©0
. nr
®=v+ Z Bpe™™/% gin ﬁa—y (28)

n=1

(c) At the interface, boundary conditions are

ods od®
—Oa g, = T (3)
o° = @b (4)

(d) The first of these requires of (2) that
Oar Ay = —0ynB, = B, =224, (5)
a a ob
Written using this, the second requires that
> nr =~ nr
ZA,.sin —y=v- Z a—:A" sin —y _ (6)
n=1 n=1

The constant term can also be written as a Fourier series using an evaluation
of the coefficients that is essentially the same as in (5.5.3)-(5.5.9).

N 4y nmw
v= —sin —y (7
™m a
n=1
Thus,
Ca 4v
14 —)=—
An(1+ %) = — (8
and it follows that the required potential is
— 4v nw
a _. ot L
® ; nx(l+ a,,/a,,)c |mgy
[~ -] AKX
o dve’e T nm
Pt =9y— <z _gin— 9
"z___:l oy nx(l+a,/08) sy )
|
] I
oy > 0, Oa = vy

Figure S7.5.5
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(¢) In the case where o3 > 0,, the “inside” region is to the left where bound-
ary conditions are on the potential at the upper and lower surfaces and on
its normal derivative at the interface. In this limit, the potential is uniform
throughout the region and the interface is an equipotential having ® = v.
Thus, the potential in the region to the right is as shown in Fig. 5.5.3 with
the surface at y = b playing the role of the interface and the surface at y =0
at infinity. In the case where the region between electrodes is filled by a uni-
form conductor, the potential and field distribution are as sketched in Fig.
$7.5.5. In the vicinity of the regions where the electrodes abut, the potential
becomes that illustrated in Fig. 5.7.2. By symmetry, the plane z = 0 is one
having the potential & = v/2.

(f) The surface at y = a/2 is a plane of symmetry in the previous configuration

and hence one where E, = 0. Thus, the previous solution applies directly to
finding the solution in the conducting layer.

7.6 CONDUCTION ANALOGS

7.6.1 The analogous laws are
E=-Vd = Vo (1)

V.cE=s V-eE=p, (2)

The systems are normalized to different length scales. The conductivity and per-
mittivity are respectively normalized to o, and ¢, respectively and similarly, the
potentials are normalized to the respective voltages V, and V..

(z9,2) =(z,y,2)l.  (2,9,2) = (z,y,2)l (3)
®=V.2 ®=V.2 (4)
E=(V,/l)2 E=(V./l)2 (5)
s = (0aVe/B)s (6)
pu = (eVe/B)p, (M
By definition, the normalized quantities are the same in the two systems
g(r) = ¢(r) (8)
s(r)=p,(r) (9)

go that both systems are represented by the same normalized laws.

E=-Vo (10)
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VogE=3 (11)

Thus, the capacitance and conductance are respectively

C’=eel€f;i-dg//0!§'d§ (12)

G=acchsgn-dg/LE-da (13)

where, again by definition, the normalized integral ratios in (12) and (13) are the
same number. Thus,
C/G_Esfs_.‘_ﬂ‘-. (14)
T ol ol
Note that the deductions summarized by (7.6.3) could be made following the same
normalization approach.

7.7 CHARGE RELAXATION IN UNIFORM CONDUCTORS

7.7.1

7.7.2

(a) The charge is given when t =0
T T
= p; sin —z sin — 1
p = pisin—zsin 3y (1)

Given the charge density, none of the bulk or surface conditions needed to
determine the field involve time rates of change. Thus, the initial potential
distribution is determined from the initial conditions alone.

(b) The properties of the region are uniform, so (3) and hence (4) apply directly.
Given the charge is (c) of Prob. 4.1.4 when t = 0, the subsequent distribution
of charge is

€
= (2)
(c) Asin (a), at each instant the charge density is known and all other conditions

are independent of time rates of change. Thus, the potential and field distri-

butions simply go along with the changing charge density. They follow from
(a) and (b) of Prob. 4.1.4 with p,(t) given by (2).

(d) Again, with p,(t) given by (2), the current is given by (6) of Prob. 4.1.4.

. T . T -
p = polt)sin ~zsin y; po=pie™t/"; r=
a b o

(a) The line charge is pictured as existing in the same uniformly conducting ma-
terial as occupies the surrounding region. Thus, (7.7.3) provides the solution.

M=X(t=0) et r=¢/o (1)

(b) There is no initial charge density in the surrounding region. Thus, the charge
density there is zero.

(c) The potential is given by (1) of Prob. 4.5.4 with A; given by (1).
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(a) With ¢ < —qc, the entire surface of the particle can collect the ions. Equation
(7.7.10) becomes simply

"
1= —quszEa/ (cos 8 + -qi) sin §df (1)
0 c

Integration and the definition of g, results in the given current.

(b) The current found in (a) is equal to the rate at which the charge on the

particle is increasing.
a_w (2

dt eq

This expression can either be formally integrated or recognized to have an
exponential solution. In either case, with ¢(t = 0) = g,

g=goet"; r=¢lup (3)

The potential is given by (5.9.13) with g replaced by g, as defined with (7.7.11)

127e,R2E,
47e,r

o= —EaRcoso[% —(R/7)?] + (1)

The reference potential as r — oo with # = 7 /2 is zero. Evaluation of (1) at r = R
therefore gives the particle potential relative to infinity in the plane 6 = x/2.
& = 3RE, (2)

The particle charges until it reaches 3 times a potential equal to the radius of the
particle multiplied by the ambient field.

7.8 ELECTROQUASISTATIC CONDUCTION LAWS FOR

7.8.1

INHOMOGENEOUS MATERIAL

For ¢t < 0, steady conduction prevails, so 8( )/3t = 0 and the field distribu-
tion is defined by (7.4.1)

V- (oV®)=-s (1)

where
®=%8s on S'; ~oV®=Jz on S" (2)

To see that the solution to (1) subject to the boundary conditions of (2) is unique,
propose different solutions ®, and ®, and define the difference between these solu-
tions as

¢d = ¢a - ¢b (3)
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Then it follows from (1) and (2) that
V. (cV®4) =0 (4)

where
;=0 on S —aV®;=0 on S" (5)

Multiplication of (4) by ®4 and integration over the volume V of interest gives
/V B4V - (cVBa)dy = 0 = /V [V (BuoV8Bs) — oVBy - VBdy  (6)
Gauss’ theorem converts this expression to
fg B40VPy -da = ./v aVd4 - VPudv (7

The surface integral can be broken into one on §’, where &; = 0 and one on S”,
where oV®, = 0. Thus, what is on the left in (7) is zero. If the integrand of what
is on the right were finite anywhere, the integral could not be zero, so we conclude
that to within a constant, ®; = 0 and the steady solution is unique.

For 0 < t, the steps beginning with (7.8.11) and leading to (7.8.15) apply.
Again, the surface integration of (7.8.11) can be broken into two parts, one on S’
where ®; = 0 and one on S” where —oV®, = 0. Thus, (7.8.16) and its implications
for the uniqueness of the solution apply here as well.

7.9 CHARGE RELAXATION IN UNIFORM AND PIECE-

7.9.1

WISE UNIFORM SYSTEMS

(2) In the first configuration, the electric field is postulated to be uniform through-
out the gap and therefore the same as though the lossy segment were not
present.

E =1i,v/rin(a/b) (1)

This field is irrotational and solenoidal and integrates to v between r = &
and r = a. Note that the boundary conditions at the interfaces between the
lossy-dielectric and the free space region are automatically met. The tangential
electric field {(and hence the potential) is indeed continuous and, because there
is no normal component of the electric field at these interfaces, (7.9.12) is
satisfied as well.

(b) In the second configuration, the field is assumed to take the piece wise form

— l A jwt R<r<a
E—J,Rer{é}e b<r<R (2)
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where A and B are determined by the requirements that the applied voltage be
consistent with the integration of E between the electrodes and that (7.9.12)
be satisfied at the interface.

Aln(a/R) + Bin(R/b) = ¢ (3)
A @Bl oB
5 -%]-7=° @
1t follows that .
A = (jwep + )9 /Det (5)
B = jwe,8/Det (6)

where Det is as given and the relations that result from substitution of these
coefficients into (2) are those given.

(c) In the first case, the net current to the inner electrode is

~

b} labod

bin(a/b) + bin(a/b) M

1 = jwl{(2r — a)be, + abe]

This expression takes the form of the impedance of a resistor in parallel with
a capacitor where

t = 0G + jwCd (8)

Thus, the C and G are as given in the problem.
In the second case, the equivalent circuit is given by Fig. 7.9.5 which implies

9(jwCa)(1 + jwRCy) ©)
1+ ij(Ca + Cb)

In this case, the current to the inner electrode follows from (6) as
2“‘!1;5251\‘.5 (1 + J%)
jwin(R/b
1+ ieGER [m‘/ﬁr + m]

Comparison of these last two expressions results in the given parameters.

that

”
1=

~
1 =

(10)

7.9.2 (a) In the first case, where the interface between materials is conical, the electric
field intensity is what it would be in the absence of the material.

ab Pt ab ,
e T(T;T)!,, =V, (1)

This field is perpendicular to the perfectly conducting electrodes, has a contin-
uous tangential component at the interface and trivially satisfies the condition
of charge conservation at the interface.
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(b)

In the second case, where the interface between materials is spherical, the field

takes the form 1,3
. A/r*; R<r<a
E= !
i-Re {B/r’; b<r<R (@)

The coefficients are adjusted to satisfy the condition that the integral of E
from r = b to r = a be equal to the voltage,

Az -3)+B(;-5)=0 )

and conservation of charge at the interface, (7.9.12).

~

o . A B,
_FB +]w(eoF —EF) =0 (4)
Simultaneous solution of these expressions gives
A = (0 + jwe)d/Det (5)

B = jwe, /Det

where

_ ,a—R, .[,a-R R—b
Det:u( R )+]w[e( <R )+eo( 'R )]
which together with (2) give the required field.

In the first case, the inner electrode area subtended by the conical region oc-
cupied by the material is 275%[1 — cos(/2)]. With the voltage represented as

v = Re dexp(jwt), the current from the inner spherical electrode, which has
the potential v, is

? = 28?1 — cos(/2)](0 + jwe)(a_"_"_b)b%

(6)

2r—a,|. ab | d
+21rb2[1—cos( 7 )]jweo(a—_gb—z

Equation (6) takes the same form as for the terminal variables of the circuit
shown in Fig. 87.9.2a. Thus,

1=1[G+jw(Ca+ Cy)}0 "
G = 21 - cos(a/z)]aaf.ab

Ca =2x[1—c§s(2”_ “)] abes )

2 a—-b
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C = 2n1 — con(a/2)] -2 “”e

(b)

Figure S7.9.3

In the second case, the current from the inner electrode is
cB B
— 2(Z Al

= 4xb ( D +]web2) (9)

1«)( AnaRe,) (4;121;:: + jw gn:e)

4xRba __ 41\'Rbe 4raRe
R — i (55 + 425F)

This takes the same form as the relatlonshlp between the terminal voltage
and current for the circuit shown in Fig. $7.9.2b.

JwCe(G + jwC,) .,

(10)

= 11
" G+ w(Cat Gy (11)
Thus, the elements in the equivalent circuit are "
Rbo 41ereo 47Rbe
G= 41TR b’ Ca R b H Cb = R—0b (12)
7.9.3 In terms of the potential, v, of the electrode, the potential distribution and
hence field distribution are
®=v(a/r) > E=lr— (1)
r

The total current into the electrode is then equal to the sum of the rate of increase
of the surface charge density on the interface between the electrode and the media
and the conduction current from the electrode into the media.

g = / [ieEr +0'E,-]da (2)
¥
In view of (1), this expression becomes
= 2ma? (B 70 g
t = 2ma (a2 Pl v) = 27ea 7 (2woa)v (3)

The equivalent parameters are deduced by comparing this expression to one de-
scribing the current through a parallel capacitance and resistance.
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(a) With A and B functions of time, the potential is assumed to have the same
¢ dependence as the applied field.

®* = —FErcos¢ + Ac°:¢ (1)
®° = Brcos ¢ (2)
The coefficients are determined by continuity of potential at r = a
®%(r =a) = 3°(r=19) (3)
and the combination of charge conservation and Gauss’ continuity condition,
alsoat r=a 3
(ra B2 — VEY) + 5 (caB? — B2 =0 ()
Substitution of (1) and (2) into (3) and (4) gives
A A
;—Ba:Ea=>B=;§—E (5)
A - d A
Ua(E— ;E) +0‘bB+Et-[€a(E+ 'a—z) +€bB] =0 (6)
and from these relations,
dA dE
(ea + eb)d—t + (04 + 0b)A = (05 — 0,)a%E + (€5 — e,,)a.’—d—t— (7)

With E, the magnitude of a step in E(t), integration of (7) from t = 0~ when
A =0 to ¢t =0" shows that

€ — €
A(0*) = ﬁT:aon (8)

A particular solution to (7) for ¢t > 0 is

A= (M) a?E, (9)
op+ o0,
while a homogeneous solution is exp(—¢/r), where
_ €t¢€
= ton (10)

Thus, the required solution takes the form

A=Ayt 4 (_—-) 2E,
Tq + 0
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(b)

(c)

Solutions to Chapter 7

where the coefficient A; is determined by the initial condition, (8). Thus,

(b—€a) (ob—0a)] 2 -t/ (ob—0a) 5
= - et 4 10— Ca) 3 2
[(q,+ea) o ron)® 2% oy toa)° (12)
The coefficient B follows from (5).
A
B = 0_2 - Eo (13)

In view of this last relation, and then (12), the unpaired surface charge density
is
A A
oo = ea(Bo+ 55) + &s( 75 — Fo) (14)
- 2(€a0s — €50a) E(1- c—t/'r)
Oq + 0p

In the sinusoidal steady state, the drive in (7) takes the form Re £ exp(jwt)
and the resonse is of the form Re Aexp(jwt). Thus, (7) shows that

i - Lo =) + vl =],
A= (06 + 0a) + jw(es + €4) E,,

(15)

and in turn, from (5),
o 2(0q + jwe,)
(o6 + 0a) + Jw(es + €a)

This expressions can then be used to show that the complex amplitude of the
unpaired surface charge density is

(16)

. 2(0bea — Oats)
Osuy = T
(o6 + 0a) + jw(es + €a)

From (1) and (2) it is clear that the plane ¢ = x/2 is one of zero potential,
regardless of the values of the drive E(t) or of A or B. Thus, the z = 0
plane can be replaced by a perfect conductor. In the limit where o, — 0 and
w(eq + €)/op < 1, (15) and (16) become

(17)

A - 4%E, (18)
2jweg a
B - o *E, (19)

Substitution of these coefficients into the sinusoidal steady state versions of
(1) and (2) gives

®* = —Re E,,a[& - g] cos pe’vt (20)
% = —Re 2]::“ Egeivt (21)

These are the potentials that would be obtained under sinusoidal steady state
conditions using (a) and (b) of Prob. 7.9.5.
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(a)

(b)

This is an example of an “inside-outside” situation. The “inside” region is the
one where the excitation is applied, namely region (a). In so far as the field
in the exterior region is concerned, the surface is essentially an equipotential.
Thus, the solution given by (a) must be constant at r = a (it is zero), must
become the uniform applied field at infinity (which it does) and must be
comprised of solutions to Laplace’s equation (which certainly the uniform
and dipole fields are).

To approximate the interior field, note that in general charge conservation
and Gauss’ law (7.9.12) require that

%(%Eg _eEY) — 0B =0 (1)

So long as the interior field is much less than that applied, this expression can
be approximated by

I g dE
ocE? = % = €,2 08 ¢7t— (2)
which, in view of (a), is a prescription for the normal conduction current den-
sity inside the cylinder. This is then the boundary condition on the potential
in region (b), the interior of the cylinder, and it follows that the potential
within is 9 dE
€
o = =-= — 3
Arcos¢ S reosg— (3)

Note that the approximation made in going from (1) to (2) is valid if

€E? > B2 = €,2co80E > 5602 cos¢% (4)

Thus, if E(t) = E, coswt, the approximation is valid provided

we
1>» — 5
: (5)

Just after the step, there has been no time for the relaxation of unpaired
charge, so the system is still behaving as if the conductivity were zero. In any
case, piece-wise solutions to Laplace’s equation, having the same § dependence
as the dipole potential and having the dipole potential in the neighborhood
of the origin are

cosd
=4 = (1)
b = 4:60(:::0 + Brcosf (2)

At r=a,
o° = o° 3)
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(b)
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~ar = % @

Substitution of (1) and (2) into these relations gives
& —o|[A]_._P_Ja (5)

% e])|B 4meqa® | 1

Thus, the desired potentials are (1) and (2) evaluated using A and B found
from (5) to be

= 3p
A= 4m (e, + 2€) ()
___2(eo—¢€)p
T 4me,a8 (e, + 2€) (7)

After a long time, charge relaxes to the interface to render it an equipotential.
Thus, the field outside is zero and that inside is determined by making B in
(2) satisfy the condition that ®*(r = a) = 0.

A=0 (8)
_ p
T 4meqad ()

In the general case, (4) is replaced by
30 3, 30°  agb

”ar +§€8r —60?)::0 (10)
and substitution of (1) and (2) gives
d —2p vl _
204+ 2 [2€A + eo(4ﬂ_€o + Ba )] =0 (11)
With B replaced using (5a),
dA A 3 dp. _2+¢
& T 4r(2¢ +¢,) dt’ iy (12)

With p a step function, integration of this expression from ¢t = 0~ to t = 0t
gives

2po
ot)y=—>"2 _
A(07) 4m(2¢ + ¢€,) (13)
It follows that 3
— Po —t/r
A 47(2¢ + €,) € (19)
and in turn that "
Po [ 37T 1
B=—————-—
4mad <2€ + € eo) (15)

As t — 0, these expressions become (6) and (7) while as ¢ — oo, they are
consistent with (8) and (9).
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(a)

(b)

This is an “inside-outside” situation where the layer of conductor is the “in-
side” region. The potential is constrained at the lower surface by the electrodes
and the y derivative of the potential must be zero at the upper surface. This
potential follows as P
h By
b =y 22 PY
Vcosh Bd cos Bz (1)
The potential must be continuous at the upper interface, where it follows from
(1) with y = 0 that it is

cos Bz
cosh Ad (2

The potential that matches this condition in the plane y = 0 and goes to zero
as y goes to infinity is

(y=0)=V

P Bz _ sy
cosh Bd ¢ ()
Thus, before t = 0, the surface charge density is
o9° oo €0V cos Bz
Osu = — [Eo'a_y" - € ay yeo = —_cosh ﬂd (4)

Once the potential imposed by the lower electrodes is zero, the potentials in
the respective regions take the form

®® = Ae~PY cos Bz (5a)
inh B(y + d
= A%d—) cos Bz (5b)

Here, the coefficients have been adjusted so that the potential is continuous
at y = 0. The remaining condition to be satisfied at this interface is (7.9.12).

d
5?(€°E; —€eE)) - oE =0 (6)
Substitution from (5) shows that

% [(€oB + € coth fd) cos ¢ A] + o coth fdcos A =0 (7)

The term inside the time derivative is the surface charge density. Thus, (7)
can be converted to a differential equation for the surface charge density
A0su | Osu

@& 1 (8)

where
7= (e, tanh fd + €) /o

Thus, given the initial condition from part (a), the surface charge density is

_ &PV cosfz _,
Tou = cosh fd ¢ )



7.9.8

7.9.9

7-28

(a)

(b)

(<)

(a)
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Just after Q has been turned on, there is still no surface charge on the interface.
Thus, when t = 07,

2%(y =0) = ¥*(y = 0) (1)
ooy =0) = e‘;i’;(y ~0) @)

It follows from the postulated solutions that
Q-®=4a (3)

—€0Q — €ogp = —€4a (4)
and finally that g,(0%) and ¢;(0%) have the given values.

As t — oo, the interface becomes an equipotential. It follows from the postu-
lated solution evaluated at the interface, where the potential must be what it
is at infinity, namely zero, that

®=Q ()

Throughout the transient, (1) must hold. However, the condition of (2) is
generalized to represent the buildup of the surface charge density, (7.9.12). At
y=0

a ap* 9ot ad®

— | —ey— + e— —_—= 6

3t €°8y +eay +aay 0 ()
When t > 0, Q is a constant. Thus, evaluation of (6) with the postulated
solutions gives

€o—— —€—— —0gqa =10 (7)

Using (1) to eliminate g, this expression becomes

dga | 4a _
dt + T =0 (8)

where 7 = (¢, + €)/0. The solution to this expression is A exp{(—t/7), where
A is the initial value found in part (a). The other image charge, gs, is then
given by using (1).

As t — oo, the surface at £ = 0 requires that there be no normal current
density and hence electric field intensity on the (b) side. Thus, all boundary
conditions in region (b) and Laplace’s equation are satisfied in region (b) by
a uniform electric field and a linear potential.

v, v
E=_iy; ®=-(a-y (1)
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(b)

The field in region (a) can then be found. It has a potential that is zero on
three of the four boundaries. On the fourth, where z = 0, the potential must
be the same as given by (1)

¥(z=0) = ¥(z=0) = ~(a —y) (2)

To match these boundary conditions, we take the solution to Laplace’s equa-
tion to be an infinite sum of modes that satisfy the first three boundary

conditions.
[+ ]

sinh 2% nry

r=-5 A,.—————h D) ( (3)
n=1

The coefficients are determined by requiring that this sum satisfy the last

boundary condition at z = 0.

©0
v . N7y
Jla-y) = ZA,.sm(—a——) (4)
n=1
Multiplication by sin(mny/a) and integration from z = 0 to z = a gives

Am=z/a§(a—y)sin( y)d ) (5)

a Jo mn

Thus, it follows that the potential in region (a) is

N 2y sinh 2% (z — b nr

®=-3 ;T((m)l n (=% 6)
n=1 a
During the transient, the two regions are coupled by the temporal and spatial
evoluation of unpaired charge at the interface, where * = 0. So, in region
(b) we add to the asymptotic solution, which satisfies the conditions on the
potential at y = 0,y = a and as z — —oo, one that term-by-term is zero on
these boundaries and as 2 — —ooc and that term-by-term satisfies Laplace’s
equation.

o = E(a -y)+ Z B, e"™=/% gin (%) N
n=1

The result of (4)-(5) shows that the first term on the right can just as well be
represented by the same Fourier series for its y dependence as the last term.

b = Zzy—si m +EB e/ g (mry (8)

The potential in region (a) can generally take the form of (3). There remains
finding A, (t) and B, (t) such that the continuity conditions at z = 0 on the
potential and representing Gauss plus charge conservation are met. Evaluation
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of (3) and (8) at z = 0 shows that the potential continuity condition can be
satisfied term-by-term if

A, =E+B ©)

The second condition brings in the dynamics, (7.9.12) at =z = 0,

Lo o apb 0 oo b
["“I ""a] 8t( L eba)” (10)

Substitution from (3) and (8) gives an expression that can also be satisfied
term-by-term if

—0g ﬂco h( )A -ab—B,.—eaﬂco h(',lb)gﬁ
a a’ dt (1)
n_"dBn -
% Tat

Substitution for B, from (9) then gives one expression that describes the
temporal evolution of A(t).

dA A 2 dv
o Ao 2B (ot (D) re) (12
where
" coth (ﬂ+ €b

og coth (222) + oy
To find the response to a step, the volue of A, when ¢t = 0 is found by
integrating (12) from ¢t = 0~ when 4, =0 to t = 0.

An(0%) = eoVa( ) /(cacoth ("22) + ) (19)

The solution to (12}, which takes the form of a homogeneous solution exp(—¢/7)
and a constant particular solution, must then satisfy this initial condition.

Vo
mr) (0a coth 222 + 5y) (1)

An = An1e™tl" 4 op(—

The coefficient of the homogeneous term is adjusted to satisfy (13), and (14)
becomes

R e

o4 coth ("T"") +0p €gcoth (!';'—") + €

) (15)
+ eacoth( ) +eb}
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(c)

There is some insight gained by writing this expression in the alternative form

(a0 — €504) cosh (222) (1 — e~*/7)
g coth (ﬂ:—b) + op

—v(2
=) (16)
nxb
+ eb] / (e.l coth - + eb)

Given this expression for A,, B, follows from (9). In this specific situation
these expressions are satisfied with o, = 0 and ¢; = ¢,.

In this limit, it follows from (15) that as ¢t — oo, A, — V,(2/nx} and this is
consistent with what was found for this limit in part (a), (5).

With the permittivities equal, the potential and field distributions just after
the potential has been turned on and therefore as there has been no time for
unpaired charge to accumulate at the interface, is as shown in Fig. $7.9.9a.
To make this sketch, note that far to the left, the equipotentials are equally
spaced straight lines (surfaces) running parallel to the boundaries, which are
themselves equipotentials, All of these must terminate in the gap at the origin.
In the neighborhood of that gap, the potential has the form familiar from Fig.
5.7.2 (except that the equipotential ® =V is at ¢ = = and not at ¢ = 2x).

/

(2)

(b)
Figure S7.9.9

In the limit where t — oo, the uniform equipotentials in region (b) extend up
to the interface. Just as we could solve for the field in region (b) and then
for that in region (a), we can also draw the fields in that order. In region
(a), the potential is linear in y in the plane z = 0 and zero on the other
two boundaries. Thus, the equipotentials that originate on the boundary at
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z = 0 at equal distances, must terminate in the gap, where they converge like
equally spaced spokes on the hub of a wheel.

The transient that we have described takes the field distribution from that
of Fig. 57.9.9a, where there is a conduction current normal to the interface
from the (b) region side supplying surface charge to the interface, to that of
Fig. S7.9.9b, where the current density normal to the surface has subsided

because charges on the interface have created just that field necessary to null
the normal field in region (b).


http:87.9.9a
http:S7.9.9b

SOLUTIONS TO CHAPTER 8

8.1 THE VECTOR POTENTIAL AND THE VECTOR POISSON
EQUATION

8.1.1  (a) Ampere’s differential law inside the solenoid gives
VxH=0 (1)
The continuity law of magnetic flux gives
V- pH=0 (2)

Therefore, H is the gradient of a Laplacian potential. A uniform field is, of
course, one special case of such a field. At the boundary, representing the coil
as a surface current

Nz
K= 3
o )
we have
nx (H°-HY) =K (4)
where n = —i,, the outside region is (b). Further we have
n u,(H*-H’) =0 (5)

(b) An axial z-directed uniform field inside, zero field outside, automatically sat-
isfies (1), (2) and (5). On the surface we get from (4)

-—i,. X H;i. = i¢%

and since
i X i. = —i¢
N2
H =—
® d
(c) A is ¢ directed by symmetry. From the integral form of V x A = p,H we
obtain

fA-ds: poH - da
c s

Taking a radius r we find

_ ) rriuH? forr<a
2nrAg(r) = {1ra Zu,H? forr>a
ty= {

Therefore

Lo forr<a

Ni
d
1, Ni
d

e 24

Yo forr>a

"’I
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Using the coordinates defined in Fig. P4.4.3, superposition of line current

vector potentials (8.1.16) gives

A, = I‘o‘ l [ rirs ]
rary

—\P - 3% =yt
rp=1/(z+ g)’+y’; re=1/(z- §)2+y2

To linear terms in (d/2)?, the numerator of this expression is

where

— 2
rirs = V@ TR T A PR = 14 AP (A
where
r=+vVz2+y?
Similarly, the denominator is
2 — &)
3T = rz\/l ( r2 (2r)
Thus, to linear terms in (d/2r)2, (1) becomes
o~ o lln[l +250 ()
* o7 2 1— 2.(&’—_32).(2
_ Bt 4=2-9) 4
4r In[1+ r? (2r) ]
Observe that
2
z . z" — .
;=cos¢; g—=sm¢; rzyz =cosz¢—sm2¢=c0s2¢

and it follows that (4) is the given vector potential.

(1)

(3)

(4)

(5)
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8.1.3 We can take advantage of the analog of a solution of Poisson’s equation for
a two dimensional charge problem, and for a two dimensional current problem
(because the structure is long, [ > w and | >» d we treat it as two dimensional). The
analog charge problem is one with two charge sheets of opposite signs, producing
a uniform field, and a potential ® o y. Thus (see Fig. 58.1.3)

A, = A.(y/d)

|4

Figure S8.1.3

inside, A, = const outside, and we adjust A so that we get the proper discontinuity
of A, /8y to account for the discontinuity of H,

dA Nz
poH: = ?!f = poK = I‘o_w'—
Therefore
Ao _  Ni
P
and

i . .
Ay = Bo—-Y inside

_ . Ndi{ top
= %40 2w {bot.tom

8.2 THE BIOT-SAVART SUPERPOSITION INTEGRAL

8.2.1 The Biot-Savart integral, (7), is evaluated recognizing that

r

(ip X ipre)z = W (1)
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Thus,

H. = Jo / /' 2 r dzrdédr (2)
Tan )y Jo Sy VE+E (P +1)
The integration on z amounts to a multiplication by A while that on ¢ is simply a
multiplication by 2x. Thus, (2) becomes
AJ, [¢ r2dr

H:==" ), @sryn (3)

and integration gives
AJ,
b=

Hz=

+in(r+Vr2 + 32)] (4)
which is the given result.

We use the Biot-Savart law,
ds X i,-l,-
T an ) -2 (1)
The field due to the turns within the width Rdf, and length sin 6 Rd$ which produce
a differential current tds = K, sin 0R2d0d¢, (Note: iy, = —ip.)
K,sin? 0R2d¢

dHy = - 47 R2

d¢ (2)

dH,

Figure S8.2.2

The field along the axis adds as one integrates around one turn, the components
normal to the axis cancel

2
dH, = —sinf dHy = Kodf

0
The total field is obtained by adding over all the currents

k)
H, = X / sin® 09 = 252 (4)
2 =0 3

sin® 4 (3)
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We replace K,sinf by K, in Prob. 8.2.2. We can start with the integral in
(4), where we drop one factor of sind. We get

K,

T
Hz=&/ sin? §df =
2 0=0

We can use the result of 8.2.3 for a single shell. The total current distribution
can be thought of as produced by a concentric set of shells. Each shell produces the
field £J,dR. Thus the net field at the center is

e T
H, = Jo/ dR = —-J,R
o 4

No matter where the vertices of the loop, (8.2.22) can be used to determine
the field. However, the algebra is simplified by recognizing that the triangle not
only has sides of equal length, d, but that the z axis is at the center of the triangle.
Thus, each leg makes the same contribution to the 2 component of the field along
the z axis, and along that axis the z and y components cancel. To see that the
sides are of length equal to that of the one paralleling the z axis, note that the
distance from the center of the leg to the vertex on the y axis is 4/3/4d and that
based on the base d/2 and this distance, either of the other leg lengths must be

of length \/(d/2)2 + (v/3/4d)? = d. Further, if the z axis is at the center of the
triangle, then the distance from the origin to either of the legs not parallel to the
z axis must be the distance to the parallel leg, 1/3/4d/3. Thus, we should have

2+/3/4d/3 = \/(11/2)2 + (v/3/4d/3)2, as indeed we do.

For the leg parallel to the z axis,

a = di,

d, 1 /3 .
b= —'2—1x - 5\/;(11, — zig (1)

c—éi _l\ﬁd' 3
T2x T3Vt T

. 1 /3 5
¢ X a = —zdiy + g\/;dzl.

= |e x a| =d(;1§d"’+22)”2 (2)

a-c=d?/2 |c|=(d?/3+2%)/?
a-b=-d?/2 |b|=]c

Thus,
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and the given result follows from (8.2.22), multiplied by 3 to reflect the contributions
from the other two legs. This same result is obtained using either of the other legs.
For example, using the back leg,

2 /3
—_ — 3 — 3
b= 3 4dl,, zis (3)

From (8.2.22)

H—i- cxXa a-c_a-b
T 4mlexal?\ e [b|

we can find the H-field produced by a current stick! We look at one stick in the
bottom layer of wires, extending from the position vector

. _d L,
b= (z' — z)ix - -2-yi, — i

to the position vector

A N
c=(z' — z)i. — F¥iy + 5is
with
a=c—b=1Il,
Thus

cxa=l(z —2z)iy + g—ix]

le x a® = #{(z" - 2)* + (d/2)7]
bl = e = V/(=' — 2)2 + (d/2)% + (1/2)?
P P

a-c=? a-b=—?

Therefore, H due to one stick, carrying the differential current %dz’ is

g o Nz, (&' - )i, + 21) 2
dmw B((z' — 2)? +(d/2)%] \ /(' — z) + (d/2)2 + (I/2)?
., Nidz' (2’ — 2)iy + gix]
T 2rw (2’ —z)2 + (df2)?
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in the limit when [ is very long compared with d and w. This very same result
could have been obtained from Ampére’s law and symmetry considerations for an
infinitely long wire (see Fig. 58.2.6)

_Nide 1. _ Nidz (2 — z)iy + Six
w 2xr?  2mw (2 —2)? + (4/2)2

Iy

ooooe0o0o0e0oev|lopoeeebebdboo

'
\\ '
000806080880 eesoedoees y=—df2

i
Filgure S8.2.6

The total field is obtained by adding the contribution from a symmetrically located
set of wires at the top, which cancels the y-component and doubles the z-component,
and by integrating over the length of the coil

H - /'"/2 Nids' d
" Jewpr 2mw (& —2)? +(d/2)?

= ﬂi'.a.n'1 [%(-t-”— - :c)] + tan~?! 2(% + z)]

W 2 d

since

dz 1
/m = %tan_ (2.'5/d)

We may test this result by having w — co. Then

.
w

QED as is correct for sheets of an infinite set.

From (8.1.8) integrated over the cross-section of the stick,
po [I(E)dV'  p,. [ a dE
g g (1
dr ) [r—x'| 4x J¢ |a|fr—r|

where a/|a| is a unit vector in the direction of the stick and hence [a/|a|]d¢ is a
differential length along the stick. Using the expression for [r—r'| following (8.2.17),
(1) is converted to an expression ready for integration.

fe
A= Po; dé @)

z——— —————
4 |a| & V£2+7¢2;



8-8 Solutions to Chapter 8

Integration gives

A=

’-‘ﬂ'f—ln[f""' E?+f3] (3)

w'la e+vVET2

Finally, substitution from (8.2.21) makes this expression the given result.

8.3 THE SCALAR MAGNETIC POTENTIAL

8.3.1 From the Biot-Savart law
13 ds’ x i,.l.-
H r J r—r'f?
we find the axial field H,
i [?* Rdy' i2r .4
) Bt T
R3

For large z,

which is consistent with the axial field of a dipole (see Fig. S8.3.1).

l¢ x 14

Figure 88.3.1
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8.3.2 The potential of one wire carrying the current ¢ in the 42 direction is

1
b=—t

The superposition gives (Fig. S8.3.2)

(1)

U= ——(¢1— ¢o)

The lines ¥ = const are described by

(2)

tan ¢; — tan ¢g 2+ - ‘Lz+a
tan(@1 — ¢2) = const = = 2
1+ tan ¢; tan ¢, 1+ oL

Therefore
2ya = const[z? — a? + y?]

This is the equation of circles that go through the points z = £a,y = 0.

Figure S8.3.2

Figure S8.3.3
8.3.3

Assume that the coil extends from z = —{/2 to z = +1/2. The potential of a
loop is

7
v = —I{]
(r) = -
0 . o
0= / ____—21rRs11120Rd0 = 27(1 — cosd) = 21r(1 - (z =) )
0 R (Z - zI)Z -+ RZ

The individual differential loops of length dz' carry currents %dz’. Therefore the
total potential is

. z'=l/2 ot
\Il(z)=&/ dz'(l— (z—2) )
21 z’=—l/2 vV (Z - Z’)2 —+ R2
L

- [l+\/(%—2)2+R2~\/(é+z)2+R2]
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We can check the result for a long coil, I — oo. Then

Vezaem=L/az2r e By~ taz2

and we find Ni
)
¥(z) = 71_[1 — 22|
giving a field
_av —H N
T3z ==

which is correct.

8.4 MAGNETOQUASISTATIC FIELDS IN THE PRESENCE

y

84.1

8.4.2

OF PERFECT CONDUCTORS

From (8.3.13),
miR? cosf
Y(r —0) — y—
and at r=1>
0w _
or r=b

To meet these conditions, take the solutions to Laplace’s equation

miR? cos 0
4r

+ Arcosf

(1)

(2)

(3)

where the first automatlcally satisfies (1) and the coefficient A of the second is

determined by requiring (2). Thus,

1.1rR

( + bs)cosﬂ

The negative gradient of this magnetic potential is the given field intensity.

The magnetic field of the dipole is given by (8.1.21)

id
= 2’?(—- sin @i, + cos diy)
This corresponds to a scalar potential of

id
\I’d = —EF sm¢

(4)



Solutions to Chapter 8 8-11

The conductor acts like a perfect conductor cancelling the normal component of
H, H,. Thus we must have the total scalar potential

a r
= ——sm¢(; + ;)
with the field
d 2 2
_ _2;Lra2 sin ¢(% — 1)],. cos 45(—2 + 1)14,

8.4.3 (a) Far from the half-cylinder, the magnetic potential must become that of a
uniform magnetic field in the —z direction.

H(z — to00) = —Hoizs = ¥ = Hoz = Horcos ¢ (1)
Thus, to satisfy the condition that there be no normal component of the field
intensity at the surface of the half-cylinder, a second solution is added to this

one having the same azimuthal dependence.

V= Horcos¢-i-AcosqS

(2)

Adjusting A so that
v

E(T=R)'=O (3)

results in the given potential.

(b) As suggested, the field intensity shown in Fig. 8.4.2 satisfies the requirement
of being tangential to the perfectly conducting surfaces. Note that the surface
current density has the polarity required to exclude the magnetic field from
the perfectly conducting regions, in accordance with (3).

8.4.4 The potential ¥ of the uniform field is
VY, = H,rcosf
The sphere causes H to be tangential. The normal component H, must be cancelled:

¥ = HORcosﬂ[ + %(R)z]

r
R r

We obtain for the H field

H=-V¥= —H,,{ cos 61 — (R)3]ir —sin 61+ %(?)3]%}

r
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8.4.5 (a) An image current is used to satisfy the condition that there be no normal
component of the field intensity in the plane y = 0. Thus, the solution in
region y < 0 is composed of a particular part due to the line current at
z = 0,y = —h and a homogeneous part equivalent to the field of a line
current at £ = 0,y = h flowing in the opposite direction. To write these fields,
first note that for a line current on the z axis,

H=ip(c) = & (- bxsingtiycosd
*\onr 2x NZy

LN ™ + iyz
T2\ 22+y? 22+ y?

Translation of this field to represent first the actual and then in addition the
image line current then results in the given field intensity.

(1)

(b) The surface current density that must exist at y = O if the region above
sustains no field intensity is

K=nxH=K,=H,(y=0) (2)
This is the given function.
8.4.6  (a) The scalar potential produced by one segment of length dz’ is

_ Kdd .y
d¥ = o tan ( ) =

Kdz

(1)

The integral over the strip is

\Il=/:'=ad\ll ;( {(a.—z)cot

'=b
—(b—z)cot™ 1( )+ylo [

7))

where the integral is taken from: B. O. Pearce, R. M. Foster, A Short Table
of Integrals, 4th Ed., Ginn and Co. (1956). To this potential must be added
an image potential that causes V/3z = 0 at z = 0. This is achieved by
adding to (2) a potential with the replacements

(2)

—%log [1+

K,—-K, a——a, b—-b
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(b) The field H= —VV¥ and thus from (2)

Hz=——;-{;o[—cot_1 (%)+cot_1(b;z)
+ (a—=)/y (b—23)/y
(57 L ()

oy, oy ]

1+(22) 14 (552)°
=g | e (T e ()
B %[m_l (G25) —tan™ (bfz)]

To this field we add

_ K -1(_ Y N _ -1 Y
Hz—zw[tan (-2 - tan (bﬂ)]

8.5 PIECE-WISE MAGNETIC FIELDS

{.5.1 (a) The surface current density is

K= Sptsin Pig (v

so that the continuity conditions at the cylinder surface where r = R are

Ni
a _ b — 2t

H3 - H, 2Rsm¢> (2)
poH® — poH? =0 (3)

Looking forward to satisfying (2), the ¢ dependence of the scalar potential is
taken to be cos ¢. Thus, the appropriate solutions to Laplace’s equation are

¥ = A9§—¢ (4)
U® = Crcos ¢ (5)

so that the field intensities are

o cos ¢, sin ¢,
H =A(——rz—lr+ 12 1d>) (6)
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H® = —C(cos ¢i, — sin ¢iy) (7
Substitution of these fields into (2) and (3) then gives
A Ni
Y ®)
A
ﬁ +C=0 (9)

from which it follows that

_ RNz. C___Nz

4 4’ T 4R

(10)

Substitution of these coefficients into (4)-(7) results in the given expressions
for the magnetic scalar potential and field intensity.

(b) Because the flux density is uniform over the interior of the cylinder, the flux
linked by a turn in the plane z = z' = Rcos ¢’ is

&)\ = p,H,2Rsin¢' = MO%ZR sin ¢’ (11)

Thus, the total flux is

" 4N N
A=i/ £ sin ¢'( ) sin ¢' Rdg’
0
2 pr 2 (12)
_ bl / sin? ¢'dg’ = [P T,
4 Jo 8

and thus the inductance is identified as that given.
8.5.2 (a) At r =20, there is a jump in tangential H:
nx (HY -—H®)=K (1)

with region (a) outside, (b) inside the cylinder carrying the windings. Thus
n=i.andatr=5%

19¥(@ 1300
~% 3 +y ) = K, (4) (2)

Further the normal component of ¥ must be continous at r = b.

av(e) 3yl
- or + Or =0 (3)

At r = a, the normal component of H has to vanish:

ov

ol “
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(b) We have a “square-wave” for the current distribution. Therefore, we need an
infinite sum of terms for ¥:

v = f: An(r/b)"cosn(d—¢o); O<r<b

n=1

vl = i B,(a/r)"cosn(p—¢,); b<r<a (5)

n=1

+ E Chn(r/a)™ cosn(¢ — ¢,)

n=0

We picked the normalization of the coefficients so that the boundary condi-
tions are most simply stated. From (4) we have

a® n—1
—anm + nCyp an =0
and thus
Cu = Bn (6)
From (3) we have
a" -1 1
nB"’bnT —nC, an + nA,.z =0 (7)
and using (6)
An = Cp[(b/a)" — (a/b)"] (8)

From (2) we obtain:
n[Bn(a/b)" + Cu(b/a)"] sinn(¢ — ) — nA,sinn(¢ — $o) = bK.(4) (9)

The expansion of the square wave K,(4) is

K(¢)=K, 3 —sinn(g— o) (10)

n—-odd

Thus, using (6), (8) and (10) in (9) we obtain, for n odd:

nCul(a/8)" + (8/a)"] - nCa[(6/a)" - (o/8)"] = K,
and C, = 0 for n even. Thus

2 .
Cn = 5= Ko(b/a)" = By (11)
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and 2b
Ap, = mK.,[(b/a)"' - 1] (12)

for n odd, zero for n even. We should check a few limits right away. When
a — oo, we get (for n odd)

An = —EKQ
and

g = _ Z n2—2:_-K,,(r/b)" cos n(d — ¢,)

n—odd

wle) = Z %Ko(b/r)" cos (¢ — o)

n—odd
which gives the field due to the cylinder alone. For a — b, we get A, =0

¥ 3 2k [(o/ + (r/a)"] cosn(s - b)

n—odd
There is a ¢ directed field in the region between the coil and the shield of
magnitude ow X,
1 4
Hy =~ Y i 7;81!1”(¢ $0)

n—odd

which is approximately square-wave-like. These checks confirm the correctness
of the solution.

(c) The inductance of the rotor coil is computed from the flux linkage of an
individual wire-loop,
—¢'+n
O, =1 poHbdd
¢=—9

E =y, nin /-¢ * cos n(¢p — ¢o)bdd

r=b n=l
odd

= 5 b B (1 By simnis - 0

n=l
odd

where ! is the length of the system. The flux linkage is obtained by taking the
number of wires per unit circumference N/xb, multiplying them by ®, and
integrating from ¢’ = ¢, to ¢' = ¢ + 7

[+ +]

A= [ pa# e =13 21— (1)) [ a#'sinn(s - 4)

nw

n=1
odd



Solutions to Chapter 8 8-17

where we use the fact that

K, = o7

The inductance is
A 8N2 i 1 b 2n
L===——pol E:p[l—(;) ]

n=1
n—odd

The inductance is, of course, ¢, independent because the field is “tied” to the
rotor and moves with ¢,.

8.6 VECTOR POTENTIAL AND THE BOUNDARY VALUE
POINT OF VIEW

8.6.1 (a) For the two-dimensional situation under consideration, the magnetic field in-
tensity is found from the vector potential using (8.1.17)

1 laA dA,,
= uo(r 99 r T 5, 0) (1)

Thus, if the vector potential were discontinuous at r = R, the azimuthal
magnetic field intensity would be infinite there.

(b) Integration of (1) using the fields given by (1.4.7) gives

e (B SR
1(r); r<R
A. = {gzsr;; R<< r (3)

Because the integrations are performed holding r and ¢-constant, respectively,
the integration “constants” are actually functions of the “other” independent
variable, as indicated. From (3) it is clear, however, that there is no depen-
dence of f; and f; on ¢. Given that the vector potential is zero at r = 0
and that A, is continuous at r = R, f; = 0 and f2 = R?/9. Thus, the vector
potential is as given.

(¢) In terms of the vector potential, the flux is given by (8.4.12). Because there
are no contributions on the radial legs and because A, (r = 0) has been defined
as zero,

A=¢ A ds=1[A,(0)- A,(a)] = ~14.(a)
C;R 2J, 1 4)
= £ "2{in(a/R) + 5]

This illustrates how the use of A to represent the field makes it possible to
evaluate the flux linkage without carrying out an integration.
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A must be z-directed and must obey Poisson’s equation

V2Az = _”‘on
Now 1d. d
V2= -—(r—
r dr (r dr)
in the special symmetry of the problem. Thus
1d, d
;;(ra)Az - _ﬂon
and
A= —p, 0 b
z — Mo zz r<

Outside this region b < r < a, A, obeys Laplace’s equation
A, o Cln(r/b) + const

At r = b we must have continuous A, and dA,/dr (continuous Hy). Thus,

b2
const = _ﬂonZ
and c b
—b- = _quzE
Thus

b2
A, = —poJ,Z[2ln(r/b) +1); b<r<a

- — direction

y ~ >/\ of field

positive direction
of loop

Figure $8.6.2

(3)
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The flux is, according to (8.6.5) [see Fig. $8.6.2]

A= 142 - 42)

and thus
A= -4}
because
A} =0
Forc< b
2
A=lpod, Z
Forc>b

b2
A= lqu,—4-[1 + 2in(c/b)]

Note that A, # O for r > 0. This should be remedied by adding a constant to A,.
It does not affect the flux linkage.

(a)

(b)

In cylindrical coordinates where there is no ¢ dependence, the vector potential
has only a § component

A= Ao(r, Z)io (1)
and the flux density is found from
. 9 A, . (18
poH=VxA=>uoH=1..(—§)+1,[;E(TA9)] (2)
For reasons that are apparent in part (b), it is convenient to write A as
A Ac(r,t) (3)
r
in which case, (2) becomes
1 OA.,  8A.,
woll = o[- it G0 “

For any surface S enclosed by the contour C, the net flux can be found from
the vector potential by

)\=f;A~ds (5)

In particular, consider a surface enclosed by a contour C having as the first
of four segments a contour spanning 0 < ¢ < 27 at the radius, a, from the 2
axis. The second segment connects that circular contour with a second at the
radius b by a segment connecting the two in a plane of constant ¢. The contour
is closed by a second contour in an adjacent ¢ = constant plane joining these
circular segments. Integration of (5) gives contributions only from the circular
contours. The segments joining the circular contours are perpendicular to the
direction of A, and in any case make compensating contributions because they
are in essentially the same ¢ = constant planes. Thus, the flux through the
surface having outer and inner radii, a and b respectively, is as given.



8-20

864 (a)

(b)

(<)

Solutions to Chapter 8

The vector potential, A,, satisfies Laplace’s equation. The first three condi-
tions of (8.6.18) are met by the solution
A, = A, sinh ——ysin ’%ra: (1)

The last condition is met by superimposing these solutions

E A, sinh —ysm e (2)

n=1

and evaluating the coefficients by requiring that this function satisfy the fourth
boundary condition of (8.6.18).

A= Z A, sinh —bsm L (3)

Multiplication by sin(mnz/a) and integration gives

A. a
~=2 cos mz] = Ama sinh T (4)
mn a Jo 2 a
which therefore gives the coefficients as
2A
Ap = m[— cosmnx + 1] (5)

so that (2) becomes the given solution.

The total current in the lower plate is

.'=/ K,dz=—/ H,,(y=o)dz=—/ 1040 4 (g
0 0 0 Mo ay y=0
Evaluation using the given vector potential gives
. - 8A o~ Isinwt
= - ———————— T — — 7
: £~ ponmsinh (-'%") nz=:1 2nsinh ("T"'b) (7)

odd

In the limit where b/a > 1,

sinh (1;2) — -;-e’""’/ ¢ (8)
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and (7) becomes

$— — Z —nmb/a ginwt — —Te~™/% ginwt
n=1l

odd

Taking In of the magnitude of this expression gives

in(E)) = —x(s/a)

which is the straight line portion of the plotted function.
(d) In the limit b/a < 1, (7) becomes

8-21

(9)

(10)

(11)

This is the same as what is obtained if it is assumed that the field is uniform

and simply H; — A/bu, so that
K, — —H;=>i{— K,a— —aA/bu,

(12)

The perfectly conducting electrodes force H to be tangential to the electrodes.
Thus 8A,/8z = —poHy vanishes at y = 0,y = d except for the gap at z = 0 and
8A,/8y = poH, vanishes at z = +a. The magnetic vector potential jumps by A as
one goes from £z =0_ to z = 04, at y = 0 and y = d. Thus A, is constant around
the C shaped contour as well as the D shaped one. Denoting by the superscripts
(a) and (b) these two regions respectively, we have for Laplacian solutions of A,

Al®) = Z A, sinh %(z + a) sin %’ry + Ay(z + a)

n=1

oo
AP = Z B,, sinh %(z — a)sin %y + Bo(z —a)

n=1

At z = 0, the constants A, and B, account for the jump of 4., B,

=—-A/2=A

0
The vector potential and its curl must be continuous for 0 < y < d at z = 0. We
thus have A4,, = —B,, for all n except n = 0. The sinusoidal series has to cancel

that jump for 0 < y < d. We must have

E A, sinh ~% asm -—-y =— E 44, sin 2%
d n
n—odd

and similarly for the series in region b. We obtain

A = E 2A sinh 27 (z + a)

nw smh'"" dy_ (z+a)

n—odd
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sin

2Asinh 2%(z —a) | nrx
b) _ “4 in 2%
AP = Z nw  sinh%fa d

A
y=5(z—a)
n—odd

(b) See Fig. S8.6.5.
1 y

)

z
Figure S8.6.5
8.6.6 (a) We must satisfy Poisson’s equation for the vector potential everywhere inside
the perfectly conducting boundaries
V24, = poin,sin (Eaf) (1)

and make the normal flux density and hence A, zero on the boundaries.

A, =0 at z=a,y=0,y=b (2)
A particular solution to (1) follows by looking for one that depends only on
z.
324 .. Tz . a2 | 7z

az;p = HotNno 8N (T) = Ap = —poznoF sin " (3)

Then the homogeneous solution must satisfy Laplace’s equation and the con-
ditions

A =0 at z=q (4a)

. a2 | mz
A = Poitio 3 sin — at y=0,b (4b)

The first of these conditions, can be met by making the z dependence sin(7z/a).
Then, the y dependence must be comprised of a linear combination of exp(+ky)
and exp(—ky). If the y coordinate were at y = b/2, the second of the condi-

tions of (4) would be even in y. So, make the linear combination cosh k(y — 2]

and for convenience adjust the coefficient so that the second of conditions (4)

are met, divide this function by its value at y = b/2. This makes it clear that

the coefficient is the value given on the boundary from (4). Thus, the desired

solution, the sum of the particular and homogeneous parts, is

_ _ HBoinoa? [cosh I(y - %) o (T2
Ar=Awp+ Aan = =3 [ cosl(% —1|sin (=) (5)
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(b) The flux linked by one turn is

(<)

(a)

@) = —l[A:(z,y) — A:(—=,9)]
_ 2uoin.a3l [cosh ﬂy - %
x2 cosh (Z&

(6)

_ 1] sin *%
a
and the total flux of all of the windings in series is

a pb
A= / / Brn,sin (— ) dydz
o Jo a
_ 2pondatl xb b
- [2a tanh(Za]
] N —4
§44441 { + 1
L2

(7)

3

Figure S8.6.6

A sketch of the lines of constant vector potential and thus H for the particular,
homogeneous and total solution (the sum of these) is shown in Fig. S8.6.6.
It is perhaps easiest to envision the sum by picturing the addition of contour
maps of the two parts, the axes out of the paper being the height A, of the
respective surfaces.

This is a problem involving a particular and a homogeneous solution of the
vector Poisson equation. The particular solution is due to uniform current

density J, = n,t
2

.z
Ay, = —pont————

Alternatively, we may find the homogeneous solution by comparison with
Prob. 8.6.6. In that problem the wire density was sinusoidal. Now it is uniform.
A, was antisymmetric, now it is symmetric. We can expand the symmetric
wire distribution as a square wave.
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The particular solution of the vector potential is thus

4 ,2
A, =~ puonet Z ;r-(-r—s;)zcos (?m)

n
n-odd

The complete solution is

nr(, . b
A=i,ponoizi(2_a)2cos(ﬂx)[COSh 3V=3)

— nw o nw 2a cosh 9%b
odd

4

(b) The flux linkage of a wire at z,y is
A=1A,(z,y)

and thus

dX 4 2a,2 nr | [cosh 2% (y — %) di
”"—&?"“"""lz;ﬂ(?) cos (552) cosh5Ep |G

odd

8.6.8 (a) Here we have a solution very much like that of Prob. 8.6.6, except that the
particular solution

A, = —izuein,(a/7)? sin (%)

has to be replaced by an infinite sum whose second derivative reproduces the
square wave of magnitude zn,. Thus

. 4 .
Ay, = —iuin, Z —(i)2 sin (_n7rz)
g MEonm a

Figure S8.6.8

The complete solution is (compare Prob. 8.6.6)

A =igpoin, Y i(i)zsin(m) cosh(nr/a)(y - 3) _

nwb
e a cosh ( o )

1
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(b) The inductance is computed from

a pb
- / / nodz'dy 214, (z', ¥')
o Jo

where 2[A, is the flux linkage of one turn n,dz'dy is the wire density. Thus
integrating one typical term:

[ azen 2y [ [°°s‘;o';;,,,,, - 1]y = 2(2) 2% tant 20 - ]

and the inductance is

nw "nmw
n-—odd

L=pondl 3 22 (2)4 (20 tan (2]






SOLUTIONS TO CHAPTER 9

9.1 MAGNETIZATION DENSITY

9.2 LAWS AND CONTINUITY CONDITIONS WITH
MAGNETIZATION

9.2.1

9.2.2

M = M, cos fz(ix + iy)

The volume charge density

Pm =~V - uoM = poM,sin fz

Om =1 - po(M® — M?)

and thus there is positive surface charge density on top

Om = PoM, cos Bz y=d
and a charge density of opposite sign at the bottom, y = —d.

(a) The magnetization is uniform, with the orientation shown in Fig. P9.2.1. Thus,
it is solenoidal and the right hand side of (9.2.2) is zero and therefore equal
to the left hand side, which is zero because H = 0. Certainly a zero H field
is irrotational, so Ampére’s law is also satisfied. Associated with M inside
is a magnetic surface charge density. However, this is cancelled by a surface
charge density of opposite sign induced in the infinitely permeable wall so as
to prevent there being an H outside the cylinder.

(b) In view of the direction defined as positive for the wire, the flux linked by the
coil is
A=B iy2Rd = poMy2Rd = p,2RdM, cos v (1)

Thus, with the terminus of the right wire defined as the + terminal and
~ = (¢, the voltage is

v= % = —u,2RAM, Qsin 1t 2)
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9.2.3 (a) From Ampére’s law

H‘da=/J-da
c s

fH-ds=0

because there is no J present. This means that H = —VV and V¥ is a scalar
potential that satisfies Laplace’s equations, since H is divergence-free. The
only possible solution to this problem, subject to ¥ = const at y = 0 and
y = a, is ¥ = const; and hence H = 0.

(b) Since

we find

B = u,(H + M) (1)

we have
B =iypu,M,cos f(z — Ut) (2)

The flux linked by the turn is

x=d
A= pol M, cos B(z — Ut)dz
r=—d
sin(Ad — BUt) + sin(8d + fU?)
Bd gd
_ “OldMO{sm Bd cos Ut — cos fdsin fUt
Bd
sin Bdcos UL + cos Bdsin fULt
+
Bd
sin Ad

= 2“0ldMOW [o0}] ﬂUt

= I"’oldMo{

The voltage is
_dx sin Ad
v= = 28U po ldM, Bd

sin fUt

9.3 PERMANENT MAGNETIZATION

9.3.1 The given answer is the result of using (4.5.24) twice. First, the result is
written with the identification of variables
o M,
Zo ,BoZer i=am=-ay—y—b (1)

€o Mo
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representing the upper magnetic surface charge. Second, representing the potential
of the lower magnetic surface charge,
o
u—o—»—Mo; Ty =a,52=—a,y—y+b (2)
(2]

The sum of these two results is the given answer.
In the upper half-space, where there is the given magnetization density, the
magnetic charge density is
P =—-V - pM = p,M,acos fze~*¥ (1)
while at the interface there is the surface magnetic charge density
Om = —poM,(y =0) = —uoM, cos Sz (2)

In the upper region, a particular solution is needed to balance the source term, (1)
introduced into the magnetic potential Poisson’s equation

V2¥, = —M,a cos fze~ Y (3)

given the constant coefficient nature of the Laplacian on the left, it is natural to

look for a product solution having the same z and y dependence as what is on the
right. Thus, if
¥, = Fcos fze” ¥ (4)

then (3) requires that
F[-B% + o®| = ~Moa = F = M,a/(B% - o?) (5)
Thus, to satisfy the boundary conditions at y =0

ave vt
v = o ~Ho gy + oy = —poM, cos Bz (8)
we take the solution in the upper region to be a superposition of (5) and a suitable
solution to Laplace’s equation that goes to zero at y — oco and has the same z
dependence.

M,
Ue = [Ac_ﬁy + (,T_'%e_ay] cos fz (M
Similarly, in the lower region where there is no source,
Ul = CePY cos Bz (8)
Substitution of these solutions into the two boundary conditions of (6) gives
M,
A= —— 9
2a- ) )
M,
C= ———2 _
2(a+ ) (10)

and hence the given solution.
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9.3.3 We have
V poH = —p, V3V = -V - uoM = —p,BM, cos fz exp oy
This is Poisson’s equation for ¥ with the particular solution:

= ——ﬂyg——cosﬁzex a
P az_ﬂz P y

The homogeneous solution has to take care of the fact that at y = 0 the magnetic
charge density stops. We have the following solutions of Laplace’s equation

U, — AcosfBze™PY y>0
h BcosfBzePY y<0

There is no magnetic surface charge density. At the boundary, ¥ and 8¥/dy must
be continuous
BM,

_az—ﬂ2+B=A
and oM

(o4 )

A

Solving, we find

Q

BZ“E(?M—"W(”E)

and
— _L (1 — E)
2(a+p) B
9.3.4 The magnetic volume charge density is
19 19
==V oM = —po = 2 (rM,) — po-—
p . K rar(rM) . rc':hﬁjud>
M, - M, -
= —no—p(r/R)*" cos p(¢ — ) + po—=p(r/ R)" " cos p(¢ — )

=0
There is no magnetic volume charge density. All the charge density is on the surface
Om = ,qur|r=R = poM,cosp(¢ —v)
This magnetic surface charge density produces p,H just like o, produces ¢, E

(EQS). We set
v = {A(R/r)”cosp(:ﬁ—'y) r>R
B(r/R)Pcosp(¢ —7) r<R
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Because there is no current present, ¥ is continuous at r = R and thus

A=B

On the surface

We find

(b)

(c)

v v
-”03,."':-:1:... + ""37'1-:12_ = 0om = poM,cos p(¢p — )
A R
ZPE = Mo A= EMO

The radial field at r=d+ R is

M, R \**!
poHy (r = d+ R) = po—* cos p(¢ ~ 7) (__—R — d)
The flux linkage is

poN3M, +1 n
_ 2 = o P — -
A= u,N“H,al = 3 l(R T d) cosp(2 ﬂt)
The voltage is
d) _ pQu.N?M,al p+1
&= 2 (R Ta)  cospllt
If p is high, then
p+1
(71 va) <!

unless d is made very small.

9.4 MAGNETIZATION CONSTITUTIVE LAWS

9.4.1

(a)

(b)

With the understanding that B and H are collinear, the magnitude of B is
related to that of H by the constitutive law

B = po[H + M, tanh(aH)] (1)

For small argument, the tanh function is approximately its argument. Thus,
like the saturation law of Fig. 9.4.4, in the neighborhood of the origin, for
aH < 1, the curve is a straight line with slope uo(1 + aM,). In the range of
aH s 1 the curve makes a transition to a lesser slope pu,.

It follows from (9.4.1) and (1) that

N1 C!Nﬂ.
B=uo[2R+Mt h( )] (2)
and in turn from (9.4.2) that
aw?Nop, [ N1t aNi:
Ag = _—4—[2”12 M, tanh (5 1 )] (3)

Thus, the voltage is v = dA2/dt, the given expression.
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9.4.2 The flux linkage is according to (9.4.2)
Tw?
da=——N,B (1)

The field intensity is according to (9.4.1)
Nlt
¢~ 27R

Therefore
dAg rw? N dB

dt 4 dt
where we need the dispersion diagram to relate Hy (i.e. ¢) to B (see Fig. $9.4.2).

; P

AN AN
L]

Figure S9.4.2

9.5 FIELDS IN THE PRESENCE OF MAGNETICALLY
LINEAR INSULATING MATERIALS

9.5.1 The postulated uniform H field satisfies (9.5.1) and (9.5.2) everywhere inside
the regions of uniform permeability. It also satisfies the contm\nty conditions, (9.5.3)
and (9.5.4). Finally, with no H outside the conductors, (9.5.3) is satisfied. The only
way in which the permeable materials can alter the uniform field that exists in
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9.5.8
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their absence is by having a component collinear with the permeability gradient.
As shown by (9.5.21), only then is there induced the magnetic charge necessary
to altering the distribution of H. Here, such a component would be perpendicular
to the interface between permeable materials, where it would produce a surface
magnetic charge in accordance with (9.5.22). Because H is simply 7/w throughout,
the total flux linking the one turn circuit is simply

A= / ueHda +/ poHda = (pgAq + poAu)H = (paha + toAs)i/w (1)
a Ab

and hence, because A = Lz, the inductance is as given.

From Ampere’s law applied to a circular contour around the inner cylinder,
anywhere within the region b < r < a, one finds

)
Hy = —
*~ 2

where i, points in the clock-wise direction, and z along the axis of the cylinder.
The flux densities are )
#a

Eot
d By=—
27r an ¢

By = 2nr

in the two media. The flux linkage is

R - a .

= Lalid Hat
A l{/,; 27rrdr+/,z 2xr r}
l .
= E;[p.bln(R/b) + paln(a/R))e

The inductance is A I
L= : = ﬂ[ubln(R/b) + l‘aln(a/R)]

For the reasons given in the solution to Prob. 9.5.1, the H field is simply
(¢/w)is. Thus, the magnetic flux density is

B =uHl =—(%3%) 1

and the total flux linked by the one turn is

o _ .
,\=/ B,dydz:d/ (ThmZy 2 gy Bmld, (2)
S -1

l w 2w

By definition, A = Lz, so it follows that L is as given.
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9.5.4 The magnetic field does not change from that of Prob. 9.5.2. The flux linkage
is
@ % a—b\.
A= l/b pm(r/b)%dr-— pml( ; )‘l
The inductance is
a—b
L= [lml—b—-

9.5.5 (a) The postulated fields have the r dependence of the H produced by a line
current ¢ on the z axis, as can be seen using Ampére’s integral law (Fig. 1.4.4).
Direct substitution into (9.5.1) and (9.5.2) written in polar coordinates also
shows that fields in this form satisfy Ampére’s law and the continuity condition
everywhere in the regions of uniform permeability.

(b) Using the postulated fields, (9.5.4) requires that

Bad _ mC | o M, (1)
r r B

(c) For a contour that encloses the interior conductor, which carries the total
current 4, Ampére’s integral law requires that (8 = 2x — )

f Hyrdr=i=ar® +5rC = aa+ go (2)
c r r
Thus, from (1),
. Ra %
= Ba A=—" .
imAlrp) a+ phs’
C = (l‘a/”'b)" (3)

o+ ple

(d) The inductance follows by integrating the flux density over the gap. Note
that the same answer must be obtained from integrating over the gap region
occupied by either of the permeable materials. Integration over a surface in
region a gives

A=l /,: * “‘:_A dr = lpg Aln(a/b) = a+ (l:;lj(:)/(lz:/ Kb “

Because A = Li, it follows that the inductance of the shorted coaxial section

is as given.

(e) Since the field inside the volume of the inner conductor is zero, it follows from
Ampere’s continuity condition, (9.5.3), that

A/b=i/b[a+ﬂﬁ ; region (a)

Homfo =z em {C/b=i(ﬂa/nb)/b(°‘+ pua)i region (8) 7
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Note that these surface current densities are not equal, but are consistent with
having the total current in the inner conductor equal to .

., A (o] ta t(pa/ )P
= —(ab)+ —~pb = 6
=T A e “
9.5.6 The H-field changes as one proceeds from medium g, to the medium y;. For

the contour shown, Ampére’s law gives (see Fig. 59.5.6):

Hla+ Hi(w—a) =34

i
el
7y

Figure S9.5.6

The flux continuity gives
paHE = po HY
Therefore u
Hila+Z(w—a)] =14
2o+ 2w -]

and the flux linkage is

a padl
A=dluH = ———cmo——
* a+ Le(w—a)
and the inductance is
L= é _ dl
- i - ﬁ + w“—ba

9.6 FIELDS IN PIECE-WISE UNIFORM MAGNETICALLY
LINEAR MATERIALS



9.6.1
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(a)

(b)

Solutions to Chapter 9

At the interface, Ampére’s law and flux continuity require the boundary con-

ditions aus oyt
a _ b S 2z =
H: - H; 22 " 9s K, cos fz (1)
ove avwd
poHg — pHY = —p,o oy TFay =0 (2)

The z dependence of the surface current density in (1) suggests that the
magnetic potential be taken as the solutions to Laplace’s equation

_JA —By & B
v= { C;ep” si:lnﬂzz (3)

Substitution of these relations into (1) and (2) gives

- A K,
[#«5" #ﬂﬂ] [C] N [ 0 ] ®
and hence .K
=_-8__"o . = _He
T B+ E] =% )

Thus, the magnetic potential is as given.

In the limit where the lower region is infinitely permeable, the boundary
condition at y = 0 for the upper region becomes

ave
0z

H(y=0)=-— (y = 0) = K,cos Sz ()

This suggests a solution in the form of (3a). Substitution gives
A= —Ko/ ﬁ (7)

which is the same as the limit u/u, — oo of (5a).

Given the solution in the upper region, flux continuity determines the field in
the lower region. In the lower region, the condition at y = 0 is

vt

O oy B0 oy Feg
ay (y_o)_ b ay (y—o)— "Kosulﬂz (8)

and it follows that

BCsin Bz = %Kosin Bz=C = %Ko/ﬂ (9)

which agrees with (5) in the limit where p/u, > 1.
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9-11

(a) The H-field is the gradient of a Laplacian potential to the left and right of

(b)

the current sheet. Because n X H =0 at y = +d, ¥ = const.

At the sheet .
' nx (H*-H%) =K

and thus sus gyt
-——87 + —— 3y = K, sin (
From flux density continuity we obtain
o _ ow
Bo 3z $o 3z

From (2) we see that ¥ and ¥® o cos(ry/2d) and thus

U* = Acos (%)c_"/“

¥® = Bcos (-;E%)e’"’/“
This satisfies ¥ = const at y = +d. We have from (3)

~2a4 = 2P
and from (2)
x x
giving K
A=-B=_--2
(x/d)
Therefore

Us = Ko cos( )e:F"'“/“

(x/d)

Boundary conditions at r = R are

e _ b _ _— ==

H-Hy=—p 35 *Ros ~2R"
avs oy

By = Br = —ugr oy =0

18v* 18¥*® Ni .
in ¢

(1)

(2)-

(3)

(4a)
(4)

(1)

(2)

To satisfy these, it is appropriate to choose as solutions to Laplace’s equation

outeide and inside the winding

{(A/r) cos¢; R<r
Crcos ¢; r<R

3)
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(b)

(a)

Solutions to Chapter 9

Substitution of these relations in (1) and (2) shows that the coefficients are

_ NR ., uA
~ 201+ (/po)’

=-£Z 4
and substitution of these into (3) results in the given expressions for the
magnetic potential.

The magnetic field intensity inside is uniform and z directed. Thus, the in-
tegration over the area of the loop amounts to a multiplication by the area.
The component normal to the loop is H, cosa, H, = —C. Therefore,

A = npoH, cos a(2al) = —np,C cos a(2al) (5)

With no current in the rotating loop, the flux linkage-current relation reduces
to A = L1, 80 the desired mutual inductance multiplies ¢ in (5).

It is best to find the H-field first, then determine the vector potential. The
vector potential can then be used to find the flux according to 8.6.5. Look at
stator field first (r = a). The scalar potential of the stator that vanishes at

r=>bis ;
P = Acos¢(§ - ;) (1)
On surface of stator
nxH' =K (2)
where n = —i,.
K =1i,i,N, sing (3)
where the stator wire density N, is
M
*" 2a

with N; the total number of turns. Since

N NELLA —1Asin¢(5 - f)i.
a b a

r 8¢ 'r=¢
We find N b
A
A= —711m ()
The H field due to stator windings is:
Nity a b2 . B2, ..
B = . 23 [(1 + r_2) cos i, — (1 - r_n) sin ¢1¢] (6)

The rotor potential is

¥ = Beos(¢ — 0)(Z - 2) (7
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(b)

We find similarly,
N, . ab

P S hw—a )

The H-field is

_ Npiz b

=2 b0 Dy (= 0)ie - (1- L) sine - 0] (9)

Fluxes linking the windings can be obtained by evaluating f s B -da or by use
of the vector potential A,. Here we use A,. The vector potential is z-directed
and is related to the B field by

104,, 94,

VxA=B=uoH=;a¢1,— 3, 14 (10)
From the r-components of H we find by inspection
Ni2 ab r b, .
A, = ,U'o'-l“l"—ﬁ(— + —) sin ¢
2 a?2-b2% r (11)
Ng’l:g ba

( + %) sin(¢ - 6)

Bomg a2 —p2 '
Of course, the ¢ component gives the same result.

The inductances follow from evaluation of the flux linkages. The flux of one
stator turn, extending from ¢ = —¢, to ¢ =7 — ¢, is

N (¢o) = l[A: (7" - ¢o) - A:(_‘i’o”r:a

Nigy ab o by, . (12)
= pol 5 27 bz(z + ;)ZquSo
The inductance is obtained by computing the flux linkage
™ N1<I>f\a(¢o) 2. a2 +b2
The inductance is 5 2, g2
11 2@ +
Lll—T— olNl 2 _ 52 (14)
In a similar way we find
)\22 2 02 -+ b2
L22 = ; = OlNZ a2 b2 (15)

The mutual inductance is evaluated from ®7°, the flux due to the field pro-
duced by the stator, passing a turn of the rotor extending from —¢, + 4 to
T—¢o+0

O = A3 (m ~ do+0) — AL (—40o +6)]r=p

= PolNlil Z—b sin(¢o - 0)

a (16)
a2 — b2
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Solutions to Chapter 9
The mutual flux linkage is

L] N

A
21 = .m0 2b

—=9%bd¢, = uolN1Naiy ;—% cosd (17)

2ab
Lz]_ = }lolNlsz cos f

A similar analysis gives L;3 which is found equal to L2;. From energy argu-
ments presented in Chap. 11, it can be proven that L3 = L3; is a necessity.
Note that

L3, = L1aLa; < Lyy Lo
The vector potential of the wire carrying a current I is

= -Lelin(2) M
where
Y

and a is a reference radius. If we mount an image of magnitude i, at the
position z = 0,y = —h, we have

_ _I‘oib r2
As = 2 In( a ) @

where
ra =V(y+h)? +22

The field in the u-material is represented by the vector potential

4, = -Helep (1) (3)

where %, is to be determined. We find for the B = uH field

_ _;. 04, _, 94,
poH=V x A =i, 3y —iy 3z
" \/(y — h)? +2? \/(y DR
—1,( ); y>0
\/**’(y Ry + 22 \/—“(y+h)2+z2
I‘o‘a .
uH = {ix(y - B) —iyz}; y<o0 (4b)

2% /(' y. ._—h)"’ 3
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At y = 0 we match H, and uH, obtaining

I—iy = Eole (5)
7
I+ib=ia (6)

By adding the two equations we obtain:

21
i = (7)
1+ ‘ff
and thus
1-
. _ 8

(b) When g > u,, then Hy,,, ~ 0 on the interface. We need an image that cancels
the tangential magnetic field, i.e.

ip=1
{(c) We have a normal flux as found in (4a) for i, = I

x

VT 2

This normal flux must be continuous. It can be produced by a fictitious source
at y = h of magnitude i, = 21. The field is (compare (4b))

poH, = ’2‘—;21

o I 1 . .
H=-F =] {IX(y—h)“‘vz}

N

(d) When p > p,, we find from (2) and (8)

1q = 21

ibzI

in concordance with the above!
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The field in the upper region can be taken as the sum of the field due to

the wire, a particular solution, and the field of an image current at the position

y=

—h,z = 0, a homogeneous solution. The polarity of this latter current is

determined by which of the two physical situations is of interest.

(a)

(b)

(a)

(b)

If the material is perfectly conducting, there is no flux density normal to its
surface in the upper region. In this case, the image current must be in the —z
direction 8o that its y directed field is in the opposite direction to that of the
actual current in the plane y = 0. The field at y = h,z = 0 due to this image
current is .
Bot .

P = ) ) W
and therefore the force per unit length is as given. The wire is repelled by a
perfectly conducting wall.

In this case, there is no tangential magnetic field intensity at the interface, so
the image current is in the same direction as the actual current. As a result,
the field intensity of the image current, evaluated at the position of the actual
current, is the negative of that given by (1). The resulting force is also the
negative of that for the perfect conductor, as given. The wire is attracted by
a permeable wall.

In this version of an “inside-outside” problem, the “inside” region is the highly
permeable one. The field intensity must be H, iz in that region and have no
tangential component in the plane z = 0. The latter condition is satisfied by
taking the configuration as being that of a spherical cavity centered at the
origin with the surrounding highly permeable material extending to infinity
in the 2z directions. At the surface where r = a, the normal flux density in
the highly permeable material tends to be zero. Thus, the approximate field

takes the form

V= —H,rcosf + Acosﬂ

(1)

. r2
where the coefficient A is adjusted to make
ave
or

Substitution of (1) into (2) gives A = —a®H,/2 and hence the given magnetic
potential.

n-Bl_ =0=> (r=a)=0 (2)

Because there is no surface current density at r = A, the magnetic potential
(the tangential field intensity) is continuous there. Thus, for the field inside

V(r = a) = ¥*(r = a) = —3H,a/2 (3)

To satisfy this condition, the interior magnetic scalar potential is taken to
have the form

U = Crcosf = Cz (4)

Substitution of this expression into (3) to evaluate C = —3H,/2 results in the
given expression.
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The perfectly permeable walls force the boundary condition ¥ = O on the
surfaces. The bottom magnetic surface charge density is neutralized by the im-
age charges in the wall (see Fig. $9.6.8). The top magnetic surface charge density
produces a magnetic potential ¥ that is

¥ = Asinh f(y —a)cos fz  y > d/2 (1a)
and d
¥ = Bsinh f(y + 5) cosfz y<df2 (1)
At the interface at y = d/2, ¥ is continuous
Asinh ﬂ(g —a) = Bsinh fd (2)
and thus hﬂ( )
ginh f(a —
B=-A—mnpa ®)
The magnetic surface charge density at y = d/2 is
m = oM, cos Bz (4)
It forces a jump of ¥ /dy at y = d/2:
_ﬂ ﬂ = Mo cos ﬂg (5)
dy y=d/24 9y y=d/2_
and we find M,
—Acoshﬂ(-———a) + Bcosh fd = i ()
Using (3) we obtain
A=— M, sinh Ad
I/ coshﬂ(g - a) sinhﬂd—coshﬂdsinhﬂ(% —a) 7
_ M, sinhgd (7)
B sinhB($% +a)
The vertical component of B, B, above the tape, for y > d/2, is
av i
B, = ~Hogy = poM, —% cosh B(y — a) cos Bz (8)

Note that in the limit a — d/2, the flux is simply u,M, as expected If the tape
moves, cos Sz has to be expressed as cos ﬂ(z ~ Ut). The flux is

A=wN poMo :??fd 2 cosh B(h + = —a) x / cosf(z' — Ut)ds' (9)
The integral eva.lues to
1. l ) l 2 1
—ﬂ;[s1nﬂ(§—Ut)+smﬁ(§+Ut)] = EsmﬂicosﬂUt (10)
and from here on one proceeds as in the Example 9.3.2.

=D
°T dt
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In terms of the magnetic scalar potential, boundary conditions are

¥(z,b) =0; ¥(z,0)=0 (1)
_ av _ Y. ﬂ _ ﬂ
Hy - ay (0’ y) e KO cos a y ay (b, y) = Ko [ofe]:] a (2)

To satisfy the first pair of these while matching the y dependence of the second
pair, the potential is taken as having the y dependence sin(ry/a). In terms of ¥,
the conditions at the surfaces z = 0 and z = b are even with respect to z = b/2.
Thus, the combination of exp(+nz/a) chosen to complete the solution to Laplace’s
equation is even with respect to z = /2.

¥ = Acosh [%(z - g)] sin (%) (3)

Thus, both of the relations (2) are satisfied by making the coefficient A equal to

aK,
A= m cosh(mb/2a) (4)

The solution can be divided into a particular part due to the current density
in the wire and a homogeneous part associated with the field that is uniformly
applied at infinity. Because of the axial symmetry in the absence of the applied
field, the particular part can be found using Ampére’s integral law. Thus, from an
integration at a constant radius r, it follows that

Hyp2nr = nr2J,; r<R
Hy2rnr=7nR%*J,; R<r

(1)
so that the particular field intensity is

_Jrds/2; r<R
Hep = {R2J0/2r; R<r (2)

in polar coordinates

1(184,, JA,,
H_;(? 3¢ " ar "”) (3)
and it follows from (2), integrated in accordance with (3), that
2
_ ) —mer?JL /4 r<R
Asp = {—,i—,paJoR%n(r/R) —~ mRJ,; R<r (4)

In view of the applied field, the homogeneous solution is assumed to take the form

A — Dr sin ¢; _ r<R
zh = —p,aHorsinth-f-C%‘é;' R<r (5)
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The coeflicients C and D are adjusted to satisfy the boundary conditions at r = R,
A2 — AL =0 (6)

a b
_ 194 194, (7)

B Or uy Or

The first of these guarantees that the flux density normal to the surface is continuous
at r = R while the second requires continuity of the tangential magnetic field
intensity. Substitution of (5) into these relations gives a pair of equations that can
be solved for the coefficients C' and D.

e ] (5] = T (®

The coefficients which follow are substituted into (5) and those expressions respec-
tively added to (4) provide the given expressions.

(a) Given the magnetization, the associated H is found by first finding the distri-
bution of magnetic charge. There is none in the volume, where M is uniform.
The surface magnetization charge density at the surface, say at r = R, is

Oom = —fton - (M* = M?) = y,Mn i, = p,M cosf (1)

Thus, boundary conditions to be satisfied at r = R by the scalar magnetic
potential are

-yt =0 (2)
ave F)\Ad
~Ho=3 + Ho5 — = HoM cosf (3)

From the 6 dependence in (3), it is reasonable to assume that the fields outside
and inside the sphere take the form

_ ) —-H,rcosf + Ac—‘::—g
¥= { —~Hrcosf (4)

Substitution of these expressions into (2) and (3) gives
H=H,~ M= M =3(H,~ H) (5)
Thus, it follows that
B = uo(H + M) = po(—2H + 3H,) (6)
(b) This relation between B and H is linear and therefore a straight line in the

B — H plane. Where B =0in (6), H = 3H,/2 and where H =0, B = 3u,H,.
Thus, the load line is as shown in Fig. $9.6.11.
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JY.,H.,
bk -
B [ ~075
(tesigf -~ - -- ]
B \ J
L ] -
- ~3.1 : 3Ho/2 7
O / 1 N 1 1 ' 1 1 j

0 2 4 . 6 8
H(units of 10 amps/m)—

Figure $9.6.11

(¢) The values of B and H within the sphere are given by the intersection of the
load line with the saturation curve representing the constitutive law for the

magnetization of the sphere.

(d) For the specific values given, the load line is as shown in Fig. S9.6.11. The
values of B and H deduced from the intersection are also indicated in the

figure.

We assume that the field is uniform inside the cylinder and then confirm the
correctness of the assumption. The scalar potentials inside and outside the cylinder

are
v { —H,Rcos ¢(r/R) + Acos$(R/r) r>R
Ccos ¢(r/R) r<R

Because ¥ is continuous at r = R
-H,R+A=C

If there is an internal uniform magnetization M = Mi,, then
n-M=Mcos¢

The boundary condition for the normal component of u,H at r = R gives

A C
(I‘oHo + I‘OE) + I‘OE = uoM

Therefore, from (2) and (4)
M

=_Ho+?

wQ

(1)

(2)

(3)

(4)

(5)
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and the internal (r < R)H field is (we use no subscripts to denote the field internal
to cylinder):
M,.
H= (Ho - 7)1’( (6)

The magnetization causes a “demagnetization” field of magnitude M/2. We can
construct “load line” to find internal B graphically. Since

B = po(H + M) )
we find from (6) for the magnitude of the internal H field

M+H H B H
H—(Ho—- > +?>—H0—m+'§‘ (8)
or B
H=2H,-2 (9)

(]

The two intersection points are (see Fig. $9.6.12)
H=2H, for B=0

and
B=2u,H, for H=0
We read off the graph: B = 0.67 tesla, H = 2.5 x 10° amps/m.

' L ! ' ]
I oaf | g ~
B B
(teslo) {tesla)
05 0.5
O ¢] t
¢ 0 2 4 . 6 8
H(units of 10’ amps/m)— H{units of 10 amps/m)—
Figure S9.6.12 Figure S9.6.13

The relation between the current in the winding and H and M in the sphere
are given by (9.6.15).
Ni
M=3(— -

(X _ ) )

From this, the load line follows as

Nz

BEI‘o(H'*'M):“o(E_ZH) (2)
The intercepts that can be used to plot this straight line aic shown in Fig. $9.6.13.

The line shown is for the given specific numbers. Thus, within the sphere, B =~ 0.54
and H ~ 1.8.
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9.7 MAGNETIC CIRCUITS

9.7.1

(a)

(b)

Because of the high core permeability, the fields are approximated by taking
an “inside-outside” approach. First, the field inside the core is approximately
subject to the condition that

n-B=0 at r=a and r=} (1)
which is satisfied because the given field distribution has no radial component.
Further, Ampére’s integral law requires that

27 2r Ni
Hyrd$ = Ni = —rd¢ = Ni (2)
0 o 2nr
In terms of the magnetic scalar potential, with the integration constant ad-
justed to define the potential as zero at ¢ = =,

_1o¥ = N => V= —&¢+const
r d¢ 27r 2x
. (3)
2 x

This potential satisfies Laplace’s equation, has no radial derivative on the
inside and outside walls, suffers a discontinuity at ¢ = O that is Nt and has a
continuous derivative normal to the plane of the wires at ¢ = 0 (as required.
by flux continuity). Thus, the proposed solution meets the required conditions
and is uniquely specified.

In the interior region, the potential given by (3), evaluated at r = b, provides
a boundary condition on the field. This potential (and actually any other
potential condition at r = b) can be represented by a Fourier series, so we
represent the solution for r < b by solutions to Laplace’s equation taking the
form

.S Ym sinm (7)™ (4)

m=1

Because the region includes the origin, solutions r~™ are omitted. Thus, at
the boundary, we require that

]‘2," 1- —- E ¥m sin m¢ (5)

Multiplication by sin n¢ and 1ntegratlon gives
2n N: ¢ 2x 00
/ —(1- %) sin(ng)d¢ = / D $m sin mg sin ngds
0 2 T 0 me=1
=t

(6)

Thus,
. |
bm= 22 [ (1= G sinmpag = 2 (7

mx
Substitution of this coefficient into (4) results in the given solution.
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9.7.2 The approximate magnetic potential on the outer surface is
o0 .
N2
¥ = E —sinm 1
m=1 mn ¢ ( )

according to (b) of Prob. 9.7.1. The outside potential is a solution to Laplace’s
equation that must match (1) and decays to zero as r — co. This is clearly

— Ni
= — m o ’ 2
v mz=:1 — (a/r)™ sinmé ( )
9.7.3 Using contours C; and C; respectively, as defined in Fig. $9.7.3, Ampére’s
integral law gives
Hisa=Ni= H, = Ni/a (1)
Hyb = Ni = Hy = Ni/b (2)

e e

i s B |
Z"-:'. ] QN/ 'V
T~
. ¥ T |
-—-dl—. | cl-

! ¥
| | -
L____,N_"’_"_“,,’L__#J.___j

Figure S9.7.3

From the integral form of flux continuity, for a closed surface S that intersects the
middle leg and passes through the gaps to right and left, we know that the flux
through the middle leg is equal to the sum of those through the gaps. This flux is
linked N times, so

A = N(cwpgH, + dwuy, Hp) (3)

Substitution of (1) and (2) into this expression gives

A= N2w(Z2 4 d—gﬁ)i (4)

where the coefficient of ¢ is the given inductance.
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The field in the gap due to the coil of N turns is approximately uniform
because the hemisphere is small. From Ampere’s law

Hh = Ni (1)

where H directed downward is defined positive. This field is distorted by the sphere.
The scalar magnetic potential around the sphere is

= R cosd[(r/B) - (R/rY? (2)
where 4 is the angle measured from the vertical axis. The field is
H= —Hhi{i,. cos8[1 + 2(R/r)?] — ig sin 6[1 — (R/r)?]} (3)
A,
Rsin 8 Rd6
df

. Figure S9.7.4
The flux linked by one turn at angle a is (see Fig. $9.7.4)

a
®, =/ poH, 2% R? sin 6d6
0

. a
= -3;;0%21rR2 /(; sin § cos §df (4)

_ 3B Ni
2 h

But 1 — cos 2a = 2sin® o which will be used below. The flux linkage is A2; where 1
stands for the coil on the 7/2 leg of the “circuit”, 2 for the hemispherical coil

wR%(1 — cos 2a)

/2 n
A1 = / P, — sin aRda
0 R

x/2
= —§uo&i7rR2/ sin® ada (5)
4" h 0
Nn _,.
= po-ﬁrR 1
The mutual inductance is
A Nn
Ly = % = —MoﬁﬂRz (6)
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In terms of the air-gap magnetic field intensities defined in Fig. §9.7.5, Ampére’s
integral law for a contour passing around the magnetic circuit through the two
windings and across the two air-gaps, requires that

Nlil + Ngig = Haa: + HbI (1)

\;
\\‘_\tx

[
)

Figure S9.7.5

In terms of these same field intensities, lux continuity for a surface S that encloses
the movable member requires that

awpo Hy = buwpo,Hy = Hy = %Ha (2)
From these relations, it follows that

H, = (Ny1i; + Nziz)/x(l + %) (3)

The flux linking the first winding is that through either of the gaps, say the upper
one, multiplied by N;

A1 = Niawpu,Hg = Lo(le’il + N1N27:2) (4)

The second equation has been written using (3). Similarly, the flux linking the
second coil is that crossing the upper gap multiplied by Nj.

A2 = NoawpoHg = Lo(No Nty + N2i3) (5)

Identification of the coefficients of the respective currents in these two relations
results in the given self and mutual inductances.
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9.7.6

Denoting the H field in the gap of width z by H, and that in the gap g by
H,, Amptre’s integral law gives

fH-ds:zH,+gH,=Ni (1)
where flux continuity requires

poHzma? = poH 2nad
Thus

(2)

2
xa
zH,

+ m gH, = Ni (3)
The flux is Ni
®) = p,7a’H, = o't

A I‘o x ﬁf + Z_’h
The inductance is

L= N®, poN 2

i ot
9.7.7

We pick two contours (Fig. $9.7.7) to find the H field which is indicated in the

three gaps as H,, Hy, and H.. The fields are defined positive if they point radially
outward. From contour Cj:

(—H, + Hy)g = Ny1,

(1)
P

11t

H;

le—  —n

Figure S89.7.7
From contour C;

(—Ha + Hc)g = Ni1t1 + Naig
The flux must be continuous so that

(2)

21ra[(d - s)ﬂ'oHa + duoHp + €I‘oHc] =0

(3)
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We find from these three equations

_d+EN € Nais

= 4
He 2d g 2d ¢ (4)
d— leil f Nzia

= - = 5

Hy=—3 g 2 ¢ (5)
d— ¢ Nyiy  2d— € Naip

- 6

Ho==0 9 Y722 (6)

The flux linkage of coil (1) is:

A1 = =N 27a(d — &) poHq

dz-—szfil &(d — €) N1 N2ig

The flux linkage of coil (2) is:

Az = Np2malu. He

= uowa[{:@d_ §) Niz + §(d—¢) NlNzix]
d g d g

The inductance matrix is, by inspection

d2 62

L1y = poma a7 Nf
£(2d-¢
Loz = powa—(—a—g————)—Ng
d—
le = L21 = ﬂoﬂ'ae( dg 6) N1N2

9.7.8 (a) ¥ must be constant over the surfaces of the central leg at z = F! /2 where
we have perfectly permeable surfaces. In solving for the field internal to the
central leg we assume that ¥ /dn = 0 on the interfaces with .

(b) If we assume an essentially uniform field H, in the central leg, Ampére’s
integral law applied to a contour following the central leg and closing around
the upper part of the magnetic circuit gives

Hul = Niz; + Naip (1)
Therefore

V(z = —1/2) = N”l—;NZ’E ()
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U(z=1/2) = _&lzﬂ (3)

(¢) In region a, at y = 0, ¥ must decrease linearly from the value (2) to the value
(1)

. .\T
U= —(Nyiy + Nztz)f (4)
At
y=a, ¥=0 (5)
At z = £l/2,0 < y < a, ¥ must change linearly from (2) and (3) respectively,
to zero ! Nyis + Nais ( )
__* _ M 22 16— Y
¥(e = —1,y) = Miirt Paia (o ©)
l N]_il + Ng‘l:g (a - y)
U(z=—,y) = 7
(z=39) 2 . (7)

(d) ¥ must obey Laplace’s equation and match boundary conditions that vary
linearly with z and y. An obvious solution is

¥ = Azy+ Bz + Cy

We have, at y =0
R
Bz = —(Nli]_ + Nz‘lg)T

and thus . .
N]_‘l1 + Ng‘l.z

B=- ]

In a similar way we find at y=a
Aaz+ Bz +Ca=0

and thus
C=0, Aa=-B

which gives
V= Mty + Naip) ;:Ng‘&z) [zy — az]

9.7.9 From Ampére’s integral law we find for the H fields
LA +1H; = Ni+ Kl (1)

where K is the (“surface-”) current in the thin sheet. This surface current is driven
by the electric field induced by Faraday’s law

K
2—(3a+w)=fE-ds=—i/uoH-da
cA dt (2)
dH,
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Finally, the flux is continuous so that

uH,3aw = pHyaw (3)
and
Hy =3H; (4)
When we introduce complex notation and use (4) in (1) we find
f[l(ll +3lz) =N20+IA(11 (5)
and .
- Jwpaw -
= T 6
K 2(3a+w)UAH1 ( )
Introducing (6) into (5) yields
. Ni, 1
H, = , 7
YT +3k) 1+ jwry, (M
where ;
Tm = Mol o

The cross-sectional areas of the legs to either side are half of that through
the center leg. Thus, the flux density, B, tends to be the same over the cross-
sections of all parts of the magnetic circuit. For this reason, we can expect that
each point within the core will tend to be at the same operating point on the given
magnetization characteristic. Thus, with H; defined as the air-gap field intensity
and H defined as the field intensity at each point in the core, Ampére’s integral law
requires that

2Ni = (l; +,)H +dH, (1)

In the gap, the flux density is u,H; and that must be equal to the flux density just
inside the adjacent pole faces.

koHy = B (2)

The given load-line is obtained by combining these relations. Evaluation of the

intercepts of this line gives the line shown in Fig. $9.7.10. Thus, in the core, B = 0.75
Tesla and H = 0.3 x 10* A/m.

1 | | \2'N‘l,,l‘/2 ' ) —
B =125 E '
(tesla) ™~/ g 0.5 )
- : =100 4 o°
[ O )
| \ S N
o A M = 05 I 15
) 0.5x104 Hy (units of 10 amps/m)

H (amps/m)—

Figure S9.7.10 Figure S9.7.11
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Solutions to Chapter 9

9.7.11 (a) From Ampére’s integral law we obtain for the field Hj in the ¢ material and

(b)

H, in the air gap:
bHy,+aH, = N3

Further, from flux continuity

ABy = Au.Hg

and thus N B
(] a Dy

Hy=— _22

Tb by

Now By = po(Hp + M) and thus

Hy = &— E(H{,'FM)
b b
or N b
1
Hy, = -
YT a+b a+bM
This is the load line.
The intercepts are at M =0
Nz N: 6
H, = o+t 2a =0.25x10
and at H, =0 )
M= % = 0.5 x 10°
We find
M =0.22 x 10° A/m
Hy,=0.13x 10°A/m
The B field is

(1)

(2)

(3)

(4)

(5)

to(Hy + M) = 4m x 1077(0.13 + 0.22) x 10° = 0.44 tesla



SOLUTIONS TO CHAPTER 10

10.0 INTRODUCTION

10.0.1 (a) The line integral of the electric field along C} is from Faraday’s law:

E-dl=0 (1)
G

because no flux is linked (see Fig. S10.0.1a). Therefore
-v+itR=0

because the voltage drop across the resistor is : R. Hence

v=1iR (2)
R
n=== ()
+ f [
l
v I ®l zr @
— ! :
I
R

Figure S10.0.1s,b

The line integral along C, is
dd,

4R = W (3)
which leads to 4
iR=(—7)/4 (4)
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Solutions to Chapter 10
Therefore, we find for the voltage across the voltmeter

e .
(b) With the voltmeter connected to 2, (1) becomes

v=2R
Using (2),

P 1LY

= led
and similarly for the other modes

o1 _ or1d®x
v(3) = 3[tR] = 3[4 &t
Caip a1 1d®aq _ d®a
11(4)—-41}2—4[4 T |= h
For a transformer with a one turn secondary (see Fig. $10.0.1b),

a d
v—f-cE'dl—E;/B'da—EQ,\

10.0.2 Given the following one-turn inductor (Figs. S10.0.2a and S10.0.2b), we want
to find (a) vz and (b) vy. The current per unit length (surface current) flowing
along the sheet is K = ¢/d. The tangential component of the magnetic field has to
have the discontinuity K. A magnetic field (the gradient of a Laplacian potential)

H,

ﬁ inside
0

(1)
outside

has the proper discontinuity. This is the field in a single turn “coil” of infinite width
d and finite K = ¢/d. It serves here as an approximation.

(a) vz can be found by applying Faraday’s law to the contour Co,
E.ds= _4 B -da
Cs dt Js,

Using (1), and the constitutive relation B = u,H,

(8) (4) d
f E-ds+ f E-ds=—
(4)C (

i(¢)
- o——dzd 2
0, gt |, Pomd 45 (2)
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Since the inductor walls are perfectly conducting, E = 0 for the second integral
on the left in (2). Therefore,

d i(t)
—vo = ——(slu, L
va =~ (slmo=7")
or,
slp, di(t)
= vy = —
2= Td T
one-turn {
inductor / D s
/d -— D r T
/ surface current, K,
K =1i(t)/d V3 flows through.
( )/_ 1Yy ' _ inductor walls
Va2 () —_— By —= W
+ )/ >z +
{
flows
through

this surface

,‘.——--—(-—-——-—-—-—-'—f_— Py

@da C,

ta)

Figure S10.0.2
(b) Now, v; can be found by a similar method. Writing Faraday’s law on Cj,

d
E-ds=—— B.da 3
C]. dt Sl ( )

Since C) does not link any flux, (3) can be written

d
—o=—2(0)=0



10-4 Solutions to Chapter 10
10.1 MAGNETOQUASISTATIC ELECTRIC FIELDS IN
SYSTEMS OF PERFECT CONDUCTORS
10.1.1 The magnetic field intensity from Problem 8.4.1 is

i R? 1 1, .. 1 2.
H= 7[2cos€(§ - b_s)l' +sm0(-’3 + zs)la]

The E-field induced by Faraday’s law has lines that link the dipole field and uniform
field. By symmetry they are ¢-directed. Using the integral law of Faraday’s law using
a spherical cap bounded by the contour r = constant, # = constant, we have

p o
fE ~ds = 2xrsinbfEy = —%/ boHp27r sin Ordf
()

di xR? [° , 1 1
_FOETW__/; 21rr22sm0cos0d0(ﬁ - b—s)
di 7R? 1 1, ..
= —uod—t?rrz(r—s- - 6—3)28111 6

Thus:
R? r B3, , di
By =pogz (35— 3)sint

10.1.2 (a) The H-field is similar to that of Prob. 10.0.2 with K specified. It is z-directed
and uniform

_ [ K inside
H, = {0 outside (1)

Indeed, it is the gradient of a Laplacian potential and has the proper discon-
tinuity at the sheet.

(b) The particular solution does not need to satisfy all the boundary conditions.
Suppose we look for one that satisfies the boundary conditions at y = 0,z = 0,
and y = a. If we set

E, = ixEqzp(y, t) (2)

with E;,(0,t) = 0 we have satisfied all three boundary conditions. Now, from
Faraday’s law,
0E,, 8H, dK
3y Moy THy ®)

Integration gives

dK
Ezp = yl‘oFt' (4)
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a
g E‘P

Figure S10.1.2a,b

The total field has to satisfy the boundary condition at y = —I. There, the field
has to vanish for almost all 0 < z < a, except for the short gap at the center of the
interval. Thus the E,-field must consist of a large field gE‘,p, over the gap g, and
zero field elsewhere. The homogeneous solution must have an E,-field that looks
as shown in Fig. $10.1.2a, or a potential that looks as shown in Fig. S10.1.2b. The
homogeneous solution is derivable from a Laplacian potential &;

nmw nw
o, = Ay sin (—z) sinh (—

h Z sin ( . z) sinh ( . y) (5)
which obeys all the boundary conditions, except at y = —I. Denote the potential
®, at y= —l by

Oply=—1)= aExpf(x) (6)

so that the jump of f(z) at z = a/2 is normalized to unity. Using the orthogonality
properties of the sine function, we have

—sginh (%l) gAm =aE,p /io f(z) sin (ﬂ;—rz) dz (7

It is clear that all odd orders integrate to zero, only even order terms remain. For
an even order, except m = 0,

a af
/mo f(z) sin (Ta—"z) = 2/ ’ Z sin (T2 5) ds

=0 @ a

2a mm/2
= / u sin udu
u

(mm)? Ju=o (8)
mm/2
= -(r:—:)z[—ucosulgm/2+/(; cosudu]
— i(_l)’%"ﬂ

Therefore

2aE, _1\m/2 _
A, = { mm sinh (-‘?;lli ( 1) m-even (9)
0

m-odd


http:SlO.1.2a
http:SlO.1.2b

10-6 Solutions to Chapter 10

The total field is

dK m/28inh & - mn
E=po— at {lx[ —122( 1) A ——a > hmvr"l/ os(——z)]

even

-t Y 2o e i ()|

even

(10)

10.1.3 (a) The magnetic field is uniform and z-directed
H=i,K(t)

(b) The electric field is best analyzed in terms of a particular solution that satisfies

the boundary conditions at ¢ = 0 and ¢ = o, and a homogeneous solution

that obeys the last boundary condition at r = a. The particular solution is ¢-
directed and is identical with the field encircling an axially symmetric uniform

H-field il
2nrEg, = —mrip, dt’ (1)
and thus dK
r
The homogeneous solution is composed of the gradients of solutions to Laplace’s
equation
@ = Z'.:A,.(r/a)”"/“ sin ("mqu (3)

At r = a, these solutions must cancel the field along the boundary, except at
and around ¢ = /2. Because § <« a, we approximate the field Ey, at r = a
as composed of a unit impulse function at ¢ = a/2 of content

a dK
akyp = Tg%HeT (4)
and a constant field
. = &, 9K
¢h = 2[‘0 dt
over the rest of the interval as shown in Fig. $10.1.3. From (3)
139, 1 nwd
Egnl,_, = 296 " a zn:(mr/a)A.. cos (T) (5)
‘ oF
/ ép
é

(IRIR08REI0A VRURNIININ/]

¢=0 = T"EM

Figure S10.1.3
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Here we take an alternative approach to that of 10.1.2. We do not have to worry
about the part of the field over 0 < ¢ < «, excluding the unit impulse function,
because the line integral of Ey) from ¢ = 0 to ¢ = « is assured to be zero (conser-
vative field). Thus we need solely to expand the unit impulse at ¢ = a/2 in a series
of cos (""" ¢) By integrating

—%(m')r/a)Am% = cos(mn [2)aEy, (6)

where the right hand side is the integral through the unit impulse function. Thus,

= [-22(-1)"/2aEy, for m even
Am {0 for m odd (M
Therefore

b= Y 1), K ooyl in (T ) (®)
and

B=-udEe{ls Z 2(-1)™/2(r/a)

meeven (9)

) +igoos(ZH)| |

[.-sm(

10.1.4 (a) The coil current produces an equivalent surface current K = Ni/d and hence,
because the coil is long
Ni
B~ i.poT (1)

(b) The (semi-) conductor is cylindrical and uniform. Thus E must be axisym-

metric and, by symmetry, ¢-directed. From Faraday’s law applied to a circular
contour of radius r inside the coil

_ 4B, ,

2rrEy = TR

and N di

r 3

Be=gtTa

(c) The induced H-field is due to the circulating current density:

Jp=0cFEy = wﬂuo-l-v—l'sinwt
27°d
where we have set

t(t) = I coswt
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10-8

(a)

(b)

Solutions to Chapter 10

The H field will be axial, z- and #-independent, by symmetry. (The z-“inde-
pendence” follows from the fact that d 3> b.) From Ampére’s law

VxH=J
we have
e
and thus PO
H inguced = ~wo—rpo—r Isinwt

For H, inducea <« H, imposed forr<b

whoob?
1 <1
From Faraday’s law
a
v =——
x Ep atB (1)
and thus SE N ds
ow _ _, XD
3z '°ddt ()
Therefore,
N b, di
Eyp = _”07 T — E 'd—t' (3)

We must maintain E-n = 0 inside the material. Thus, adding the homogeneous
solution, a gradient of a scalar potential ®, we must leave E; =0 at 2 =0
and z = b. Further, we must eliminate E, at y = 0 and y = a. We need an

infinite series
&y, = Z A, cos ( z) sinh (—y) (4)
with the electric field
E, = ; A,,(ﬁbzr-) [sin (-’%r-z) sinh (%Ey)i cos( z) cosh ( y)i ] (5)
At y = +a/2

V""_EA"( )cos( z)c h(b2

E( bd’
FASENEYFT

(6)
= —Eyp = Mo
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J(z) ==z}
<[> b/2 /
— -
~b/2
1 z (a)
. G’
> / \
L N
- ) \ 1]
= \_
E, y E, E
Set —p, '7'% positive number

(b)
Figure S10.1.8

We must expand the functlon shown in Fig. $10.1.5a into a cosine series. Thus,
multiplying (6) by cos Z* z and integrating from z = 0 to z = b, we obtain

mnr b N ds mnr
__b—-z—A,,, cosh (2% 25 T4) = po 1T / (=- —) cos ——zdz -
= {"‘I‘o d dt2(m1r) m - odd
0 m - even
Solving for A, , .
46% /( ) i
Ap = { conh(m':: 2b I‘o%% m - even (8)
o m - odd
The E-field is
_ Ndi by, 4b/(mn)?
E== ddt {(z 2)1’ _Z:d cosh(mma/2b)
[sm (—z) sinh ( y)i (9)

~— cos (—-—-z) cosh ( )1,] }

(c) See Fig. S10.1.5b.
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10.2 NATURE OF FIELDS INDUCED IN FINITE

10.2.1

10.2.2

CONDUCTORS
The approximate resistance of the disk is
_1zmal
T o 2 aA

where we have taken half of the circumference as the length. The flux through the
disk is [compare (10.2.15)]

%
A= /yoH -da = poéﬂiaraz

Mot2o
A==
2

This is caused by the current i3 so the inductance of the disk Ly, is (using N = 1):

The time constant is
Laa  poaocA  poalio

m="R T2 T« 2r

This is roughly the same as (10.2.17).

Live bone is fairly “wet” and hence conducting like the surrounding flesh.
Current lines have to close on themselves. Thus, if one mounts a coil with its axis
perpendicular to the arm and centered with the arm as shown in Fig. $10.2.2, circu-
lating currents are set up. If perfect symmetry prevailed and the bone were precisely
at center, then no current would flow along its axis. However, such symmetry does
not exist and thus longitudinal currents are set up with the bone off center.

()

Figure S10.2.2
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The field of coil (1) is, according to (10.2.8)
_ Ny,
H = 27a (1)
The net field is
Hy + Hing

with H;nq = Ky where Ky is the ¢ directed current in the shell. The E-field is
from Faraday’s law, using symmetry

2xrEy = —po-:—t(Ho + Hipg)wr? (2)
But
Eyl,eo = UEK = % (3)
and thus, forr =a
I%%Z;: + %Hirsd = _%Ho (4)

In the sinusoidal steady state, using complex notation

H, = Re H,e/"* etc. (5)
and
o J9Tm
thd ]'(I)Tm + IHo (6)
where
.= poolAa
mT o2
At small values of wr,
|Hind| = “’TmIHol (7)

10.3 DIFFUSION OF AXTAL MAGNETIC FIELDS THROUGH

THIN CONDUCTORS



10.3.2

10-12 Solutions to Chapter 10

The circulating current K(t) produces an approximately uniform axial field
H, = K() (1

As the field varies with time, there is an induced E-field obeying Faraday’s law

fE-ds=—i/uoH-da (2)
c dt Js

The E-field drives the surface current
K = AcE (3)

that must be constant along the circumference. Hence E must be constant. From
(1)1 (Z)s and (3)

_,. K _d 2
4aF = 4aAo_ = dt;;oKa (4)
and thus d .
;i_tK+ ﬂodAaK =0 (5)
Thus
K(t) = Koe~t/™m (6)
with A
_ HoolAa
(a) This problem is completely analogous to 10.3.1. One has
H,=K (t) (1)
and, because K = AcE must be constant along the surface, so that E must
be constant
d d?
(2d+ V2d)E = — gl () ()
Therefore K 4 p
(2+\/5)K; = - oK)z (3)
* dK K
W + '1; =0 (4)
with
booAd

Tm = m (5)
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The solution for J = K/A is
J = Joet/™m (6)

(b) Since

E-ds=0 (7)
C1

and the line integral along the surface is /2dE, we have

v+1v2dE =0 (8)
= —v2i& - _ e tirm
v= ﬁAa = 2 - e (9)
(c) Again from Faraday’s law

E-ds=-v= "il‘ong'z' = _l‘ojd:ﬂ

; atlo 2 dt
’ 142 Jod (10)

= po———AJe7t™ = (24 V2) et/
Tm 2 c

10.3.3 (a) We set up the boundary conditions for the three uniform axial fields, in the
regions r < b,b < r < a,r > a (see Fig. $10.3.3).

Ho(t) - H, (t) = —Kout (t) = =JoutA = —0FE A (1)
Hl(t) - Hz(t) = —Kin(t) = —=JinA = —0Eiz A (2)
H,(t)

[ (ol .5

Kin
YAl

4

positive
direction —-/
of K

Figure S10.3.3
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From the integral form of Faraday’s law:

2naEoy = —po% [H1(t))m(a? — b) + Hy(t)nb?)

d
2rbEyy = —poEE[Hg(t)arbz]

We can solve for E,,¢ and E;, and substitute into (1) and {2)
oA [ - ¥ dH(t) | V2 dHa(t)

Ho(t) Hl(t) = Wo—(

2 a dt a
oAb ng(t)
Hl(t) H2(t) = o 2 dt
We obtain from (6)
dH,(t
T —— 2( ) + Hy(t) — Hy(t) =0
where
.= BooAb
T2

From (5), after some rearrangement, we obtain:

:Tmz m( b)dHl(t)

(b) We introduce complex notation

H, = H,, coswt = Re {H,,e’"t}

+ H,(t) = H,(t)

3)
(4)

(5)

(6)

(7)

(8)

(9

Similarly H; and H; are replaced by H; 3 = Re [fﬁ,ge"“"]. We obtain two

equations for the two unknowns H, and

-2+ 1+ jwrm )z =0

. a b|a b . 2
[1 +]wrm(3 - ;)]Hl + ;]wrmﬂg =Hp

They can be solved in the usual way

14 jwry,
i = | Hm %J'w"'m _ (14 jwrm)Hp
1 Det - Det
- 0
g= 1tem(-0) Hn| Hn

Det " Det

where Det is the determinant.

b
Det = —{[1 +jwr,,,(-§ - ;)](1 + Jwry,) + jwrm%}



Solutions to Chapter 10 10-15

10.8.4 (a) To the left of the sheet (see Fig. 5$10.3.4),

H = K,i, (1)
To the right of the sheet
H = Ki, (2)
Along the contour Cy, use Faraday’s law
f E-ds=-i/B-da (3)
G dtJs
L4 b
|
K, pe—a
- T
W K- K Oo
, o C =0
K, :‘ / ¥ ? 1+acos i
f - > T

Figure S10.3.4

Along the three perfectly conducting sides of the conductor E = 0. In the sheet the
current K — K, is constant so that

V.-J=0=V-(0E)=0 (4)
* (K-K dK
E-ds=/ ( o)d = —poab— 5
o, yo \ Ac )W T TPy (5)
K—-K, [* Y _ dK
Aow oo (1+acos A )dy——poab p (8)

The integral yields b and thus

", K ___K
dt ' poalo, po.ala,

(7)

From (7) we can find K as a function of time for a given K,(t).

(b) The y-component of the electric field at z = —a has a uniform part and a
y-dependent part according to (5). The y-dependent part integrates to zero
and hence is part of a conservative field. The uniform part is

K- K, dK

Ewb = - Aao b= poabﬁ (8)
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This is the particular solution of Faraday’s law

OE,, 8H, dK

e T )
with the integral K
Eyp = _MOIE (10)
and indeed, at z = —a, we obtain (8). There remains
_ K-K, Yy
Eyn = 2o, acos ( 5 ) (11)

It is clear that this field can be found from the gradient of the Laplacian
potential

@ = Asin () sinh () (12)
that satisfies the boundary conditions on the perfect conductors. At z = —a
%

O T fcos ™k (%) = K Ko, g 7Y
3y |z=_a = bAcos 5 sinh ( 5 )= Ao, Cco8y (13)
and thus b (K- K.)
—_ @ - o
4= Ao, sinh(ra/b) (14)

10.4 DIFFUSION OF TRANSVERSE MAGNETIC FIELDS
THROUGH THIN CONDUCTORS

10.4.1 (a) Let us consider an expanded view of the conductor (Fig. $10.4.1). At y = A,
the boundary condition on the normal component of B gives

i, -[B® - B%| =0 (1)

) ¥
(a)

(c) A (‘79 Il')

(b)

Figure S10.4.1
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Therefore

Blyen ~ Biles =0 @

y=A =4

Aty=0

=0 (3)

B!clly=0 - Bll;ly:O -

Since the thickness, A, of the sheet is very small, we can assume that B is uniform

across the sheet so that,
C Cc
B!IIy:A = By|y=0 (4)

Using (3) and (4) in (2),
By —Bb=0 ()

From the continuity condition associated with Ampére’s law
nx [H*-H|=K

Since
K = Kgi., n= i,,

~-H:+H =K, (8)

The current density J in the sheet is

=3 7
And so, from Ohm’s law
E=* ()
Finally from Faraday’s law
VxE= —‘;—‘: ©)

Since only By, matters (only time rate of change of flux normal to the sheet will
induce circulating E-fields) and E only has a z-component,

_3E, _ 2B,

oz ot

From (8) therefore,
2Ky _95,
dz'Ac' ~ 8t

and finally, from (6),
a a _ by — _ Qﬂ_
3510z — Hal = —bo—; (10)
(b) Att =0 we are given K = i, K, sin 8z. Everywhere except within the current
sheet, we have J =0
=>H=-VV¥
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So from V - o, H = 0, we have
V¥ =0

Boundary conditions are given by (5) and (10) and by the requirement that the
potential mut decay as y — *oo. Since H, will match the sin fz dependence
of the current, pick solutions with cos Sz dependence

w(2) = A(t) cos fze=PY (11a)
¥(®) = C(t) cos fze? (110)
H(® = A(t) sin fze~ i, + BA(t) cos fze~ V1, (124)
HO® = BC(t) sin fzePVi, — BC(t) cos fzePViy (128)
From (5),
poBA(t) cos fzePY ly=0 + #oPC(t) cos fze?? ly=o =0
Therefore,
A(t) = —C(t) (13)
From (10),
éa_z [BA(t) sin ﬂze'ﬁy|y=o — BC(t) sin fzef¥ |y=0]
= —Adp,f cos Bre PY |y=0 d:‘i—it)
Using (13)

282 A(t) cos fz = —Aou,p cos ﬂz%ﬁt)

The cosines cancel and

dA(t) 28 _
3 + —Ao'll-o At)=0 (14)
The solution is A
AR =A@ =B 7 (15)

So the surface current, proportional to H, according to (6), decays similarly
as

. . - A
K = i, K, sin fze~t/" T = “;—ﬂa
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10.4.2 (a) If the sheet acts like a perfect conductor (see Fig. 510.4.2), the component of
H perpendicular to the sheet must be zero.

.
A

S——{)— 02020200 —RP—& z

p— 0 K(t) = i, K(t) cos f=

Figure S10.4.2

At y = 0 the magnetic field experiences a jump of the tangential component
nx(H1—H2)=K (1)

with n || iy and Hz =0,
H, = —K(t)cos fz (2)

The field in the space 0 < y < d is the gradient of a Laplacian potential
¥ = Asgin Bz cosh f(y — d) (3)
The cosh is chosen so that H,, is zero at y = d:
H = — ApB|cos Bz cosh B(y — d)i, + sin Bz sinh By — d)iy] (4)

Satisfying the boundary. condition at y = 0

—ApP cos Bz cosh d = —K (t) cos Bz (5)
Therefore K(t)
~ Pcosh Ad (©)
_ K(t)sin Bz cosh f(y — d)
¥= A cosh fd (")

(b) For K(t) slowly varying, the magnetic field diffuses straight through so the
sheet acts as if it were not there. The field “sees® u — co material and,
therefore, has no tangential H

¥ = Asin Szsinh B(y — d) (8)
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which satisfies the condition H; = 0 at y = d. Indeed,
H = —ApP|cos fzsinh B(y — d)ix + sin fz cosh By — d)iy]

Matching the boundary condition at y = 0, we obtain

___K()
~ " Bsinh Bd ©)
_ K (t) sin Bz sinh By — d)
¥=- Bsinh Ad (10)

() Now solving for the general time dependence, we can use the previous results
as a clue. Initially, the sheet acts like a perfect conductor and the solution
(7) must apply. As t — oo, the sheet does not conduct, and the solution
(10) must apply. In between, we must have a transition between these two
solutions. Thus, postulate that the current i, K, (t) cos 8z is flowing in the top
sheet. We have '

K,(t) cos fz = 0AE, (11)
Postulate the potential

gin Az cosh By — d) sin Az sinh B(y — d)

V=CO—Ffomps — PO psmpd (12)
The boundary condition at y =0 is
v
"5;|y=o = Hzly:o = —K(t) cos fz (13)
= —C(t) cos Bz — D(t) cos fz

Therefore
C+D=K (14)

Aty=d

av cos fz

_E|y=d = H’Iy:d = K’ (t) cosﬂz = _C(t) cosh ﬁd (15)

The current in the sheet is driven by the E-field induced by Faraday’s law
and is z-directed by symmetry

8E, 0 _ . cosfzcosh By — d) dC
dy at"°H’ e cosh Ad dt 16
_ . cosfzsinh f(y — d) dD (16)
Ho ™ ginh Ad dt
Therefore,
E. = bocos Pz sinh By — d) dC _ . cosfzcosh B(y — d) dD 17)
s = Bcosh fd dt M7 Bsinhpd dt (
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(a)

Aty=d
1 dD K,cosfz
B = —bopiahpd "% = on (18)
Hence, combining (14), (15), and (18)
cosh dK, = —C(t) = —-K + D = —"";A coth ﬂd% (19)
resulting in the differential equation
Boo A dD
—~—cothfd— + D =K
5 coth g 7t + (20)
With K a step function
D=K,[1-et™] (21)
where A
Tn = "°; coth Ad (22)
and
C = Koe—‘/”"

Att =0, D = 0 and at t = o0, C = 0. This checks with the previously
obtained solutions.

If the shell (Fig. S10.4.3) is thin enough it acts as a surface of discontinuity

at which the usual boundary conditions are obeyed. From the continuity of
the normal component of B,

B*-Bt=0 (1)

Figure S10.4.3
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the continuity condition associated with Ampére’s law

nx[H*-H|=K (2)
use of Ohm’s law 7 K
results in
H} —H) = Ky = AcEy (4)
The electric field obeys Faraday’s law
JB
xB=—%¢ (5)
Only flux normal to the shell induces E in the sheet. By symmetry, E is ¢-directed
1 _ 0B,
(VxE), = Y, (E¢ gin §) = 5t (6)
And thus, at the boundary
1 by _ dH,
Roind 30 [sm 0[HF — Hg] = —polo 5 (\4)
(b) Set .
H,(t) = Re { Hoe™* }[cos i, — sin 6is] (8)
The H-field outside and inside the shell must be the gradient of a scalar
potential
¥, =- orcosﬂ+Ai:so (9)
Wy = Crcos (10)
A? = —H,sinf + %sinﬂ (11)
A} = Gsing (12)
24
A% = H,cos0 + —g cosf (13)
A? = —Ccosb (14)
From (1)
a b 24 A
B,=B,.=>Ho+ﬁ=—0 (15)

Introducing (11), (12), and (13) into (7) we find

"

A

1 a{sm 0( Ho+—

2Acos€
Rsind 80 _C)} = “leloAO'{H cos+—— }

(16)
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1044 (a)

(b)

from which we find A, using (15) to eliminate C.

s JwpoAcRYH,
4= 2(jwp,AcR + 3) (17)
A provides the dipole term
M . —jwp,AcR*H,
ar 4= 2(jwpo,AcR + 3) (18)
and thus a
. __1wr(21r1.23) o) (19)
(1+ jwr)
with
,e BpoocAR
3
In the limit wr — oo, we find
th — —2xH,R®
as in Example 8.44.
The field is that of a dipole of dipole moment m = ia
ta
U= 203 08 6 (1)

The normal component has to vanish on the shell. We add a uniform field
ta
= 6 + —— cosf
¥ = Arcosf + yrcil (2)

The normal component of H at r = R is

ov 1a
_E-—lf‘=R =0= —(A — 24"}23) cosf
and thus
_ 2ta
= 4xR3 (3)
and .
ta r R
\I’ = mcoso(zﬁ + F)

(see Fig. S10.4.4).
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Figure S10.4.4

(c) There is now also an outgide field. For r < R

ia
V= e, cos 8 + A(t)rcosf (5)
For r > R, p
cos
=0 Q
The #-components of H are
Ho= % gin0+ Asin; r<R (7a)
b= g5 oin sind; r
and c
H9=§sin0; r>R (7b)

The normal component at r = R is

2ia
r = (41rR3 — A) cos (8a)
and >
H, = B cosfd (8b)
With the boundary condition (7) of Prob. 10.4.3, we have
. C ia 2u,Ac dc
— 2 — — -_— = - ° —
Zemios | @ w4 w0 ©)

From the continuity of the normal component of B, we find

2ta C
wr AT (19)
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The equation for C becomes

1 3
R4sind 30

sin a(c-—— 20 - — cos§——
ir

2za) _ 2u.Ac dC
= R3 dt

or c .
fa
with 7, = p,0AR/3. If we consider the steady state, then
C = Re [Ce™]
1 i
T (14 jwr,) 4x
" 2ta _ E 2ia  JwTy,
T 4xR® T R® T R 1+ JWTm
Jointly with (5) and (6), this determines V.

10-25

(11)

(12)

(13)

(14)

(18)

(d) When wr,,, — oo, we have € — 0, no outside field and 4 = 2ia/47R3 which
checks with (3). When wr,, — 0, we have no shield and A — 0. The shell

behaves as if it were infinitely conducting in the limit wr,, — oco.

10.4.5 (a) If the current density varies so rapidly that the sheet is a perfect conductor,

then it imposes the boundary condition (see Fig. 510.4.5),

n-uH=0 at r=5>

K = K(t) sin 2¢i,

Figure $10.4.5
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Inside the high u material H = 0 to keep B finite. So at r = a,
nxH=K

Therefore
—igHy = K(t)sin 2¢i,

Thus, the potential has to obey the boundary conditions

v
3; 0 at r=% (1)

~———=—K(t)sin2¢ at r=a (2)

In order to satisfy (2), we must pick a cos 2¢ dependence for ¥. To satisfy (1), one
picks a [(r/b)2 + (b/ 7)2] cos 2¢ type solution. Guess

¥ = A[(r/b)? + (b/r)?] cos 2¢

Indeed,
‘;‘f A[:; 2"2] cos2¢=0 at r=b
3 =~ AlC/H + b/rP12sin2g
From (2),
%{(a/b)z + (b/a)?]25in 26 = —K(t) sin 24
Therefore,

_ KOs [/ + 0/
V2T o @

(b) Now the current induced in the sheet is negligible, so all the field diffuses
straight through. The sheet behaves as if it were not there at all. But at r =%
we have g — oo material, so H = 0 inside. Also, since now there is no K at
r = b, we must have

Hy=0 at r=b%
It is clear that the following potential obeys the boundary condition at r = &
¥ = A[(r/b)? — (b/r)?] cos 24

13¢ A .
Hd,:_;-‘57 = —[( /b)2 — (b/r)%]2sin2¢ =0 at r=5

Again, applying (2)

21(o/8)? - (b/a)|26in26 = ~ K (t)sin 24
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Thus,

K(t)a [(r/b)? = (b/r)?]
v=- 08 2 4
2 [(e/b) — (b/aP] % “
(c) At the sheet, the normal B is continuous assuming that A is small. Also, from
Faraday’s law, B

VXE——d—t (5)

Since only a time varying field normal to the sheet will induce currents, we
are only interested in (V x E),

18E, OJE dB,
(228 2Ry

r 3¢ dt
By symmetry there is only a z-component of E
14 _ 0B,
FEF S (©)

One should note, however, that there are some subtleties involve in the deter-
mination of the E-field. We do not attempt to match the boundary conditions
on the coil surface. Such matching would require the addition of the gradient
of a solution of La.pla.ce 8 equation to Ep = i E;. Such a field would induce
surface charges in the conductmg sheet, but otherwise not affect its current
distribution. Remember that in MQS ¢,2E is ignored which means that the
charging currents responsible for the bulﬁ-up of charge are negligible com-
pared to the MQS currents flowing in the systems.

From Ohm’s law, J = oE. But, J = K/A.

10 K, 4B,
r 3¢ Ao Bt ™

Applying the boundary conditions from Ampére’s law,

n X [Heap|,_py — Huwoo] = K14
Hd’l,.:b = Kz
Soatr=5»% 18 H oH
104 _ r
XY el (8)

Now guess a solution for ¥ in the gap. Since we have two current sources (the
windings at r = a and the sheet at r = b) and we do not necessarily know
that they are in phase, we need to use superposition. This involves setting up
the field due to each of the two sources individually

- {401 (1o = /) + 0O - 611 }eonzs )
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Here, A represents the field due to the current at r = b, and C is produced
by the current at r = a. Apply the boundary condition (2), at r = a. We find
from the tangential H-field

208 {a/p)2 - (b/a)7] = ~K(0)

Thus, @
—aK(t
) = 3fteriy - a7 oo
The normal and tangential components of H at r = b are
H, = —{A(t)[:—: + %2] + C(t)%} cos 2¢ (11)
Hy = {28 (4/0)? — (a/5)"]}20in2¢ (12)
From (8)
p_za'—bacﬁ Al) —-2[(b/a)*—(a/b)?|25sin 2¢] = {(2+%§- i%@+-:—-‘i—ct}-}cos 24
Using (10),
dA(t) 2 [(a/b)? — (b/a)?]
it T AB 3RS (/07 T (b/a)7]
_ a dK(t)
[(a/8) + (5/a)?][(a/b)? — (b/a)?] dt
Simplifying,

d:tiit) + Ast) dI:t(t) (13)

_ HobAa [(a/b)? + (b/a)?]

2 |(a/6) — (b/a)"]

D= fermE T fara/ny = /ey (15)

dK/dt is a unit impulse function in time. The homogeneous solution for A is

(14)

Alt) x e~t/" (16)
and the solution that has the proper discontinuity at t =0is

A= DK, (17)
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Using (10) and (17) in (9}, we obtain,
ek, l(r/a)? = (&/r) —ps _ (/812 = (/7Y
¥ = a7 = /] {[(a/b)= T 6/ 2 } 2

First consider the early time ¢ — 0%

_ K, [(r/a)? = (a/r?] _ (r/0) ~ (/12
v= [(a/b)Z—(b/a)=1{l(a/b)2+(b/a)21 2 } 2%
Therefore _uK (r/b)’ +(b/r)2

T [(a/b)2+(b/a)=]°°’2"’

It is the same as if the surface currents spontaneously arose to buck out the
field. At t — o0, e7t/* =0

—aK, [ (r/b)? — (b/r)?

2 (a5 = (5/a] <>
This is when the field has enough time to diffuse through the shell so it is as
if no surface currents were present.

¥ =

10.4.6 (a) When w is very high, the sheet behaves as a perfect conductor, and (see Fig.

$10.4.6)
U= bK———————[(r/az + S‘a/r)] cos ¢ (1)
[2+%]
Then, indeed, 3¥/3r =0 at r = a, and —%%g— accounts for the surface current
K.

o : L K() = K(t)sing

Figure S10.4.6
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(b) When w is very low, then 8V /8¢ =0 at r = a and

y=pxll/ el 4 2)
[a -2l
(c) As before in Prob. 10.4.5, we superimpose the field caused by the two current
distributions b
v = {4012 -2+ 0 - 21} eons (3
The r- and ¢-components of the field are:
1= {4012 + 51+ O + 51} cor @
A C byl ..
PETCI  E
At r =1,
Hy = K,(t)sin ¢ (6)
and thus (1)
Al)=5—¢ (7)
a b
At r=a,
_H¢|r=a = K,

where K, is the current in the sheet. From (7) of the preceding problem
solution, we have at r = a

15 H, _ 8H,
Tadpbo Mo (8)
Thus, using (4) and (5) in (8):
Clt)ra by _ 2dA(t)  dC(t) 1 b
2 L a]‘"“°A"“{a it T a 5t a (9)
Replacing A through (7) we obtain
dc ¢_2lc(t) 2b dK,(t) (10)
&+ pohoals 8] - @0 - GJaF dt
Thus i C(t) .dK
=t P (11)
with .
T = poalo (8 + ] (12)

r——
1]
|
fle
Red
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2b
D= GrE=/ap

The solution for a step of K,(t) is
C = DK,e™*/

C(t) = DK,e~t/" = 2bK,

Combining all the expressions gives the final answer:

o -

For very short times t/7 < 1, one has

r b
_ Keb [r _a 5~ &
V= — [;—;—2:+h]coa¢—b

(a/8)2 — (62"

( + )cos¢

10-31

(13)

which is the same as (1). For very long times exp —t/7 = 0 and one obtains

(2).

10.5 MAGNETIC DIFFUSION LAWS

10.5.1 (a) We first list the five equations (10.5.1)-(10.5.5)
VxH=1J
J=0E
3
VxE=-—uH
V.-uH=0
V-I=0
Take the curl of (10.5.3) and use the identity
Vx(VXxF)=VV.F-V?F

also note that
V- I=V.0E=0V-E=0

because ¢ is uniform. Therefore,

3
— 2 — e —
VE = -2V x uH

(10.5.1)
(10.5.2)

(10.5.3)

(10.5.4)
(10.5.5)

(1)
(2)

(3)
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or
—_ 2 -_——
V@/o) = -u3 (4
(b) Since J = i,J,, equation (b) follows immediately from (4). We now use
(10.5.3) ,
V x (J/O') = —a[lH
But 3
Vx(J/o)= —V x (isJx(z,y)) = —(lx — iy 8zJ )
and thus

oH a2 ,J;

at ay(ap) é):c(a'p)ly

10.6 MAGNETIC DIFFUSION TRANSIENT RESPONSE

10.6.1

10.6.2

The expressions for H, and Jy obey the diffusion equation, no matter what
signs are assigned to the coefficients. The summations cancel the field —K,z/b and
current density K, /b respectively, at t = 0 and eventually decay. If one turns off a
drive from a steady state, the current density is initially uniform, equal to K, /b and
the field is equal to —K,z/b and then decays. But, the symmations with reversed
signs have precisely that behavior.

(a) The magnetic field is
H=i.H,=K, (1)

and there is no E-field, nor J within the block.

(b) When the current-source is suddenly turned off, the H-field cannot disappear
instantaneously; the current returns through the conducting block, but still
circulates in the perfect conductor around the block. For this boundary value
problem we must change the eigenfunctions. At z = 0, the field remains finite,
because there is a circulation current terminating it. Thus we have, instead

of (10.6.15),
Z Cr cos (——z)e“/"‘ : (2)
n—odd
with the decay times
_ 4pob?
Tn = (nﬂ_)z (3)

Initially, H, is uniform, and thus, using orthogonality

2b mnr

/ H, cos —:cdz Kl’m sin = %Cm (4)
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and thus 4
Cm = (-1) " (—)Kp; modd (5)

H, = E (- 1)_-—K cos (—z et/
n—odd
The current density is

oH,
oz

Jy=— = %—2(—1)2;—1K,, gin (%—:-z)e—'/"

If we pick a new origin at ' = z + b, then

sin( z)—-sm Ez'—ﬁz’—r = cosElzsm(

= —(-1)"7" cos (%{-z’) for n odd

ﬂﬂ')

Interestingly, we find

= —ZI& Z cos ( ')e"*/""
n—odd
At t = 0 this is the expansion of a unit impulse function at z' = 0 of content
—2K,. All the current now flows through a thin sheet at the end of the block.
The factor of 2 comes in because the problem has been solved as a symmetric

problem at z/ = 0, and thus half of the current “flows® in the “imagined”
other half.

10.7 SKIN EFFECT

10.7.1 (a) In order to find the impedance, we need to know the volta.ge v, the complex
current being R,. The voltage is (see Fig. 10.7.2)

v=akE, (1)
and, from Faraday’s law

Y = —juull, )
From (2) and (10.7.10)

_ jups (eQt)E 4 O+ .
¥ ([147) ((0NF -k e 3)
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and thus the impedance is at z = —b
7= GEy _ ]awuﬂ ¢(1+J')'z' -+ e_(1+.1')% (4)
dR, d(1+7)(1+)% _ —(1+9)}

But the factor in front is

jawps  a(l+7)
di+7) dob (5)

(b) When b < §, we can expand the exponentials and obtain

_a(l+4)1+(1+9)E+1-(1+4)3
do§ 14 (1+7)2-1+(1+7)2
_a(l+5) -1 a

(6)

dob (1+7)2 dobd

(c) When b >> &, then we need retain only the exponential exp[(1 + 7)b/6] with

the result: ( |
a(l+7
= _TJ) 7
dob (7)
so that a
Re(Z) = s

This looks like (6) with b replaced by §.

10.7.2 (a) When the block is shorted, we have to add the two solutions exp+(1 + 5) %
so that they add at the termination. Indeed, if we set

H, = Ale"01)E 4 (141 (1)
then the E-field is, from
3E Coa
= —juul, (2)

and thus through integration

jWwé 4 ] ,
B, = 29K Al-0+i)% _ 1+ 3
V= S Al | (5
and is indeed zero at z = 0. In order to obtain H, = K, at z = —b we adjust

A s0 that
_& el1+) ¥ 4 o~ (1+5) %

A, *e(1+9)} 4 -1+ ®
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(b) The high frequency distribution is governed by the exp —(1 + 7} %(z < 0) and
thus
-(1+3) § -
e - z=b
B~ R gy = R0 (5
This is the same expression as the one obtained from (10.7.10) by neglecting
exp—(1 +5) % and exp(1 + 5)b/6.

(c) The impedance is obtained from (3) and (4)

ok, a(1+ ) e(+B/5 _ o—(1+1)b/5
dK, z=—b= T do5  c(1+36/6 4 ¢~ (1F9)5/6
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11.0 INTRODUCTION

11.0.1 The Kirchhoff voltage law gives
v=uc+L§—:-+Ri (1)
where i
. Ve
1= C—(E (2)
Multiplying (1) by ¢ we get the power flowing into circuit
. - - d 1 .2 .2
m—vcz+dt(2Lz ) + Ri (3)
But d d 1
. v
v = C’—Etﬁuc = E(—z-Cvz) (4)
and thus we have shown 4
vt = aw + iR (5)
where 1 1

Since w is under a total time derivative it integrates to zero, when the excitation 2
starts from zero and ends at zero. This indicates storage, since the energy supplied
by the excitation is extracted after deexcitation. The term 2R is positive definite
and indicates power consumption.

11.1 INTEGRAL AND DIFFERENTIAL CONSERVATION
STATEMENTS

11.1.1 (a) If § = S;ix, then there is no power flow through surfaces with normals per-
pendicular to z. The surface integral

fS-da
s

[Sz(21) — Sz(z2)]A

gives (z1 > z2)
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because S, is independent of y and =.

(b) Because W and P; are also independent of y and z, the integrations transverse
to the z-axis are simply multiplications by A. Hence from (11.1.1)

A5 (1) - Safea)] = AS / Wdz + A / Pudz

When z; — z3 = Az,

dz '%2

Suls1) = Salzs) + 52| As

JWdz = WAz, [ Pydz = P4Az and we get

We have to use partial time derivatives, because W is also a function of z.

(c) The time rate of change of energy and the power dissipated must be equal to
the net power flow, which is equal to the difference of the power flowing in
and the power flowing out.

11.2 POYNTING’S THEOREM

11.2.1 (a) The power flow is

ExH=-E.H,4i, (1)
1"
iy
Vd | { [}
_.I.. o
y=-b

Figure S11.2.1
The EQS field is

Va
5 =L (2
9H,  OE,

3y - <ot (3)
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and thus

dE,
ot

since H; = 0 at y = 0. From (1), (2}, and (4)

H; = yeo

Vad V4

ExH=—yye,2 2 (%) = , Yooy, &V

@
(b) The power input is:
- / ExH-da

over the cross-section at y = —b where da = —i, and therefore,

beo Ve d,1,
/ExH da= 220wy, 22 = 2 (Lovp)

with
€bw

a

C =
(c) The time rate of change of the electric energy is

%chdv= ifleoEzdv 4 1eo(Vd) abuw]

= 3 (lebwygy
dt‘2 a

= (Ecvf) QED

(d) The magnetic energy is

1, 1 ° .
W = —MOH dv = g HoOW Hidy
-b

d V42
2uoaw [eo ]

Now 4 v
Yd

dtVd T

where 7 is the time of interest. Therefore,

_ I;AL,,eob2 1 bw
Wi = 6 12 Vd E °a Vi

1 potob? 1 b2
3 2 3c22

11-3

(4)

(5)

(6)

(7

(8)
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11.2.2  (a)
H, = "é’ (1)
w
From Faraday’s law
9B, ___ 8H, @)
dy Bo"5¢
and therefore i
p .
= — 3
Ee = —poy7, () (3)
S =Ex H=-EH,{, = -1, £ ‘:’,yrdﬂ
ix
iy

—

14(t)
Figure S11.2.2

(b) The input power is — [ S-da, integrated over the cross-section at y = —b with
da || —iy. The result is

_Bob dl, dl
/s da=TFawgali= g3l
with
L=poab
w

(c) The magnetic energy is

/W dv—/dv —uoH* = -;-abwpo% = %Llﬁ

with the same L as defined above. Thus the magnetic energy by itself balances
the conservation equation.

(d) The electric energy storage is

1 1 p? (dl\*8®
/ Wedv = / geoEldn = Zeote (—d-ti) S

=% bnlﬁ_ﬁg 15°"°” /W dv

2 wr
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where dIg/dt ~ I;/r, with 7 equal to the characteristic time over which I
changes appreciably. Thus,

/chu</Wmdv

Leopod® 1 b2
3@ gap <!

as long as

11.3 OHMIC CONDUCTORS WITH LINEAR POLARIZATION

AND MAGNETIZATION

(a) The electric field of a dipole current source is

_ tpd
" 4nord
The H-field is given by Ampére’s law

[2 cos 6, + sin 6i5) (1)

VxH=J=0E (2)

Now, by symmetry it appears that H must be ¢ directed

H=1,H, (3)
and thus 1 8 19
VXH=i,m%(H¢Sln0) —ia;a(fﬂ}) (4)

By inspection of the f-component of (4), with the aid of (1) and (2), one finds

= tpd
*” 4ne2

sin 4 (5)
The same result is obtained by comparing r components. Therefore,
ExH= (ﬁ)zll[—zcososin 8ip + sin? fi,| (6)
4 ] ord
The density of dissipated power is
Pi=E-J=0E’= (""—d

4ir
= (42 1 o2
_(41r ar6[1+3c°s 0]

1
)20—;3[4 cos? § + sin? 4]

(7)
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(c) Poynting’s theorem requires
V-8+P;=0 (8)
Now V - 8 in spherical coordinate is

12

19,, .
V.-8= r—25-;(r S) + ~ind 30 (Se sin 6)
Now .
tpd 2 1 2 2 =2
V. (E xH) = (£-)"—[-8sin? § — 4cos® § + 25in? 4]
4x’ or® 9)
(%2 L 2
= (41) 6r6[1+3cos 6]
Thus, (8) is indeed satisfied according to (7) and (9).
(d) L eons
— 1p@ CO80
=i,

V.-(®J)= (i”—:)2V . ;1'3[2cos2 83, + sin 0 cos Oy
= (%3 1 g 20— 2cos?d + sin?
= (41‘_) ar6[6cos  — 2cos® 6 + sin® 0]
= (22 L 29| =V .
(47) ar6[1+3cos =V (E x H)

(e} We need not form the cross-product to obtain flow density. The power flow
density is the current density weighted by local potential .

11.8.2 (a) The potential is a solution of Laplace’s equation

v
o= —l—;%ln(r/a) (1)

_ v iy
E= @ ()

ov i,
VXH_J—UE—W_; (3)
from Amplre’s law. By symmetry

H=i,Hy (4)

and
0Hy  ov 1

"8z In(afb)r (5)
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and thus
ov =z

e = “inaft)

N

2=l

Figure S11.3.2a

(b) The Poynting vector is

0'1)2 r4

=K H:—.B-——————
S=Ex 2 (alt) 2

(c) The Poynting flux is

fS-da=—/ - S.2nrdr
r=b

(d) The dissipated power is

2 2xr
dvP, = | dvoE? = AL
/ vy / vo. /z__l/‘_b lnz(a/b rdz

2wl ,

= In(a/b)"

(e} The alternate form for the power flow density is

v2

S=8J = —amln(r/a)f

7{5 -da = —[S,(r = b) — Sy(r = a)|2xbl

__2mal o2
In(a/b)

This is indeed equal to the negative of (9).

ek
il

11-7

(6)

(8)

(9)
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ExH ®J
= NN
— freir
Figure S11.3.2b
(f) See Fig. 511.3.2h.
(g) At z=—I,

2xoly .

fﬂ'ds—i;('a—'/l,S:t (12)
Thus
. 2q0l ,
vi= In(a/b) v* Q.E.D. (13)
11.83.3 (a) The electric field is
v,
E= 21. (1)
From Ampére’s law:
ﬁ z
T %% o z=d
|
v : %é r !
I 4/ | z2=0
Figure S11.3.3

fH-ds=/(J+eaa—?)-da (2)
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_fx [.07': + e-(%(v/d)] forr<b
2rrHy = {rb’[a% + e (v/d)] + x(r® — b2)eo % (v/d) forb<r<a (8)
and thus

2[0 +e ‘(,,/d)] for;'<b
Hy = { [ab.,_:ebz 4 (v/d) + (r* - b¥)eo & (v/d)] forb<r<a @

The Poynting flux density

E XH=i. Xi¢EsH¢
~i,5(0% +ed(v/d)} forr<b (5)
= -—i..-;—r{%[ebz+€o(rz—52)]%(0)+!3"'0}% forb<r<a

®) d
—/ExH-da=—/ i -E x Hdz27nr
{ w12 (0% + e (v/d))v r<b (6)
w{1[eb® + eo(r? — b2)] % (v/d) + £ v}v b<r<a
For r <b,

/—dv+/Pddu - _/;_0 /—o 2€d —t(v/d)z%rdrdz
+ f i f _ o(v/d)2mrdrdz (7a)

d 2 v 4
—ev:ﬁ(v/d)vrr +o—rnr

Forb<r<a:
b 1.4d 2
—dv+ Pydv = —e—(v/d)*2xrdrdz
=0 Jr=0 2 dt
—€ v/d)*2xrdrdz
[ et

+ / / o(v/d)?2rrdrdz
=0 Jr=0
2 — 33 2
= 1r{ %—v + Eo(r2 3 b )u] %(u) + %02} Q.E.D.

(76)

S=2(J+ eaE (8)
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The potential ® is given by

=—5(z—4)
and ] 4y
J+€§E= i-("g'*".nd) forr<b ©)
at iseo s forb<r<a
Therefore,
S = ~1(ZL+5%¢)(z-d)y forr<b (10)
—ia %% (z-d)y forb<r<a
(d) The integral is
- f S.da= f 2nrdrlS, (z = 0) — S, (2 = d)] (11)
0
For r < b: , 4 4
ov  edv gu  edv
- /o 2rrdrd(Z+ §30) % = w2 (T 4+ S20)0 (124)
Fora <r <b:
b
_ ov edv,v eoﬂg
= / 21rrdrd( d %) d +/ 27rdrd 1 dtd (126)
2( oY _e_@ _ 12760 Y
—rb( + )u+1r(r b)ddt
Equations (12) agree with (6).
(e) The power input at r = a is from (12b)
o0V  €dv 2 _nedv .
b( +ddt)v+1r(a b)ddt =ut (13)

where
t = xb? [— tem (v/d)] + x(a? - b’)eo & (v/d)

which is the sum of the dlsplacement current and convection current between
the two plates.

11.3.4 (a) From the potentials (7.5.4) and (7.5.5) we find the E-field

E=-Vd= i,.EocosqS(l + (ﬁrz_)zg%)
b a

—i¢Eosin¢(1— (g)zu) r<R

op + 0,

(1a)
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and
20,

op+ 0,

E,(ir cos ¢ — iy sin ¢) r<R (18)

1y

Figure S11.3.4

The H-field is z-directed by symmetry and can be found from Ampére’s law using
a contour in a z — z plane, symmetrically located around the z-axis and of unit
width in z-direction. If the contour is picked as shown in Fig. S11.3.4, then

¢
fH~ds=/J-da=2Hz=2/ Jrrdd
c s 0

2
2raansin¢(1+ (5)2‘-’-"——‘") forr> R (2)

— r opt+o,
2’%&;,%‘;: sin ¢ forr< R
The Poynting vector is
. . . 2 . 2 Risfop—o0, 2
Ex H = E4H,i, — E H,ig = —i,r0,E2sin* ¢|1 - (7) o
2 . R.2f0p— 04 2
—iyro EZsingcos ¢ 1+(7) obF 00 r>R
20 2
— s E2 gin? a
irrop ES sin” ¢ <—0a T O'b)

2
20
—1i E?sin 4 <R
sTos K ¢cos¢(aa+ab> r

(b) The alternate power flow vector S = ®J follows from (7.5.4)-(7.5.5) and (1)

2
dJ = —i,.aaE'Zrcos2 ¢ [1 - (E)4 (M) ]

4 Op + Oqg

. R —0,]?
+i¢0'aE§rsm¢cos¢|:1 — (—)zu] r>R
r’ op+og
2o \? (4)
= —i.op E2 2 ——2—
rObEor cos ¢<0b+0a

2
20,
+i40pE2rsin ¢ cos <R
v0sEprsin ¢ ¢(ab+aa) r
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(c) The power dissipation density Py is

2
P;=0E? = o-aEz cos? ¢[1 + (E)ZM]

. 20 — O,
+a,,Egsm2¢[1—(T) ab+a:] r>R
20, 2
= g, E? = R 5b
7% Oat+0p r< ( )

(d) We must now evaluate V - (E x H) and V - ®J and show that they yield —Py.

2
V-S=%M+}-%=—2%E‘zsm ¢[1+( )¢ (—"") ]

or a¢ %o
2
— 04 E(cos® ¢ — sin® ¢)[1+( ) (o‘ +ZG)]
BN (6a)
ooty (352)
2
— 04 E2 cos? ¢[1+( ) (cn,_+0'_)]
forr > R,
V.8 = 20 Bin? ¢ (2%
- 8§ = ~20,E2 sin ¢(m)
2
~ (cost ¢ —an onB? (25 ) “
20 2
= g3 2e)
Oq+0p

for r < R. Comparison of (5) and (6) shows that the Poynting theorem is
obeyed. Now take the other form of power flow. The analysis is simplified if
we note that V-J = 0. Thus

_ _7.9 10 5 _ g2
V-dJ=3J V@—J,.ar<1>+J¢ a¢<I>— oE
2
20p — Ogq
= ~eaB o g 1+ (1) %) (7a)
2 9 — 2
— g E, gin ¢[ (—)] r>R
Op+ 0q
and
2 20’4 2
V. -9J = -0, E; (0'4+0'b) r<R (7b)

Q.E.D.
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11.4 ENERGY STORAGE

v

11.4.1 From (8.5.14)-(8.5.15) we find the H-fields. Integrating the energy density we

find
- 1 g2_1 " 2 /"- /2" Niy2
w—/dvzpoH = 2/10/0 rédr A sin 0dé A d¢(3R)

=) L 2m :
+ lp..,/ rzdr/ sinﬂdﬁ/ dd)(-]\ﬁ—)z(—Ri)6(4cosz0-i-sin2 9)
2 R 0 0 6R r

1 47R® Niy2 1 Niyz2 1 4
= Euo——é——(é—ﬁ) +§“°2”X4(§E) x R

12aN2%u,R ,
= -
2 9

where we have used

/ sin §d6 (4 cos? 6 + sin® ) = ——/ d(cos8)(3cos® 6 + 1)
0 0

1
=/ dz(3z% + 1) = (2° +z)|1_1 =4

Because

we find that

Q.E.D.

11.4.2 The scalar potential of P9.6.3 is

_Nicos¢ (R/r r>R
21+ A |

E

The field is

- icos¢{(i,.cos¢+i¢sin¢)(R/7')2; r>R
+

N
2R 1 £ 2 (ircos ¢ — ig sin ¢); r<R
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The energy is
=1 / —poH2rdrdd + 1 / —szrdrqu
= N: l‘/“o
“°"Rzl(2R 1+ J‘—)
1
+ = 1(2R1+-’L) / ( )rdr
2 2,2
L TS 0 WO
4(1+£)? 4(1+£)?
1 pniN? , 1 _,
=" 3 ==Is
2(1+£) 2
11.4.3 The vector potential is from (8.6.32)
_ _BolNipirya 7y
A= 3 [(a) (a)]sm¢i. r<a (1)
poH=V x A
. Ni, . g r .
=—i, X VA, = 320 X [Z(r/a) - 1] sin @i, + (; - 1) cos iy
= ""N' [(— — 1) cos ¢i, - (2— -1) sm¢x¢]
The energy is
N | o, Nity2a [© r 2 r 2
l/(; '/(; —2-poH2rdrd¢ = ?l(-:;) w[) rdr[(; - 1) + (2; - 1) ]
= Boy Niyar 1,5
=T =3k
Therefore,
=T 2
L= 36uolN
1144 The energy differential is
dwy, = t1dA; +12d)A2 (1)

The coenergy is

dw'm = d(tlkl) + d(iglg) — dwy, = A1diy + Aadia (2)
= (L1181 + L1gt3)diy + (L2181 + Lastz)dia
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with
L21 = L12 (3)

. 21,122
t2

—_—
3!
Figure S11.4.4

If we integrate this expression along a conveniently chosen path in the ¢; — 2 plane
as shown in Fig S11.4.4, we get

t1 ‘.2
/ . Lyit1diy +/ 1m0 (L21%1 + Lagig)diz
l1= 3g=

ig=0 iy =conat

1 . .. 1 .
= §L111f + La1ty22 + ELzzig

2 (4)
= E(Lnif + Ligi192 + La1tat; + Lo2i2)
1 . .. .
= 5L,,(Nfzf + 2Ny Npigip + N2i2)
when the last expression is written symmetrically, using (3).
11.4.5 If the gap is small (a — b) < a, the field is radial and can be evaluated using
Ampére’s law with the contour shown in Fig. S11.4.5. It is simplest to evaluate the

field of stator and rotor separately and then to add. The field vanishes at ¢ = /2
and thus

}(CH .ds = —(a — b)H,(4) (1)

length ! along
2 contour

Figure S11.4.5
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11-16 Solutions to Chapter 11

For the stator field, the integral of the current density is

*/2 . .
/J-da=—f Nty i gadg = — N3 o4 (2)
S ¢ 2(1 2

where Nj is the total number of terms of the stator winding. Therefore, the stator
field is given by

g _s N
H~iH, = l'2(a 5 cos ¢ (3)

The rotor coil gives the field

Nz

H = 20— cos(¢ — 1) (4)

where N; is the total number of turns of the rotor winding. In a linear system,
coenergy is equal to energy, only the independent variables have to be chosen prop-
erly, i.e. the energy expressed in terms of the currents, is coenergy. When expressed
in terms of fluxes, it is energy. The coenergy density is

1
W:n = El‘on (5)

The coenergy is

1 2
W = ghole—b)l | Hlads |
(6
_ 1 ol . ) o
=2 4,(‘: a1r) [(N151)® + (Nai3)? + 2Ny Ngiy iz cos 6]
We find
e fin Lo xpoal N” o
113 ( — b)
and
Lyp= Ly = ﬂ“oal N1N3 cosf

4(a-1)

ay
D=|——=+6¢6]E
<\/1+02E2+e>

The coenergy density in the nonlinear medium is [note E - dE = d(1E?]

W! = /D dE = / ( 1+aE2+€°)dEa
V1+ axE?

1+ azE? + EeoE’
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In the linear material L
2
wl = EGOE

Integrating the densities over the respective volumes one finds (E? = v?/a?)

y e v2 1 o2 1 2
w, = [&—2—\/ 1+ a3 + 22 Eca + Eeoa—z(b — €)ca

(a) H = i,¢/w in both regions. Therefore,

Q.E.D.

B =igu.t/w

. (23} .
B= o+ —————
ig (u Py 2)z/w

in region (b). The coenergy densities are

in region (a)

%p.og,- in region (a)

W' = . — .\
m %(uo;—i+2%’;\/1+ag'%i;) in region (b)

The coenergy is

1 42 1 oy | 12\ 42
' - ot 21 LA D
wm—wAa2uow2+wA52<uo+2a2 1+a2w2)w2

11.5 ELECTROMAGNETIC DISSIPATION

11.5.1

From (7.9.16) we find an equation for the complex amplitude E,:
o Jwep + op 5 (1)
(Jwea + 04)b + (Jwep + ob)a
and since . .
ab, +bE, =% . (2)
we find .
By=__Jato ®)

(Jweq + 0a)b + (Jwep + ob)a

(Another way of finding Ey from (1) is to note that Ea and Eb are related to each
other by an interchange of a and b and of the subspcripts.) The time average power
dissipation is

1 1
(pd) = EUaIEaizaA + EoblEblsz
_ Aaga(w?e] + 0}) + boy(w?e] + oF)
B 2 (baa -+ an)2 + w? (b€a =+ aeb)2

lof?
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11.5.2 (a) The electric field follows from (7.9.36)

£ 2 . . N Oq t+ jwea
= — = —_ H lb
Ey = ~V® = 3E(cos fi, — sin iy) 20u T 08 + j0(2es T )’ r<R (1b)
Therefore
1 A 2 9 2 0' + w
= - = - 2b
(Pa) = 00| Bb" = 3| Egl" o0 (204 + )2 +w2(2e Ty T<E (26)

The electric field in region (a) is

E, = p{irc080[1 — 9+ gulea - e”))(R/r)s]

(20,, +0p) + ]w(Zea + €

(204 + 03) + jw(Zea + e

If we denote by
0o — 0p + Jjw(eq — €p)

A -
(204 + ob) + Jw(2eq + €)

we obtain
(Pa) ——a'a|E |2 = |E,|?{ cos? 8[1 — 4(R/r)°Re A + 4(R/r)®|A|?]
+sin?0[1 + 2(R/r)*Re 4 + (R/r)%|A|?]}

(b) The power dissipated is
41rR3

(Pa) (3)

(pa) =
where (Py) is taken from (2b).

11.5.3 (a) The magnetic field is 2-directed and equal to the surface current in the sheet.
In region (b)

H = Hb%, (1)
in region (a) it is
H=iK (2)

The field at the sheet is, from Faraday’s integral law

b
E, = byodH at z=-b (3)

The field at the source is

dK dH®
Ey =apo,—— ” +bpo—— & (4)
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The power dissipated in the sheet is, using (3)

dH®

2
P = / aEzdv = kodbzp,g(T) (5)

The stored energy is
1
/ Wdv = 1;A(,(H“)zadw + = po( H®)?bdw
v 2 2
= %m,dt‘u[b(Hb)2 + aK?|

(b) The integral of the Poynting vector gives

dH®
?{E xH da=~E,H,wd = (a,uoddlt( + buo— - )Kwd (7
Now dH
Hy=K-E, A=K — bpodbA (8)
When we introduce this into (7) we get
dHbY2
f.EXH da——{ —apowd—— 2{ + buowd 7 }
iy (9)
- abzwdug(w)za/l

But the last term is py; and the term in wavy brackets is the time rate of
change of the magnetic energy.

11.5.4 Solving (10.4.13) for 2, under sinusoidal, steady state conditions, gives
A ! W Ty + - %‘Q T | a2 H,
= —| — 9w
(Jwrm + 1) J4Tm polAoa ™ ° 1)
1 . B—lo| 2
= | — JwTm + a“H
(Jwrm+1)[ 74Tm u+uo] ’
From (10.4.11), we obtain C
n 2po
A Ho A utp
C=-—(H+ <) =~—"""""H, 2
7 ( ° a,z) 1+ jwr,  ° (2)

The discontinuity of the tangential magnetic field gives the current flowing in the
cylinder. From (10.4.10)

Ay =—(H, - a%)simﬁ— Csing

B~ Ho 2p0 H,sin ¢ (3)
Btpo ptic 14w,

—[1 + JWTm + JWTm —

= ——ZL—sm ¢H, = K,
14+ jwry,
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Note the dependence of the current upon w: when wr, > 1, then the current is
just large enough (—2H,sin @) to cancel the field internal to the cylinder. When
wTy — 0, of course, the current goes to zero. The jump of Hy is equal to K. The
power dissipated is, per unit axial length:

2r
pa=3 [olBPdv = Joa [ 8,144 @)
2 2 o
But
O'EtA = K, (5)
and thus .
1 |K| _Ta 2w?T,
Y

(a) The applied field is in the direction normal to the paper, and is equal to
H,coswt = Ni,coswt/d (1)
The internal field is H, + K where K is the current flowing in the cylinder.
From Faraday’s law in complex form

f E.ds = —jwp(H, + K)b? (2)

Because K must be a constant, £ tangential to the surface of the cylindrical
shell must be constant. The path length is 4b. We have

R=oa= 228 g 4 p) 3)
and solving for K )
. __J¥Tm
k= 1+ jwrm, H, (4)
where Ab
Tm = “——"4 (5)

The surface current cancels H, in the high frequency limit wr,, — oco. In the
low frequency limit, it approaches zero as wr, approa.ches zero. Thus

_ l 2 14bAd0' 512 _ 2 2 W2T2
P = /0'|E| dv 2 o2A2 K" = AdN °1+ w?r? (6)

{(b) The time average Poynting flux is
—Re f ExH-da=—Re %4de£{*

= —Re {2bdH}(—jwrm)(H, + K)}
= Re Zbdjw‘rmﬂ;ff 7)
_ 2bd_ W13
oA 14+ w?r?
which is the same as above.

I o|2 — 2b wz'r,":, 2.2
cAd 1+ w372
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(a)

(b)

(c)

When the volume current density is zero, then Ampére’s law in the MQS limit
becomes
VxH=0 (1)
and Faraday’s law is
2]
VXE= —Euo(H+M) (2)

If we introduce complex notation to describe the sinusoidal steady state E =
Re B(r)e?“T etc., then we get from the above

VxH=0 (3)
V x B = —jwu,(H + M) (4)
If M is linearly related to A we may write

M=%.H (8)

where %,, is, in general, a function of w, we may define

B =po(l+ %m) (6)
and write for (4)
VxB=- jwﬁ (M
with . R
B=iH (8)
Because V - uo(H + M) = 0, we have
V-B=0 (9)
The magnetic dipole moment is, according to (20) of the solution to P10.4.3.
X Jwr
h= 21rR3ﬂ',,1 7ot (10)

with 7 = p,0 AR/3. As wr,, — oo, this reduces to the result (9.5.16). The
susceptibility is found from (5):

N JwT
Zm = —2n(R/ s)sm

where 1/s% is the density of the dipoles.

The magnetic field at £ = —l is

H=i K (14)
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The electric field follows from Faraday’s law: applied to a contour along the
perfect conductor and current generator

—aBy(~1l) = —jwpH,al (15)

and thus
E, = jwplH, (16)

The power dissipated is

d (17)

|1:=——la

1 A A
= SRe £, ;
1 "
= ERe jwi| K adl

Introducing (12) and (13) we find

w3r 5
Pd = W(R/S):s,uomll{lzadl (18)

From (10.7.15) we find

z+b
)

H, = K,exp—(1 + 7)( 5

(1)

so that H, = K, at the surface at z = —b. The current density is

- N . 0H, . (1+7) Nz +b
J~VxH=-i, a;:xy 5 K, exp—(1+ 5)( 3 ) (2)
The power dissipation density is
14,2
Py==-"*
4= 5 (3)

and thus the power dissipated per unit area is

z=0 5 A

R [ 2 2

/ Pydz ~ [ / exp — (z+4) dz = | K| watts/m>
z=—b c Jz=—b ) 206
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11.5.8 (a) From (10.7.10) we find H, everywhere. The current density is

OH, _ (1+47) » e~ (1+F 4 (14913
oz 5 P e(1+)} _ o~(1+5)%

J=(VxH), =-

The density of dissipated power is:

P _1|f|2_ 1,5 |26_23/6+2cos""‘7’”+ez"/‘s
4= 9 - *1e26/6 _9cos 2t 4 g~ 20/0

s — oK

_ LI N |2C°s}1 2’ ~+ cos 261

62 cosh 2" — cos 26”

The total dissipated power is

0 h 0
pd=ad/ Pddz—ad [K ]25u“_6_

2b 2%
——b 2cosh 22 —cos 2 |_, (3)
|&, | sinh 2 + sin 26”
206 cosh 2 — cos 2

(b) Take the limit § < b. Then sinh 2 & cosh 28 = 1¢2%/% and the sines and
cosines are negligible.
ad | 4
pa= H<I|K.[? (4)

which is consistent with P11.5.7. When 2b/6 < 1, then
2b 2b 1,2b2 1,2b,2
o () —cos ) w1433 - (1-33D7) - ©

2b

2b 4b
sinh (=) + sin ( )~ — (6)
§ §
and thus £
_ 1 42 5 _ adl 3 I
Pa=ado bRy = =3 (7)
The total current is ) )
1= K,d (8)
The resistance is
obd (
and .
Lo IRP
Pl B =ad5 (10)

Q.E.D.



11.5.9

11-24

The constitutive law

Solutions to Chapter 11

oM
= = 1
o =™ @
gives for complex vector amplitudes
jwM = +H (2)
and thus
fm = (3)
m j'w
and
. ﬁ=/"o(1+£m) =I‘o(1+3%) (4)
The flux is
B=iH=yp,(1+)H ()
The induced voltage is
dx N
v= 0= Jwl (6)
and
2
~ Tw A
S=NM-—5, (7)
But
~ Nt
and thus
. N2y2,
A=p=2
ry” (9)
and thus
a . a NZw?. YN2uw?s . N
= Jwl = jwp, 81R t + to 81R = (jwL + Rp)s (10)
Thus
N2w? Y N2w?
L=p, 1% R,, = &A1Y (11)

8R 8R
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11.5.10 (a) The peak H field is

N]_ipe,k N1 2H¢21I'R

Hoesk = =5 R =2:r N, 22 (1)
Thus (see Fig. S11.5.10a).
B, P
' Q
—ZH‘; : } 2HC
T S
& " H
Figure S11.5.10a
(b) The terminal voltage is
2
v= —éN1 ™ B« 4B (2)

The B field jumps suddenly, when H = H,. This is shown in Fig. S11.5.10b.
The voltage is impulse like with content equal to the flux discontinuity:

2N, =22 B,.

(c) The time average power input is [ vidt integrated over one period. Contribu-
tions come only at impulses of voltage and are equal to

/mdt =2 X 2N1 B. -1(to) (3)
But
p = He (4)
and thus

f vidt = 4N, T B,H,_.Z;R (21rR——)4B H, (5)
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B

_>H

_— e ———

IMPULSE

—

H(t)

IMPULSE

-l

‘A
Figure S11.5.10b

(d) The energy fed into the magnetizable material per unit volume within time
dt is

dtH-%uo(H+M)=dtH-%B=H-dB (©)
As one goes through a full cycle,
f H . dB = area of hysteresis loop (7
This is 4H.B,. Thus the total energy fed into the material in one cycle is
volume fﬂ -dB = (21RE':—2)4B,HC (8)

11.6 ELECTRICAL FORCES ON MACROSCOPIC MEDIA

11.{.1 The capacitance of the system is
C= eo(b - f)d

The force is
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v

11.6.2 The capacitance per unit length is from (4.6.27)
Teo

In(£ ++/(/R)? -

where the distance between the two cylinders is 2. Thus replacing I by £/2, we can
find the force per unit length on one cylinder by the other from

(1)

f — 10219 1 2 d TeEo
T2 de 2 delin[h + VIERRY -1
Loy ¢ 1 (2)
— __luz ME, 2R ' (2R)? \/(5/23)2 1
2 n2[(¢/2R) + V(§/2R)? - 1] 5 +V(é/2R)? -

This expression can be written in a form, in which it is more recognizable. Using
the fact that A; = Cv we may write

A 1+ (¢/2R)/V/(¢/2R)? —1

fre R o +/(E2R) -

fo= - (3)

When £/2R > 1, and the cylinder radii are much smaller than their separation,
the above becomes

Al
= — 4
fe 2me, 26 (4)
This is the force on a line charge ); in the field A;/(2me,2¢).
Vv
11.6.3 The capacitance is made up of two capacitors connected in parallel.

2meo(l — €) 2rweé

C =
In(a/b) + In(a/b)
(a) The force is
1 ,dC gw(e—¢,)
fe= E”z_g = In(a/b)

(b) The electric circuit is shown in Fig. $11.6.3. Since R is very small, the output
voltage is
v, =1R

ng

Figure S11.6.3
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From Kirchoff’s voltage law

tR+V =v
Now
g=0Cv
and
i=i— (Cv) d—c’v+6'i‘i

dt dt

If R is small, then v is still almost equal to V and dv/dt is much smaller than
(vdC/dt)/C. Then

—t 3 V%
and dg
v, = Ri = —27RV (e - eo)ﬁ/ln(a/b)
The capacitance is determined by the region containing the electric field
" In(a/b)
(a) The force is
_1.,,dC 7 V2
fe= 2V d¢ ln(a/b)
B q= 21rc,l A D .
q ln(a/b) ¢
I
C -
A D M B C
I/o —TE
o 2 -—
In(a/b) ° ¢=1

Figure S11.6.4

(b) See Fig. S11.6.4. When ¢ = 0, then the value of capacitance is maximum.
Going from A to B in the f — £ plane changes the force from O to a finite
negative value by application of a voltage. Travel from B to C maintains the
force while £ is increasing. Thus ¢ increases at constant voltage. The motion
from C to D is done at constant £ by decreasing to voltage from a finite
value to zero. Finally as one returns from D to A the inner cylinder is pushed
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back in. In the ¢ — v plane, the point A is one of zero voltage and maximum
capacitance. As the voltage is increased to V,, the charge increases to
2me,l
= C = —
? °~ In(a/b) °
The trajectory from B to C keeps the voltage fixed while increasing £, de-
creasing the capacitance. Thus the charge decreases. As one moves from C to
D at constant ¢ decreasing the voltage to zero, one moves back to the origin.

Changing £ to zero at zero voltage does not change the charge so that D and
A coincide in the ¢ — v plane.

(c) The energy input is evaluated as the areas in the ¢ — v plane and the £ — f
plane. The area in the £ — f plane is

meol o
In(a/b) °

and the area in the v — ¢ plane is

1 2me,l o

2in(a/b) °
which is the same.
11.6.5 Using the coenergy value obtained in P11.4.6, we find the force is
dw! a a?v? 1 v 1,02
fe— aE |v-—|:;—2-( 1+ az —1)+§eo;5]ca—§ [
11.7 MACROSCOPIC MAGNETIC FORCES
11.7.1 The magnetic coenergy is
1 . .. .
wﬁn = '2‘(L111,§ + 2L19t182 + Lzztg)
The force is
_ Bw'm _ 1 dL]_]_ .2 dL12 .. dL22 2
fm = oz I"lv"ﬁ - 2( dz ! +2 dz 12 dz 2
1 dL, . dL, . . dL, .
= -2‘(]v12 1 ‘l.? + 2N1N2E221$2 + Ngﬁzg)
Since
_ _awp,
°oa(1+))
we have

1 . .. . awy,
=—=(N2:2 + 2N, N. N22y 2 _
fm 2( 121+ 1 2'1.1’1.2+ 212 z2(1+%)
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The inductance of the coil is, according to the solution to (9.7.6)

P _ladl_ 1, poN? 1
= = —

2 dz 2 xq?

2 [E"*’ 2rad

We first compute the inductance of the circuit. The two gaps are in series so
that Ampére’s law for the electric field gives

y(H]_ + Hg) =ns (1)

where H; is the field on the left, H; is the field on the right. Flux conservation
gives

H;(a - z)d = szd (2)
Thus .
H =12
ya
The flux is

o, = M(u)zd
y a

The inductance is
pon? zd(a — z)

L=nd, =
y a
The force is
8L aL 1 ,pu0n%d [ (a — 22) z(a — z)
2 _ 12k
Ampere’s law applied to the fields H, and H at the inner radius in the media

Ko and u, respectively, gives

H, bdr—H/ -dr = N§ (1)
» T
and thus Ni
t
Ho=H=p ng (2)
The flux is composed of the two individual fluxes
Ni
O =275 po(l - &) + u¢] (3)
b
The inductance is
— . 2
L=N&/fi= i G /b)N {ué+po(i- &)} (4)
The force is 1 2dL ( )
w 0
16,€) = e (5)

2’ de “in(a/bt)
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11.7.5 The H-field in the two gaps follows from Ampére’s integral law
2HA = 2N3 (1)
The flux is
®) = poHd(2a — )R = uo,Nid(2a — )R/A (2)
and the inductance IN® dR(2 9)
= 2072 _gN2, T2 7Y)
L=——>=2N",—— (3)
The torque is
_1ladL 2,2
=l = podRN42[A (4)

\V 4
11.7.6 The coenergy is

W', = / Dadia + Asdis + Ardis]

1_ . 1_ . 1. 1
= EL,‘!?, + EL,:? + EL,‘I? ( )

+ M cosfigt, + M sin 01,1,

where we have taken advantage of the fact that the integral is independent of path.
We went from t, = tp = 1, = 0 first to 1,, then raised ; to its final value and then
%, to its final value.

(b) The torque is

!
T= Q:T"‘ = i, (~M sin 6i5 + M cos 04)

(c) The two coil currents i, and 3; produce effective z-directed surface currents

with the spatial distributions sin ¢ and sin(¢ — Z) = —cos ¢ respectively. If

they are phased as indicated, the effective surface current is proportional to
cos(wt) sin ¢ — sin wt cos ¢ = sin(¢ — wt)

Thus the rate of change of the maximum of the current density is d¢/dt = w.
(d) The torque is
7= I[-M sin(Qt — 4)I coswt + M cos(Qlt — ) I'sinwi]
= LI(—Msin(Qt — v — wt)

But if 1 = w, then
r=I1,IMsinqy
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11.8 FORCES ON MACROSCOPIC ELECTRIC AND
MAGNETIC DIPOLES

11.8.1 (a) The potential obeys Laplace’s equation and must vanish for y — co. Thus the
solution is of the form e—#¥ cos fz. The voltage distribution of y = 0 picks the
amplitude as V,. The E field is

E = BV, (sin Bzix + cos fziy)eP¥
(b) The force on a dipole is
f=p-VE=dre,R*E - V)E
It behooves us to compute (E - V)E. We first construct the operator

E-V =gV, ? (sin pz% + cos ﬂzaiy)

Thus
E-VE = Ve~ % {sin ﬂz%[ﬂVo(sin Bzix + cos Bziy)e™PY]
+ cos ﬂzaiy [BV(sin Bzl + cos Bziy)e™PY]

= B2V2p|(sin Bz cos Bzix — sin? Pziy)e ™AV
— (cos Bz sin fziy + cos® Bziy)e Y]
= —B2V2Biye P

and thus
f = —4xe, R3(BV,)?Biy e PV

11.8.2 Again we compute, as in P11.8.1,

(E-V)E

in spherical coordinates

Q

= 4qe,r2 I 1)

and the gradient operator is

a2 .10 . 1 43
V=g o T e 5g )2)
Thus,
__Q 3
E-V= 4me,r? Or (3)
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and Q 20 207
. = — = — 4
E-VE 4dre,r? dme,r3 (4me,)?r® (4)
and the force is
2Q2 2Q2R3
— . —_ _ 3 = —
f=p VE dmeoR (47meo)?r® 47e,rsd (5)

Note that the computation was simple, because (3/3r)i, = 0. In general, derivatives
of the unit vectors in spherical coordinates are not zero.

The magnetic potential ¥ is of the form
V= Acosfze P y>0
Acosfzef?!  y<0

At y = 0, the potential has to be continuous and the normal component of u,H
has to be discontinuous to account for the magnetic surface charge density

pm =V - pM = p,M, cos fz
Thus

v = 12\'1_; cos fzePY
This is of the same form as ® of P11.8.1 with the correspondence
Vo & Mo/2ﬂ

The infinitely permeable particle must have H = 0 inside. Thus, in a uniform field
H,i,, the potential around the particle is (We use, temporarily, the conventional
orientation of the spherical coordinate, § = 0 axis as along z. Later we shall identify
it with the orientation of the dipole moment.)

¥ =-H,R cosﬂ[é - (R/")z]

The particle produces a dipole field

H,R
)

m

3
(2 cosfi, + sin bip) = pp

(2 cos fi, + sin 6ig)

Thus the magnetic dipole is
pom = 4mpo Ho R
This is analogous to the electric dipole with the correspondence
P < pom
H,~ E,
Bo +* €

Since the force is
f=p,m-VH

we find perfect correspondence.
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The field of a magnetic dipole u,m || i, is

= 4:;:':3 (2 cos b + sin fig)

The image dipole is at distance —Z below the plane and has the same orientation.
According to P11.8.3, we must compute

f=pym-VH=pu,m- V (2 cos 6i, + sin fiy)

rS

where we identify
r=227

after the differentiation. Now

pom -V = I‘oma

i. and ip are independent of r and thus

since § = 0. But

and thus

11.9 MACROSCOPIC FORCE DENSITIES

11.9.1

Starting with (11.9.14) we note that J = 0 and thus

=/de= —/—;—HZVpdv (1)

The gradient of u of the plunger is directed to the right, is singular (unit impulse-
like) and of content 21— p,. The only contribution is from the flat end of the plunger
(of radius a). We take advantage of the fact that uH is constant as it passes from
the outside into the inside of the plunger. Denote the position just outside by z_,
that just inside by z,.

z4
—/ lH"’V;uiu = —ix1ra2/ sz—#dz
2 o dz

] (2)
~—f. 2|+ —H?
i 2 Hl /ledx]
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where we have integrated by parts. The integrand in the second term can be written

d dH
bl =l (5)
and the integral is
o+ dH
[ eBG = wBH] = ok, (4)

where we have taken into account that uH is z-independent and that H(z4) = 0.
Combining (2), (3), and (4), we find

2
f= —i,% poH? (5)
Using the H-field of Prob. 9.7.6, we find

2 2,2
. ©)
( + 21rad)

This is the same as found in Prob. 11.7.2.

(a) From (11.9.14) we have
F=JxB (1)

Now B varies from uo,H, to u,H; in a linear way, whereas J is constant

at+A at+A
iT, = f J x Bdr = / drJpoH (ig X is)
a

° H+H) @

= lrl‘oK(

where
at+A
/ drJ =K (3)

Now, both J and H; are functions of time. We have from (10.3.11)-(10.3.12)

T, = —i, %uaHoe"/’"'[H,, + Hy(1—étl™m)] = —i,%poHZ(z — e~t/rm)e=t/m
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11.9.8 (a) Here the first step is analogous to the first three equations of P11.9.2. Because
J is constant and H varies linearly

1T, = poK @(i- X ig) (1)
(b) If we introduce the time dependence of A from (10.4.16), with u = u,,
A=— maze_t/r"‘ (2)
and of K, from (19)
K,=Hj— H, = 2:;2 sin ¢ = —2H,,, sin gt/ (3)
Further note that H} = 0 at ¢ = 0. Therefore from (3) and (2)
Hf=-2Hpysing at t=0 (4)
Att=o00
¢ =—Hmsing (5)
because the field has fully penetrated. Thus
HS = —Hpsing[1+e7t/™) (6)
From (6) and (3) we find
H = —Hpsing[1— e7t/™) (7)

Thus we find from (1), (3), (6), and (7)
T = i R () - ()
= —ir%Hi sin? ¢[(1 + e—t/rm)z -(1- e—t/rm)z]

= —i,2uoH?2 sin® ge~t/™

/
Sasl
:

Figure S11.9.2

The force is inward, peaks at ¢ = 0 and then decays. This shows that the cylinder
will get crushed when a magnetic field is applied suddenly (Fig. S11.9.2).
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12.1 ELECTRODYNAMIC FIELDS AND POTENTIALS

12.1.1 The particular part of the E-field obeys
VxE,=-2B (1)
Pt
V.E,=0 (2)
If we set
B=VxA (3)
then aA
VX(Ep'i'E):o (4)
or 3
E, = _EA -V, (5)
Because of (2),
3 2
But, because we use the Coulomb gauge,
V-A=0 (7)
and thus
V3, =0 (8)
There is no source for the scalar potential of the particular solution. Further
VA =—p,J, (9)
Conversely,
V- 6Bh = pu (10)
and
VXE,=0 (11)
Therefore,
E,=-Vd, (12)
and from (10)
v2g, = -2 (13)

€o

Thus (9) and (13) look like the inhomogeneous wave equation with 32/9¢2 terms
omitted.
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g—:,A is of order 1/72A, VZ2A is of order A/Lz. Thus, MG%A is of order £5 L?
compared with VZA. It is negligible if ue L2 /r2 = L% /%272 <« 1. The same approach
shows that ue(32/9t?)® can be neglected compared with V29 if L?/c%7? < 1.

SINGULARITIES

The time dependence of g(t) is the same as that of Fig. 12.2.5, except that it

now extends over one full period.

Solutions to Chapter 12

12.2 ELECTRODYNAMIC FIELDS OF SOURCE

L E-lines

t="T/2 t=T
T r r
1#(2 ) bt q(r—;/)/t -
/’\T\\/ q(;“; I \/\;_\\
7 \\\\ N /// I/// ~ 0
— 7 A /7
\ \\ //’
\ r\/2 TN dr-))
N T r—1/2q+_c_ql ¢
’t ”_‘\
N P R N
I N ~ ' ' \I
ey =y g
| | | — ™~ N [}
- oy O )
BRaA N
N ! N
| N | | | ]
NN '
i E-lines | | |
i /_\\l
\_/ / ./
/
/
- 7
- %
~ /s
e
~
-
//

Plot of Electric Dipole Field. Any set of field lines that close upon themselves

Figure S12.2.1a
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may be considered to be lines of equal height of a potential. The potential does not
necessarily reproduce the field intensity at every point. i.e.

——
E = - (is x V@) - f(r,6) (1)
N, et

The “underbrace” gives the pattern. The “overbrace” is the multiplier. It does not
change the direction of the field. Take

_d g ¢1. g , & 4"V 4
E—4w€{2cosﬁ[r—s+m]l..+ [r3+cr2+E sin 01y (2)
where r
0=t =)
If one defines d
P = (—)2sin€(qr“1/2 + irllz) (3)
4dre c
Then
[
Vo= (-i—) 2sin 6( — s q'lr_l/2 + lq'lrll2 - ir—l/z)i,.
4me 2 c 2% ¢ c2 (4)
+ ig2cos G(qr_a/2 + %—lr'l/z)]

One constructs a vector perpendicular to V®, iy x V®, by interchanging the ¢ and
r components and reversing the sign of one of them

2
—iy X VO = (i%)r_s/z{2coso(q + Eq’)ir +sind(g+ fq’ + f;q")io} (5)

Thus if we choose f(r,d) = r~3/2, we reproduce the E-field of the dipole by expres-
sion (1).
We can sketch the function @ for § = x/2.



12-4 Solutions to Chapter 12

t=2T
? q(2T - 1)
¢ T r
- 1G-3)
T e
,// e \\\ N
\ // — r

)]

Figure S132.2.1b

12.2.2 Interchange E — H, H — —E and p, — ¢,. From (23)

di = jw§d — jwimd = Jwpoth (1)

where g,, is the magnetic charge. We obtain

N jkjwpoth . e Tkr
Ey=-— 0
23 ar s1n r

(2)
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12.24

12.3

12.4

12.4.1
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and from (24)

Hy=—[2F4= —%—sinﬂ QED (3)

Because pu,m(t) = g,d — ¢d in the electric dipole case, the time dependence
of g(t)d and p,m(t) correspond to each other. With E — H and H — —E we must
obtain mutually corresponding field patterns.

We can use the field sketch of Problem 12.2.1 with proper interchange of
variables.

SUPERPOSITION INTEGRAL FOR ELECTRODYNAMIC
FIELDS

ANTENNAE RADIATION FIELDS IN THE SINUSOIDAL
STEADY STATE

From (4)

0

sin 1 .
— —jk(1—cos @)l __
T jhcosf =) ¢ 1} ()
sin § 2 ki ;
— (200 —3k{1—cos 0)l/2
I H1=cosd) sin [ 2 (1—cosb)]e

The radiation pattern is

4sin® 0 sin® & (1 — cos 6)
k22(1 — cos §)?

¥(0) = |vo(0)]* =

= -—ﬂ— sin? (kl sin? -0—) @
k212 sin* (9/2) 2
With kl = 2« 2
sin 0 . 2 . 2 @
=07 (gin?2 =
(9) yo sin4(0/2)(sm 7 sin 2) (3)

The radiation pattern peaks near § = 60°.
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Figure S12.4.1

12.4.2 By analogy with (3) one replaces Hy — Ey, p « € and i(z')dz' = jw(qz)d2' —
jw(gmd)dz' = jwpp(z')dz' where we interpret gd and g,,d as assigned to unit
length. Thus, from (2) of Prob. 12.2.2, with u, — p, €, — ¢,

2 —Jkr o
E, = :—Wsinﬁe . \/g/M(z')e”"' deds!
k21 W e-jkr ja
= mf: 7 Mo ell)

where - My
Yo(0) = %/—A({_r_).cj(h‘"ir—ao)dzr
12.4.3
= sin ¢ ’ sinﬂ(z’ — l) 7kz' cos® 3 1
'»bo(o) - = 1 / ain ﬂl e dz
Sing I 1 iB(z' — —58(2' - 'kz' cos
= _ﬂlsinﬂl [) E;{(elﬁ( l) —e Jﬂ( l))eJk co 0d(ﬂz')
i i cosB)I —~3(B—k cos 8)l
- ;‘f‘g li{ﬁ’f”** i A S :.(B k . ) _161.[”}
Blsin fl 25 | j(1+ % cosf) —5(1 = & cosf)
sin 6 2

k .
= - : cos Bl + 9sin Bl— § — elkcosdl
ﬁlsmﬂll_%:_c%za{ B ]smﬁﬂcos e }

12.4.4 (a) From (12), and with a,, = n2i,,
3

Yo = ejka,,,~i,ei(an-ao)
% 0

=14 eJ(5 cosainf+ar—a,) + gJ(mcos $sinb+as—a,)
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(b) Since 4, =sind, and a; =0
|%oll¥al = |1 + 2cos (% cos ¢ sin §) | siné

(c)

Ya=1+ el §(cospsin0+1) + e,1'1r(cou¢lin0+1)

= ej}(cosdnin9+1){e—j§(cos¢sin0+1) +1+4 ej{(cos¢lin0+1)}

= ej-}(cosdbain 0+1) [ZCOS g(cosdwinﬂ + 1) + 1]

[%0||%a] = ‘[1 + 2cos g(coscﬁsinﬂ + 1)] sinf

12.45 (a)
1

1/;6(0) = Z eikan-ir Jlan—ao) — 1 + eIlmcosf+ar—ay|
n=0
(b)

[%a|?|¢0|® = 4 cos? (12{ cos6) sin? 4

(c)

47 cos? (Z cos6) sin®
fo’r df foz'r d¢ sin 0 cos? (% cos §) sinZ 4

Define
cosf=u

" . Lt 1 T
/; df sin> 0 cos? (E cosf) = /_1 du(1 — u?) cos? (-2—u)

Now consider integral

1 3
/dzzzcosz'z= §(z+ %sin2a:):l:2 - % + z?zcosh:— —l-sinZ:c

The integral is

1
/;1 du(1 — u?) cos? %u =1- (%)3{%(2 + %sin 2z)z?
3 2z 1. x/2
-3 + —é—cOSZa:-— §sm2:c}_’r/2

_2 12y
"3+2(w)

12-7

(2)

(3)

(4)

(1)

(2)

(3)

(4)
(5)

(6)

(7)
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The gain is ( ) )
_ 47 cos? 5 cosf)sin” f
G= 27('{2 2 (8)
(d) We find for ¥(6) of array
(8) = {I%a(6)11%1(8)1192(6) 1} (9)
with
¢2 (0) =1-= ejka.sinacos¢ (10)

In order to get maximum superposition in the direction ¢ = 0, one needs
ka = 7 or a = A/2. Thus

|$2(9)| = |2sin (% sin 6 cos §)|

12.5 COMPLEX POYNTING’S THEOREM AND RADIATION

RESISTANCE
12.5.1 The radiation field Poynting vector of the antenna is from 12.4.2, 3.4.5
1 (k! Ko
(Botty) = b [P L a0y (1
where 9,(0) is from 12.4.28
1 cos (22) — cos (3 cos
¢o(0) — (3" - T ( 2 ) _ ( 2 )
) sin () sinf 2)
2 cos (32" cos 0)
3 sin §

The radiated power is

2r
1 LI?Raq = d0 sin 4 d¢ EaH
2 o ¢

=10 \/_ Tl ()% /(—6’1)-%0 (5

2 (47)2 sin
_ _lI 2 uo/eo (2 )/ 40 sin cos cosﬁ)
2°° sin? 4

Therefore
Rows = \/uo/ea/ 40 si cos 2T o8 0)

sm 0

W / o (2 o

= 10402
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12.5.2 The scalar potential of the spherical coil is (see Eq. 8.5.17)
NI,R? m
V= o Co8 f = = cosf (1)

This identifies
NI,R? (2)

- We have for the § component of the H-field

~

~ m

- . . . 2
Hy = s 0[1 + jkr + (5kr)?] (3)

and thus the radiation field is

™
in 6 4
— sin (4)

The power radiated is

2
—%//E,,,H;rz sin §dfdp = %m%\/uo/eo(i—:)z

2" ()
= §'|Io|2Rrad
Therefore,
2x
Riaa = EV ;J.C,/e,,N2 (k:R)4 (6)
The inductance of the coil is from (8.5.20)
L= ?glpoﬁm (7)
and therefore
1
Reaa = EwL(kR)a (8)

12.6 PERIODIC SHEET-SOURCE FIELDS: UNIFORM AND
NONUNIFORM PLANE WAVES
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12.6.1 (a) From continuity:

R, . .
3:: +jwd, =0
Taking into account the z-dependence:
—jks Ky + jws, = 0 (2)
and therefore w ]
R.= E—a.,e""“"= (3)
T

and

Jksz .
K, = Re (‘10__) Gt
Kz

(b) The boundary condition on the tangential H is:

nx (H*-H)=K n|i,

Since
H| i, O
and thus R .
- =k, (5)
H, is antisymmetric, of opposite sign on the two sides of current sheet.
2A% = R, (6)
and thus
(3 W00 =iy flwtoh
A% =iRe[x ok eFIPY I (w =z)] (7)
From (12.6.6) and (12.6.7)
ﬂao . Oo ] j(wt—kex
E = Re[ix( - 2—65) +i, (£ Ee-;)]e:”p”c’( t—ksz) (8)

(c) Asin Problem 12.2.1, a plot of a divergence-free field can be done by defining
a potential ¢ and obtaining the field

E=—i,x VQf(zs y) (9)

Now, it is clear that the potential necessary to produce (8) is

— 4.1 (90 xipy j(wt—k.z)
o= ijk (2€o)c e
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12-11
Then

—i, ><V<I>=ix@ i, 92

dy _”35

and is found to be equal to (8) with f(z,y) equal to unity. By visualizing the
potential, one may plot E lines.

ky imaginary: H-lines E-lines

lines of equal
height of ®

Figure S12.6.1a
At wt = 0, the potential is

e — _l_&e?-jﬂye—jkzx = . 9o
7ks 2€,

sin(k,z)eTIPlY
€o

T

ky real:

E-line

. H-line

Figure S12.6.1b
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At wt = 0, the potential is

O .
Zeke gin(k;z + kyy)

12.6.2 (a) The E-field will be 2-directed, the H-field is in the z — y plane
E, = Asin(kzz)eT*w (1)

From (12.6.29)
1 3E,

~ jwu By Jwp

ky) A sin k,z 2)

z =
The discontinuity of tangential H gives:
nx (H*-H’) =K (3)

in z — z plane. And thus, combining (2) and (3)

k
iA sink,z = —K,sink,z (4)
and therefore K
wWpito
A=— (5)
2ky
From (2) and (5)
A, = ;% sin(k, z)e¥ kW )
and from (12.6.30)
A, = _1:—'£- cos(k, z)e Tk (7

(b) Again we can use a potential ® to which the H lines are lines of equal height.
If we postulate

1 .K, . ;
d = (m)—z"—sm kyzeTikvy (8)
Then 38 K, k,
—1.xV<I>—i,‘a 2 7k, cosk,z 9)
.aq)_.Ko. .Kokm
—iy 5 = Fi, 2 sinkzz — iy 2 Ecosk,z

The potential hill at wt =0 is

Re[®]=F E- gin k,z sin k,y (10)
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wt =0
® © o
®
O L— H-line
®
6o & o1 E-line
— — o o - — +
@ @ ®
®
®
®© o ©
Figure S12.6.2
(c) We may write (1)
K, 1, . . . .
E, = _%ﬁy{eﬂzaﬁﬂcyy - C-szZ:FJkyy} (11)
y 4]

and for (6) and (7)

ﬁ =.7'£42{ + iy (ejk""’:':jkvy — e—J'kz:z:ijyy)
+ —1ig (esza::FJkyy + e—;k,x:;:_,kyy)}
Y

12.6.3 (a) At first it is best to find the field E, due to a single current sheet at y = 0.
We have

E, = Ae~7k=2,FiBy (1)

From (12.6.29)

i, = -1 9E

1

Jwp Ay Jwp

(:Fjﬂ)Ae‘szze:Fjﬁy (2)
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From the boundary condition

nx (H* - H®) =K (3)
we get
2L ggmites = _ it
wp
and thus K
wp
= —— 4
28 (4)

Now we can add the fields due to each source

cjp(y"%)

5
e—iB(y+4$) (5)
+ Rbe k22 { —iB(y+4)

w ' e—i8ly—%)
) - Eg[}?"e""” IB(v—1%)

eIB(y+$)
(b) When
Rae=7P% + Rye?d =0 (6)
Then
.kb = _kae—jﬁd (7)
there is cancellation at y < —d/2
()
ES = —%[Rac_jkize—jp(y—g) -— Kac—jkszc—jp(”+ ,ﬁ‘)]
-Wl‘f(a — ke _.p( _‘) R _.pd (8)
=—J-—ﬂ—c IFeZe=IP\V™3) gin Bde~7

(d) In order to produce maximum radiation we want the endfire array situation
of Bd = n/2. (Indeed, sin fd = 1 in this case.) Because

B=+Vwiue— k2 (9)
we have /
1 x < g]t/2

Y= e [ki - (ﬁ)z] (10)

The direction is -
k = k. iy + fiy = kaix + ﬁi,
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12.8.4 (a) If we want cancellations, we again want (compare P12.6.3)

8p = —Gqe Tkvd (1)
(b) A single sheet at y = d/2 gives
H, = +Ae—TkazFiky(y- ) (2)
Now,
% +jwé =0 (3)
gives
R, = 70"’:&,, (4)
and
282, = 1t (5)
Therefore w
A= m&a (6)

and the field of both sheets is
H, = jkia,,e-f"ﬂe'f"v(”?) sin kd (7)
¢

(¢) kyd = x/2. Therefore, as in P12.6.3,

w= 7=l - (3" (®)

12.7 ELECTRODYNAMIC FIELDS IN THE PRESENCE OF
PERFECT CONDUCTORS

12.7.1 The field of the antenna is that of a current distribution |cos kz|. We may
treat it in terms of an array factor of three antennae spaced A/2 apart along the
z-axis. From 12.4.12

3
I';ba(o)l — lzeik% cosol = ll +e_1'1rc059 +82j1rcosal

=0
= le—jncosa +14 ejncosol (1)

=1+ 2cos(7 cosf)
The function ¥,(f) follows from 12.4.8 with ki = =
¥o(0) = -12; cos (-12E cos f)/sin (2)

Combining (1) and (2) we complete the proof.
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The current distribution, with image, is proportional to |sin kz|. The point at
which the current is fed into the antenna calls for gero current. Since the radiated
power is finite, R..q is infinite. In practice, because of the finite losses, it is not

infinite but much larger than \/po/é€,.

(a) We have a surface current R,

oz
Therefore

g, = -39
Ka = 7/a

0o 8in (—

3K
—= + jwé, =0

1I’$)

The H-field is z-directed and antisymmetric with respect to y.

8, = £ Asin (KE)oiw

From the boundary condition

nx (A -A% =
with n || iy
Jw T
2Asm( ) = —maosm —=)
—_dv
4= 21r/ao°
The E-field is from (12.6.6)
1 afl,
E. = jweo 3y ( - ‘70) (Fiky) sm( )C;ka
= JkyTo o (TE\ ik,
" €o(27/a) sm( a )e '

and from 12.6.7

(b) On the plate at z = —a/2

G, = eoEz Ia;=—-a./2 =-

Jk!l% eTikyy
21r/a

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(©)
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At z = a2 it is of opposite sign. The surface current is

JWO, .
H |z—-a/2 = :I:2 /a eTikyy
and is the negative of that at z = a/2.
(<)
lc: + k3 = wzp.oeo
and thus

ky= ‘/wzuoeo - (%)2

12-17

(10)

(11)

(12)

Again we may identify a potential whose lines of equal height give E. Indeed,

— % gin (EE)eFikwy
:F€o(2ﬂ'/a) sin ( ” )eFiky
gives
ad oo
~i, x VO =i,— *3y l’az
nz
me?" k| jlyls sm( )— —lycos( )]

(d) For k, imaginary and wt =0

wt=10 wt=m/2
displacement
H "~ current density
@
~ \ »
@\ / (o]
® @\ /0 ®
) o” \\s ®
i ° \®
” ~
L~ ~d
@ ®
Figure S12.7.3a
Re[®] = sin ( )e:’:l""ly

*e (2 /a)

(13)

(14)
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For ky real, wt =0

Re[®] = :Fe_o(—;;/j gin (Eaf) cos kyy

wt=10 wt=n/2
e
E
I ‘jj ‘\k- | E @ displacement
|
' ® 0 ® 9, /
! © 0 L) 1
I ! ’
i 9 @ i © convection
\ R P +f ( Q—@ 1" current
\ o @
| I \
® o] @
I | *
1 ® © 0 I 7
| @ ® @ 0 1
® C] ‘B\ displacement
| | flux lines
lp @
le ®
+ + '
® ® \8
+ +
©®0 ® e
@0 ® ®
©
© 6
Figure S132.7.3b
(a) We now have a TE field with
E,= Acos (%)e’”"v" (1)
From (12.6.29)
1 aE‘, 1 T .
= ~———— = ———(Fjky) A cos (—)eTFikw¥
7 jwp 9y jwp (F7k) ( a ) @)

k .
= :t—lA cos (W_z.)c;.’kvy
wp a
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and the boundary condition

nx (H* - 8% =K (3)
we obtain relation for A:
—ZEA cos = = K, cos — (4)
wy a a
or K
WHhito
A= —— 5
= (%)
and thus K
Hz = :FTO cos (-1-I:2£)¢=F-"'ky!l . (6)

From (12.6.60)

g - L 9B _ xfa,. (E),w‘kyy
Jjwp Oz Jwp

= -5 21/0 K, sm( )c:F’k"”

a,=

(7)

(b) Since the E-field is z-directed, it vanishes at the walls and there is no surface
charge density. On wall at z = —a/2

R, =18, . (8)

Figure S12.7.4a

and thus

K, = 11—;1{;—:K06:ij”y (9)

On the other wall, the current is opposite.

(<)

= Vwpoeo — (n/a)?2 (10)

since k; = w/a. Again we have a potential @, the lines of equal height of which
give H.

1 K,
Iky 2

cos ( )e:F’k"” (11) '
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(d) For ky imaginary:
wt=0 wt =7 /2

o1 E-field

[ONONO)
(ONONO]
0]
Figure S12.7.4b
for ky real: ® .
o © o
e @ 0 wt=0
®
— H
®
®® %
T T eee
®
®
® 6 0
o 0 ©
®

Figure S13.7.4¢c



SOLUTIONS TO CHAPTER 13

13.1 INTRODUCTION TO TEM WAVES

18.1.1 (a) From (13.1.3):

3E,
dy

oH,
ot

= ARe|A cos(By) exp(jwt)] = p
= B|A|cos By cos(wt + ¢)

where ¢ is the phase angle of A. Integrating the above yields
H, = £—|A| cos Bysin(wt + ¢) = —Re jiA cos fye’“t
wp ' wp
Introducilllg (2) and the expression for E, into (13.1.2) gives
2
—5—“|A| sin Ay sin(wt + ¢) = —we|A|sin Py sin(wt + ¢)
from which the dispersion relation follows 2 = w?ue.
(b) From (13.1.13)
' H,(—b,t) = —Re K, e/t
This gives, using (2),

—Re ]'iA cos Bye’t = —Re K, e7¥t
wp

and thus

__.wa’,, . [ 1
A= TG csph ’K°\/:cosﬁb

H, = —Re kg%%':‘%%ejut

Using (2) we find

and putting the value of A from (5) into the expression for E, gives

E. =—Re jKO\/E sin fy eIvt
€ cos Bb

(1)

(2)

(3)

(4)

(5)

(6)

(7)



13.1.2

13.1.3

13-2 Solutions to Chapter 13

(a) The standing wave '
H, = Re Asin fye’**
satisfies the boundary conditions of sero H, at y = 0. From (13.1.2)

8H, ot _ OBs
= = 1
3y BRe A cos Bye Sy (1)
Integrating to find E, gives
E, = —f—eRe 7 A cos Byel“t (2)
From (13.1.3) we find
2 - -
9F: _ “—Re jAsin fye’*t = pﬂfi = wuRe 7 Asin fye** (3)
8y we at
and thus
B? = w?pe (4)
(b) Turning to the boundary conditions,
E.(—b,t) = Re Ve’ /a (5)
and thus from (2)
—;’H—eRe jAcos Bbe’*t = Re Vye/“t fa (6)
and hence R R
—gweYa 1 _ . feVa 1
A—Jﬂ acosﬂb—J\/:a cos Bb (")
We find ’
H, = Re j,[SL420PY jun
B a cos 8b
E, =Re ﬁf’."’_ﬂﬂea‘wf
a cosfb
Using the identity ) )
sinz = (¢7* — e77%) /25 (1)

one finds from (13.1.17)

1 1,. . ,
E,=—RejK ot = (p3By _ ,—3By\ Jut
* €J OV € cos Bb 27 ¢ ¢ )e

(2)
= —Re %Ko\/g[ci(wf-ﬁv) - c".f(ut+ﬁll)]/cos Bb

The exponentials in the brackets represent waves that retain constant amplitude
when dy = +4d¢ exhibiting the (phase) velocities +w/f = +1/ /.
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Solutions to Chapter 13 - 13-3

(a)

(b)

(<)

The EQS potential in a coax is a solution of Laplace’s equation. The field
with rotational symmetry is

r
P = Aln; (1)

satisfying ® = 0 on outer conductor of radius a. The field is z-independent
with a constant potential difference. The potential difference is

Aln(bja) =V (2)
The field is

A |4

3 LA
E=-Vd= —lrat‘“n(’/“) ="kT =1 rin(a/b) ©)

The field has cylindrical symmetry with field-lines parallel to is. The potential
U is

U= A¢ (4)
The H field is 13 4
H=—l¢;—%\1’= -—14,7 (5)

Ampere’s integral law gives

fH-ds:/J-da:I ©)

Since H is z independent, I = constant and at z = -]
—%2#7‘ =—21rA=1] (7)
Therefore
H=i, (8)
T Y 2xr

The preceding analysis suggests that

. V(zt)
B lalo)r )
and
n-;, 50 (9b)

can be solutions of Maxwell’s equations. To show this it is advantageous to
separate the V operator into

. 0
V=Vr+i, 92 (10)



v
13.1.5

13-4

(a

et

Solutions to Chapter 13

where s 1 8
=i + S 11
Vr =t ¥ e (11)

is the transverse part of the operator. Then

VxE=VTxE+i,xaiE (12)
V-4

Now Vr differentiates only r and ¢. The EQS field, which is z independent,
has V+ x E = 0. Hence we conclude that the same holds for the “Ansatz”

(9). But iy x i, = iy and iz X iy = —i,.. We obtain from Faraday’s law
1 13 1 a1
Y =y 13
In(a/b) r da Honr at (13)
The common r-dependence can be eliminated, and we find
8 aI
—V=-L— 14
Oz ot (14)
where In(b/a)
pln(b/a
= — 15
L o (15)
A similar reasoning applied to V x H and Ampére’s law yields
. 13 . e v
T 2mroz In(b/a)r 8t (16)
. al oV
3~ %% (17)
with
. 2me 18)
" In(b/a) (

With the time dependence exp jwt, we get for the transmission line equations
of (14) and (17) of Prob. 13.1.4

dv .
I o
o —jwCV (2)

where

V = Re Velvt
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(b)

and .
I = Re e’

Eliminating V from (1) and (2) one obtains

‘% = —ijg = —w?LCV (3)
with the solutions P
A cos fz
Vi { sin fz (4)

with

B =wVIC (5)

We pick the solution

V = Asin Bz (6)
because the short forces V' to be sero at z = 0. From (1) we find
P I AV 3B,
I—wL 1s —wLAcoﬂz (7)
and since I = Re I,e/“t at 2 = —I,
Acosfl= —j(—dEL—Io (8)

or

A= -3y L/Ccoﬁoﬂl (©)

where we used (5). We find for the current and voltage as functions of z and

)= g "
?(st) = —Re jVITCL o™ (11)

At low frequencies cos fz ~ 1 for all —! < z < 0 and sin fz ~ fz = wV/LC=.
Using (9) of the preceding problem,

I, .
I'I(z,t) = igRe 2—:’.6"“ (12)

For the E-field we find from the preceding problem and (11) above

LzI,elvt

E= —1,Re]wmg)—;

= —i Re jw :—”zIoe"'"‘ (13)
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This gives the voltage at z = —I
a )
/ E - i, dr = Re[jwLil, e’ (14)
b

The inductance is Ll because L, as defined here, is the inductance per unit
length. Thus we have shown that, in the limit of low frequencies, the structure
behaves as a single-turn inductor.

(c) The H-field in the space between the conductors is the gradient of a potential
¥ « ¢ that is a solution of Laplace’s equation. Thus,
H=Re —Io—i eiwt (15)
27r ®

We obtain E from Faraday’s law

__l‘aH___ -I_Oo Jwt
VxE= Tl pRe jw ey 19¢ (18)

z2(<0) z2=0

Figure S13.1.8
With the line integral along the contour C shown Fig. $13.1.5, we may find from
the integral form of Faraday’s law

dr
2rr

a a
/ E.dr = pRe {jwIe™**|2| f (17)
b b

Integrals over the radial coordinate appear on both sides. Thus, comparing the
integrands we find

ol
E, = —Re ‘Lug‘ﬁze’”' (18)

which is the same as (13).
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v/

13.1.8 (a) From the solutions (4) in Prob. 13.1.5 we pick the cos Sz dependence, because
the magnetic field, proportional to f, is zero at z = 0 according to (7) of the
same problem. Indeed, if V = Acos §z, then

jo I 4V _ 3B,
I= I = wLAsmﬂz (1)
Since
Re[A cos Bz exp jwt];=-; = Re[V, exp jwi] (2)
we find v
— (-]
A= cos fl (3)
and v
—_ o .
I= '“/C/Lcosﬂl sin Bz (4)
Therefore,
V(z,t) = Re [ Bl cos Bz exp ]wt] (5)

. Vo
I(z,t) = —Re ]\/C/Lco Bl

in(r/a) - V(z,t) 1
in(a/b) ~ Tin(a/b)r (M)

where Vr is the transverse gradient operator,

sin fze’* (6)

E=V(z,t)Vr

a 19
Vr = a + 1¢r EYS
and we use the result of Prob. 13.1.4. In a similar vein
I (z 3 t)
H= 8
2rr ( )

(b) At low frequencies, cos fz =~ 1,sin 8z =~ Bz and V(z,t) ~ Re V, exp jwt. Then,
assuming V, to be real,

ln(a/b) V coswt (9)
_ g o WE .
H= Py VC/LBzV,sinwt = iy TIn(a/b) 2V, sinwt (10)
(c) At low frequencies, using EQS directly
V coswt (11)

ln(a/b)
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namely the gradient of a Laplacian potential o In(r/a). The H-field follows

from oF
VxH= E-é-t— (12)
with 4
H = 14,72 (13)
introduced into (12)
2] A i

1
~Vosinwt

= —f - = -} = —we——o0
VxH Ir 3zH¢ i r weln(a/b) r

and therefore

A Vo sinwt (14)

- In(a/b)

which gives the same result as (10).

13.2 TWO-DIMENSIONAL MODES BETWEEN PARALLEL-

PLATES
13.2.1 We can write
cosﬂz— l(ex 'n—”-z+ex —'ﬂz)
a 2 PJ a P=J a
and
sin Mz— i(ex 'ﬂz—ex —'H-:c)
a 27 PJ a P—J a

Introducing these expressions into (13.2.19)-(13.2.20) we find four terms of the form
. T . nw
exp Fjhnyexp Fj—z = expFj(Pny + —z) =exp—jk -x

where nr
k= :t-a—ix * Bniy

and
r=iz+i,y

This proves the assertion that the solution consists of four waves of the stated

nature. These waves are phased so as to yield z-dependences of the form cos 2%z
and sin 2z to satisfy the boundary conditions.
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13.2.2 We can start with the solutions (13.2.19) and (13.2.20) shifting = so that
1=y 2
g=z-3

Considering TM modes first we note that

nrz’ nw
H, o:cos—z—cos( -
nwz’ nw ‘nrz’ . nw

= CO8 s ——

cos —2— — 8in 2

_ { (~1)"/2 cos (22£)  n even
(—1)"F sin (22%) nodd

We see that the modes with even n are even with respect to the symmetry plane
of the guide, the modes with n-odd are odd.
Next studying the TE-modes,

nrz'y . nx
sin —
2

nx
E, o:smTz—sm(——)cosT+cos(

(—1)"/ Zgin 812"y even
(—1)"7" cos s’ n odd
We find that E, is even for n odd, odd for n even.

(a) When g’ = :i:a/2 and the modes are odd, H, = (~1)(*~1)/2sin 2% E, =
(—1)"/? sin BF; in the first case n is odd and H, is an extremum at z’ = :I:a/2
and in the second case n is even and E, is zero at both boundaries.

(b) When 2’ = +a/2 and the modes are even then H, = (—1)"/2cos(%F) and

E, = (-1 )("'1)/ Zcos % we see that both boundary conditions are in both
cases, because n is odd in the first case and H, is an extrenum, n is even in
the second case, and E, is zero.

13.3 TE AND TM STANDING WAVES BETWEEN PARALLEL
PLATES

13.3.1 We multiply (13.3.1) by k%, and integrate over the interval from 0 to a.

~

/0 dz (k% d:lhz PR mhan) = / dz— (h,,,,d:;"
- fo dz(z;h:m)(zhm) (1)

a
+ pﬁ / hyphandz =10
0
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where we have integrated by parts. Because dh,,/dz = 0 at z = 0 and z = a, the
integral of the integrand containing the total derivative vanishes.

Next take the complex conjugate of (13.3.1) applied to ham multiply by h,,
and integrate. The result is

° ds d;
/o dzd —h; d_ pmf R handz (2)
Subtraction of (1) and (2) gives
a‘ ~
(7= #2) | Bimhamdz =0
0

Thus a
/ Bt humdz=0
0

when p2, # p2 and orthogonality is proven. The steps involving &,, are identical.
The only difference is that
z_( dim)
Cam gz

vanishes because &}, vanishes at z =0 and z = a.

138.3.2 (a) The charge in the bottom plate is

w p(atd)/2
= f / eEydzdz (1)
0 J(a—a)/2

Using (13.3.15)

()T a2 (2

q=TRe [ 4mre b} 1 ,w,] 2wa

a ,_B,Ta_sinﬂ b nw

n=1
odd

where we have used the fact that

w plat+d)/f2 _
/ / Sin (ﬂz)dzdz= —y—a[COS MG+A) — cos ﬂa A)]
( —A)/2 a nm a 2 a 2

n 2 2a
_ 2wa(_1)5_;_; in nr
nr

(3)

v, = —Re jwde? R

— _Re [jw8€w RO ( ;)a_ ss‘:; ﬂza e"“"] (4)

n
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(b)

(c)

(a)

(b)

When £,b = 7« we have a resonance. Now

B = \fune - (25)?

The resonance frequency of the n-th mode occurs at

ﬂn%a = \/4w?pea? — (nx)2 =« (5)

wy/pea =/(n? + 1)-"2I (6)

For n = 1 this is at 7. The next mode resonates at \/5/4x. Thus, in this
range, two resonances occur for which the response goes to infinity. Of course,
in this limit, losses have to be taken into account which will maintain the
response finite. The low frequency limit is when

or

wy/pe K n%
Then nr nr
Br sin fb — ——sinh —b
a a
and

T N~ (C) T sinngA
vo = Re []wSﬂ'GWRU; B ginh %) e (7

From (13.3.13), when only one mode predominates,

H, =~ Re ézw_wwcos il e
Bna sinf,b a

wheren=1a.tw,/a=1ra.ndn=2a.tw,/a=\/ 4x. To get a
finite answer, we need §/sin f,b to remain finite as the resonance frequency
is approached.

H, at £ = 0 and z = a gives the surface currents in the bottom and top
electrodes. Because the voltage sources push currents into the structure in
opposite directions, the surface currents, and H,, have to vanish at the sym-
metry plane.

The z-component of the E field can be found directly from (13.3.14), replac-
ing the sin f,y/ sin f,b by cos f,y/ cos fnb to take into account the changed
symmetry of the field

_4_vcosﬁ,,y L
= Re [Z cos " z]e

a cosf,b

n=l
odd

Because dH, /3y = jweE, we find

H, = Re f: 4jwed sin sin fny APnY o8 X .Id"'*
* Prna cosfnb a J
nodd
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13.83.4 (a) The flux linkage X is

A=uH,A (1)
and the voltage is iH
v, = pA % (2)

(b) From (13.3.13) we find that |H;| is a maximum for =0 and z = a.
(c) From the detailed expression (13.3.13), using (2)
o 4w ped " 1

&<  fPpa sinfpb
nodd

v, = -—Re[

nn .
cos —X] eJwt
a

(d) The loop should lie in the y — 2 plane. Then it links H, that is tangential to
the bottom plate.

13.8.5 The E, field is derivable from a potential that is a square wave as shown in
Fig. 513.3.5. We have

. mm

O(z) = Z,,: A, sin T (1)
v

] 1L

z=10 ) T=a
=21 z=1f

Figure S13.3.5

and using orthogonality, multiplication of both sides by sin 2%z and integration gies

ZA =v‘/l._;.-{sin-’ﬂ:l:d:l:——2 cos Ea+d)_ ﬂa'_d)
27" asd a = Tnm P cos (——
av . .nmy ., nxd
—2—sm(——)s _2:)
We find . ;
An-'—v-sin(ﬂ)s' (EL
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o0 .
4jwed | nxm, , ,nr  cosfPLy nx :
H, =Re [Z e sm(T) sin (Ed sinﬂ:b cos Tz] et

nel
odd

E;=Re Z——-sm nﬁ')sm(mrd)s_x_nﬂ_,.y sﬂz et

| £ sin S, b
odd
[ inr nxd, cos fny T |
Ey=Re-“=lT 1n( ) ( Smﬂnb n—-—zWGJt
odd
13.3.6 In (13.3.5) we recognized that E. at y = b must be the derivative of a po-

tential that is a square wave. This, of course, is equivalent to the statement that
E, possesses two impulse functions. In a similar manner, Hy can be considered the
derivative of a flux function [; uHydz. Note the analogy between (13.3.19) and
(13.3.14). We may, therefore, adapt the expansion of P13.3.5 to this problem, be-
cause the flux function of Example 13.3.2 is the same as the potential of example
13.3.1. From (13.3.17)-(13.3.19):

E,=Re [E 4JAw sin (mr)s (mrd —:::‘;m: mina—’rz]ejM

m=1
odd

H,=Re[z4‘f;w sin (%) im (27 )zf;gmgmgz]cw

m=1
odd

=R [ 35 2 in () in () 2Bt ] e

m=1
odd

13.4 RECTANGULAR WAVEGUIDE MODES

13.4.1 The loop in the y — z plane produces H-field lines along the z-direction. If
placed in the center of the waveguide, at z = a/2, these field lines have the same
symmetry as those of the TE;o mode and thus excite this mode. The detection loop
links these fields lines as well. Of course, the position of ti.e exciting loop must be
displaced along y by one quarter wavelength compared to the capacitive probe for
maximum excitation.
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13.4.2 The cutoff frequencies are given by
mm\a (nT\2
Ty (5
The dominant mode has n = 0 and thus it has the (lowest) cutoff frequency

w n
Tc m=1,n=0 = (—G-)

The higher order modes have cutoff frequencies

). .= Q)T Ta) = I/ maTP

The cuttoff frequencies are in the ratio to that of the dominant mode:

TEq: 1.33
TE11 and TMu 1.66
TEze 2.0

TE21 and TM21 2.4

13.4.83 (a) TM-modes have all three E-field components. They approach the quasistatic
fields of Ex. 5.10.1 which imposes the same boundary conditions as this exam-

ple. Hence the modes are TM. From (9) we find that &, « —jk, 3% = g;;%:-

2 .
and &, o —jky%ﬁ,”- = g—v%. Since &, and &, must vanish at y = 0, &, must
behave as a cosine function of y, so that é; and é, are sine functions of y.
Therefore,

-3 - 5 . mxr_ ., nw
Ey = Re Z z,,:(A:mc IBmny 4 A e7Pmn¥)gin —, - zsin Uze""' )
(1

mx nx nx
= Re E E 24}, cos By ysin — zsin —z sin —z¢?“*
a w
n

a
where
Bmn = Vwipe — (mn/a)? — (nx/w)? (2)
From (13.4.9):
= Re zz w:Z’:’l( ) (A+ —3Bmny _ A;,ncjp""”)
cos %r-z sin n—ze""' (3)

ﬂmn + . mn . nw Wt
=Re E Z w"’pe _ aﬂz ZAmn sin ﬂmny cos _a—x sin ‘;36‘1“’
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and similarly,

ﬂ : . mr nT .
= Re Z Z wzp:"l ‘:92 ZAIm sin ﬂmny sin Tzcos ;ze“" (4)

(b) At y = b, E, as a function of z must possess two equal and opposite unit
impulse functions of content v(t)/A to give the proper voltage drop at the
edges. The integral of E,, — | ¥ E.dz must be a square wave function of
amplitude v. The same holds with regard to the integral of E, with respect
to z. In summary, E, and E, at y = b must be derivable from a potential
that is a two-dimensional square wave with the Fourier expansion (5.10.15)
(compare 5.10.11):

169 nw
O(z Re sin —zsm —zetvt 5
(z,9) = Zj Z: — ” (5)
modd nodd
impulse
function
z=0
—_— r=a
impulse z
function

Figure S13.4.3
Thus, at y=1b

169 mr ., nmw .
E.(y=0)=—Re E E mmr2 —=) cos —zsin -;ze""‘ (6)
n=l
modd nodd

Comparison with (3) gives

169 mn

(7)

for m and n odd. This gives the quoted result. An analogous relation may be
obtained for E, which yields the same result.

M (w? 2 g =
2A,0Pmn " [(wpe — B2,,.) sin fnb = n? o

(c) The amplitudes go to infinity when sin f,,,b = 0 or

Vwipe — (mn/a)? — (nx/w)2b = pr
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or

wy/pea = 1r\/m2 + (%ﬂ)2 + (%F’)2

(d) We have already used the fact that the distribution of E; and E, in the y=1b
plane is the same as in the quasistatic case. The only difference lies in the
y-dependence which, for low frequencies gives the propagation constant

. [;mm\2  nmy2
ﬂmn - .7\/(—; + ( w )
and is pure imaginary. The EQS solution according to (5.10.11) and (5.10.15)

is
169 sinhknny . mn nNE it
®d = Re E E a3 stk Enb sm 2 zsm ” ze

m=1 a=1
odd odd

and gives for E,:

.= —Re Z Z 169 (rmr sinh Enny cos = . % 2 sin %}—ze""‘

mnx?® a smh kmnb

m=l na=l
modd nodd

This is the same expression as the EQS result.

13.44 Z2=w
i w+A
\\7 2
~- 4
\ / J w-4a
a—d atd 2
z , 2
=0 z=af2 r=a
2=0

Figure S13.4.4a

The excitation produces a H,,. It looks like TE-modes are going to satisfy all the
boundary conditions. Hy, must be zero at y = 0 and thus from (25) of text

Hy, =Re Z E(C’*‘ ~IBmn¥ 4 O 7PmnY) cos (—a:) cos (—.z)c”"t
m=0 n=0 (1)

= —Re Z Z 2;C}, sin Bmnycos (—a—z) cos (-'—E—z) eiwt

m=0n=0

At y = b we must represent the two dimensional square-wave in the z-direction and
in Fig. S13.4.4b in the z-direction as shown in Fig S13.4.4c.
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H
a—A ¢ z=0 Z=w
2
t t } -+
a+A w—A wtA
a 2 2
z=0 a/2 z=a
Figure S138.4.4b Figure S13.4.4¢
We have, setting
—25C} . 8in Branb = Amn (2)

.[)w /: E ZAmn cos (mz) cos (HZ) cos (M"‘) cos (ﬂz) dzdz = _%AN (av)

=-H, / dz/ dzcos( cos —z

+ Ho/ dz/ dzcos (—z) cos —z
- ng a w

-~y e ) - (2250
[in (5252 (228

(L)(L)[' CEERRTE

DT

2 il SV

@y )]

— 8in (%a d) —sin(pr%é) + sin pwa)]

2
[singzw_*-A sinﬂw_A]
w
-__H P7Y _ 2gin (P5) cos (2™ ar i, 974
( )(L)[Zsm( ) 2s1n( )cos(zaA)]2cos2sm 2w

4H,
(p )( ) sin (?) cos ( ) sin q;rwA [1 — cos x%A]
_ _ (3)
We find that p must be odd and ¢ must be even for a finite amplitude to result.
H, - 2_ pm
—_ 0 (_1\P-1(_ 11 — cos 2=
pq pq1r2( 1)P=(-1)2 [1 o8 o A] (4)
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The case ¢ = 0 must be handled separately.

-1- aw) = — Ll sin pr 2 — sin Ea_d w
3 Avolan) =~ sin (25) - sin (21 225)]

2
H, . prja+d . (pTa
+@[sm—a—( 2 )-—sm(;——ﬁ]w

= -——ZWHO 1 pT sin 2T
= ( 1) cos o 5
Pq

and thus
H, pr -1
o= —2[1— P2 Al(—1)P
Ap or [1— cos 52 A](-1)

From (13.4.7) and (13.4.8), one finds

2 . mm T
= Re ZZ Jw;;:eﬁ—r-nzz a ) €08 Brnysin —a—:c cos %ZCJwt

25C}, Bmn (25) mn nr .
= Re E 'E : il Jwt
" ue—ﬁz c08 Bnycos 2 z sin ” —ze

with C}  expressed in terms of the A,,,’s by (2)

13.5 DIELECTRIC WAVEGUIDES: OPTICAL FIBERS

13.5.1 (a) To get an odd function of z for €, one uses the Ansatz

Ae_‘“=(‘_d) d<z<oo
&, = A%ﬁ:‘—j —d<z<d
—Ae?:(2td) _ o< z<—d

which has been adjusted so that &, is continuous at £ = +d. Since

Jé, . e
oz = Jwkhy
and thus
1 [ —osde” "‘:(“ 9)
T coskzzx
hy = W k Annk d
Jub —aer‘“(""*'d)

(5)

(7)

(8)

(1)

(2)

(3)

;Ly and €, are continuous at z = d. The continuity of &, has already been

established. From the continuity of h,:

oz = —kgcot kyd

(4)
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The cutoffs are at k.d = (2n — 1)5 (see Fig. $13.5.1a).

NN
3
I8
»o
3
™
L3
Al
p—
[
. 5
l |

Figure S138.5.1a
(c) When according to 13.5.3

ked = \/w?pe; — k2 = (2n — 1)%

and w goes to infinity, then k, must approach w,/u¢; asymptotically.

(d) See Fig. S13.5.1b (Fig. 6.4 from Waves and Fields in Optoelectronics,
H. A. Haus, Prentice-Hall, 1984).

-l
15.0 -
Asymptote §= wv o€,
10.0 |-
3
LN
SO0
m=0 - 3
- ] -
Asymptote f = wypge
" L i t : L i 1 i i PR
0.0 0.5 1.0 1.5 =t}

%1 = wyHpEy

Figure S138.5.1b
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13.5.3
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Solutions to Chapter 13

The antisymmetric mode comes in when

T o
Z_s =0  and kd=
and from (13.5.8)
w2 pe;d?
1-$)-1=0
\/ (kzd)? ( )
or
7/2
wy/ped = ( )
or
/2 eo € w2
VHEd / 1__ €& \/1—€/¢
_3x 108 /2 — 3.85 % 10°

(a)

102\/—,_\/1_%

f= = =6.1x10°Hz
2%
For TE modes
Ae—a,(z —d) z>d
€, = A%’:‘% or A% —-d<z<d
Aevz(z+d) or _ peas(ztd) 5o g

where we have allowed for symmetric and antisymmetric modes. Continuity
of &; has been assured on both boundaries. The magnetic field follows from

s 1 de
hy = ——2 2
Yy Jwp dz ( )
and thus
g‘~Ae‘"‘=("'d) z>d
il _ i &Asmk,z or kacosksx —d<z<d 3
Yy — jw i ““coskgd @i 8ink.d ( )
—“‘Ae‘“("""d) or —22fex:(=td) z< g
Continuity of h, gives
a k

—= = Ztank.d (4a)
B oM
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(b)
(c)

()

for even modes, and

o _ ks ikod (4b)
B i
for odd modes. Here
ag = \/k2 —wiue (5)
ks = \Jw?pie; — k2 ()

and thus, eliminating k,,

k2 = w?(p;e; — pe) — o

o, [wiped? _be
ks _\/ k2d32 [l_p,-e;] 1 Y

Cutoff occurs when a,/k; = 0 and k.d is fixed. We find that when u; is
increased above u, w must be lowered.

The constitutive law (a) for symmetric modes has the graphic solution of Fig.
13.5.2. The only change is the expression for a,/k. but its k,d dependence
is qualitatively the same; a./k, increases when pu;/u increases at constant
w. This means that the intersection point moves to greater k.,d values. kz
increases directly with increasing u;/p according to (6) and decreases with
increasing k.. The intersection point of k;d does not change as fast, in partic-
ular, at high frequencies it does not move at all. Hence, the direct dependence
on u; predominates, ky goes up and A decreases.

The fields are now’

Ac—ai(z—d) . x> d
hy={ Ak or Apfinkaz -d<z<d (1)
Aeds(m+d) o _ Aeas(ztd) g < 4

where we have allowed for both symmetric and antisymmetric solutions. Cointi-
nuity of h, has been asured on both boundaries. Further,

az =1/ k3 — wipe (2)
ke = \/wzu,-e.- — k2 (3)

_1 dh

jwe dz

Since

(4)

ey =
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13-22
. _g:Ae—a,(s—d)
fy= - | —BAtabe o ook (5
J E:Aeas(z+d) or — g:Aea.(:Hd)
Continuity of é, at z = +d gives
% ks ke (6a)
€ €
for even modes, and
2 _ ks cot k,d (b)
€ €5
for odd modes. Further,
K2 =a?+wipe=—k2 +wine (n
Thus
a2 = w?(uie; — pe) — k2 (8)
and
ar _ [wiped? _ e
ks \/ k3d? [t I‘iei] ! (©)

(b) The cutoff frequencies are determined by k;d = m% and a. = 0. From (9)

2 €:
wcl‘sfs‘:z[l_ L"G_] -1=0
(mg-) Hi€g

or .
my 1

= 2
We '_mé.'d Jl — F‘IL:'




SOLUTIONS TO CHAPTER 14

14.1 DISTRIBUTED PARAMETER EQUIVALENTS AND

14.1.1

14.1.2

MODELS

The fields are approximated as uniform in each of the dielectric regions. The
integral of E between the electrodes must equal the applied voltage and D is con-
tinuous at the interface. Thus,

Eia+ Ebp = -V; B, = e Ey (1)
and it follows that v

Ei=————F7F—— 2
[0+ Blearen)] ®)

so that the charge per unit length on the upper electrodes is

weg

M= —we B, =CV; C=i—F———+ 3
! o+ b{eafeo)] )

where C is the desired capacitance per unit length. Because the permeability of the
region is uniform, H = I/w between the electrodes. Thus,

A= (a+b)u.H = LI, L=po(a+b)/w (4)

where L is the inductance per unit length. Note that LC # ue (which permittivity)
unless €5 = €.

The currents at the node must sum to zero, with that through the inductor
related to the voltage by V == Ldiconductor/dt

L 3
1) ~ e+ A2) =V (1)

and C times the rate of change of the voltage drop across the capacitor must be
equal to the current through the capacitor.

C 3

In the limit where Az — 0, these become the given backward-wave transmission
line equations.

14.2 TRANSVERSE ELECTROMAGNETIC WAVES



14.2.1

14.2.2

14-2

(a)

(b)

Solutions to Chapter 14

From Ampére’s integral law, (1.4.10),
Hy = I/2nr (1)
and the vector potential follows by integration

1 34,

Hy = o Or

—A,(a) = -L;o?Iln(r/a) (2)

and evaluating the integration coefficient by using the boundary condition on
A, on the outer conductor, where r = a. The electric field follows from Gauss’
integral law, (1.3.13),

E, = \/2mer (3)
and the potential follows by integrating.
E = -52 = o) - ¥(a) = 2 in(2) )

Using the boundary condition at r = a then gives the potential.

The inductance per unit length follows from evaluation of (2) at the inner
boundary.

=7 == = Bin(aft) (5)

Similarly, the capacitance per unit length follows from evaluating (5) at the
inner boundary.
2re

A
C=% = Inlaf) (©)

The capacitance per unit length is as given in the solution to Prob. 4.7.5. The

inductance per unit length follows by using (8.6.14), L = 1/Cc?.

14.3 TRANSIENTS ON INFINITE TRANSMISSION LINES

14.3.1

(a)

(b)

From the values of L and C given in Prob. 14.2.1, (14.3.12) gives

Z, = \/u/eln(a/b) /2%

From p = p, = 47 X 1077 and € = 2.5¢, = (2.5)(8.8.5 x 10712), Z,

(37. Q)In(a/b) Because the only effect of geometry is through the ratio a/b
and that is logarithmic, the range of characteristic impedances encoutered in
practice for coaxial cables is relatively small, typically between 50 and 100
ohms. For example, for the four ratios of a/b, Z, = 26,87,175 and 262 Ohms,
respectively. To make Z, = 1000 Ohms would require that a/b = 2.9 x 101!
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14.8.2 The characteristic impedance is given by (14.3.13). Presuming that we will
find that /R » 1, the expression is approximated by

Z, =\/u/ein(2l/R)/x
and solved for I/R.

1
I/R = 2 exp[nZ,/+/ /€| = exp[n(300)/377]
Evaluation then gives [/R = 6.1.

14.3.3 The solution iz analogous to that of Example 14.3.2 and shown in the figure.

-t

A

[,
~
i

|
|"-
8

V=1,2/2

‘1 =1
“ \< _

~Y

Figure S14.3.3

14.3.4 From (14.3.18) and (14.3.19), it follows that
Vi = V,exp(—22/24%) /2
Then, from (9) and (10)

V = SVelexpl—(z - ct)?/20%) + expl (s + ct)?/267])



14.3'5

14.3.6

14-4 Solutions to Chapter 14

I= %{exp[—(z — ct)?/24%] — exp[—(z + ct)?/24%]}

1
22,

In general, the voltage and current can be represented by (14.3.9) and (14.3.10).
From these it follows that

1 1
VI= (V4 + V_)Z-(V+ -V)= Z(Vj -v3)

By taking the 8()/8t and 3()/8=z of the second equation in Prob. 14.1.2 and
substituting it into the first, we obtain the partial differential equation that plays
the role played by the wave equation for the conventional transmission line

v

LCoaaa =

4 (1)

Taking the required derivatives on the left amounts to combining (14.3.6). Thus,
substitution of (14.3.3) into (1), gives

cvin=v

By contrast with the wave-equation, this expression is not identically satisfied.
Waves do not propagate on this line without dispersion.

14.4 TRANSIENTS ON BOUNDED TRANSMISSION LINES

14.4.1

When t = 0, the initial conditions on the line are
V=V, I=0 for O0<z<l

From (14.4.4) and (14.4.5), it follows that for those characteristics originating on
the ¢ = 0 axis of the figure

Ve=V,/% V_=V,/2

For those lines originating at z = I, it follows from (14.4.8) with R, = oo('z = 1)
that
V_ = V+

Similarly, for those lines originating at z = 0, it follows from (14.4.10) with I'; = 0
V+ =0

Combining these invarients in accordance with (14.1.1) and (14.1.2) at each location
gives the (z,t) dependence of V and I shown in the figure.
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V.=V, = 0/2

' —

Vo Vy = V,/2
/ AN
V. =V,j2

S
=
|
°

1=-V,/22,

Figure S14.4.1

14.4.2 When ¢ = 0, the initial conditions on the line are
V=0 I=V,/Z, for 0<z<l

1=V,/2, Vo=-V,

/

V= 0/2 -

V.=-V, /2 -

-V

1=V.)22, \ Vi=0
- 012

Figure S14.4.2
From (14.4.4) and (14.4.5), it follows that for those characteristics originating on



14.4.3

1444

14-6 Solutions to Chapter 14

the t = 0 axis of the figure
Vi =V,o/2; Vo =-V,/2

For those lines originating at z = [, it follows from (14.4.8) with R, =0 (I', = —1)
that

V_ = '—V+
Similarly, for those lines originating at z = 0, it follows from (14.4.10) that
V+ =0

Combining these invarients in accordance with (14.4.1) and (14.4.2) at each location
gives the (z,t) dependence of V and I shown in the figure.

If the voltage and current on the line are initially zero, then it follows from
(14.4.5) that V_ = 0 on those characteristic lines z + ¢t = constant that originate
on the ¢t = 0 axis. Because R = Z,,, it follows from (14.4.8) that V_ = 0 for all of
the other lines £ + ct = constant, which originate at 2 = l. Thus, at z = 0, (14.4.1)
and (14.4.2) become

V=V I1=V,/2,

and the ratio of these is the terminal relation V/I = Z,, the relation for a resistance
equal in value to the characteristic impedance. Implicit to this equivalence is the
condition that the initial voltage and current on the line be zero.

R, V. =0
V.=0 \
Ry R.
¢ =0, _, O=VoRG-UGH
18 / _
Z,
— 1
r 7
B8 PN ) wram 2% 7 -
*v - V4 /
’ (10) =V, = lV
—
V(O=t) = V“H!'* T J T
| Vo/2 j | -,
lfc 2l/c A
1., (z_ - 1)
5v.,[l + &7 1)]

Figure S14.4.4



14.4.5

14.4.8

Solutions to Chapter 14 14-7
The solution is constructed in the z —t plane as shown by the figure. Because
the upper transmission line is both terminated in its characteristic impedance and
free of initial conditions, it is equivalent to a resistance R, connected to the ter-
minals of the lower line (see Prob. 14.4.3). The values of V; and V_ follow from
(14.4.4) and (14.4.5) for the characteristic lines originating when ¢ = 0 and from
(14.4.8) and (14.4.10) for those respectively originating at z =1 and 2 =0.

When ¢t < 0, a steady current flows around the loop and the initial voltage
and current distribution are uniform over the length of the two line-segments.

_R¥o = Yo
R, + Ry’ R, + Ry

In the upper segment, shown in the figure, it follows from (14.4.5) that V_ = 0.
Thus, for these particular initial conditions, the upper segment is equivalent to a
termination on the lower segment equal to Z, = R,. In the lower segment, V; and
V_ originating on the z axis follow from the initial conditions and (14.4.4) and
(14.4.5) as being the values given on the z — ¢ diagram. The conditions relating the
incident to the reflected waves, given respectively by (14.4.8) and (14.4.10), are also
summarised in the diagram. Use of (14.4.1) to find V(0,t) then gives the function
of time shown at the bottom of the figure.

Vi = L

R, V=0
v o Y i
"R+ R N
. v, V N
TR R (% -1)
LN Vo=V, B —
Za v. =0 &+
T —_— \
v.ow YelRe— R)
2 (R Rs) Jd
A /’
v = VelRe~ Ri)
T (R R) ¢
. | 4 !
> ; -
R, v, ! w(t) 1 V=0 ]
i >
D | |
v, 4 V(0,t) | |
! |
A
" S — —
— 1
1 2l
Vo(R, ~ Ri) /e Vo(R— RY re
2 (R.+ Ry} 2 (R, - R,)

Figure S14.4.5

From (14.4.4) and (14.4.5), it follows from the initial conditions that V,, and
V_ are gzero on lines originating on the ¢t = 0 axis. The value of V; on lines coming
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from the z = O axis is determined by requiring that the currents at the input
terminal sum to gero.

. 1 1
g = E(V.{. +V...) + Z(V+ —V..)

or

i (1/Z, — 1/Ry)
Ve = (R, +1/Z) T V- (1/2, + 1/R,)

It follows that for 0 < t < T,V, = I,R,/2 whilefor T < t,V; = 0. At 2 = |,
(14.4.8) shows that V;, = —V_. Thus, the solution is as summarised in the figure.
Vi=-V.=0 V.=-LRJ/2 V.=0

r— - 2 S o~

\s
\

R{ £
w =T R,J2 <V, =0
_@_ ] V+= 1o + = -
R LR,/2
= - -
!
LEp e 2/c Afc+T

Figure S14.4.6

(a) By replacing V; /Z, — I,V_[/Z, — —I_, the general solutions given by
(14.4.1) and (14.4.2) are written in terms of currents rather than voltages.

1
I=L+1; V=g(li-L) (1)

where Y, = 1/Z,. When ¢t = 0, the initial conditions are zero, so on char-
acteristic lines originating on the ¢ = 0 axis, I, and I_ are zero. At z = I,
it follows from (1b) that I, = I_. At z = 0, summation of currents at the

terminal gives
g = (Gy/Yo)(Iy — L) + (14 + I.) (2)

which, solved for the reflected wave in terms of the incident wave gives

L =I,+I.T, ®)
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where

I, _
Tegry  Te=lG/Y) —U/(Ge/Y)+1 (4)

I,

From these relations, the wave components I, and I_ are constructed as
summarized in the figure. The voltage at the terminals of the line is

I, N—1 l l
T ——————— . —_ - - 5
V(o,¢t) GiT (Yo/G’g)]r" i 2(N-1)-<t<2N- (5)
radre 13
| v .
Ix10 I T 0+T) Tl T 20T

] f\ YAVAYD

Tl T Tgli+Ig) I,(|+I:,+I;5 " I
oh %:z‘_ N= ! 2 3 I
20

t

[

3 EM?

Filgure $14.4.7

It follows that during this same interval, the terminal current is

N-1
09 =4(1- ) ®

(b) In terms of the terminal current I, the circuit equation for the line in the limit
where it behaves as an inductor is

. daI
g = lLGg'E + I (7)
Solution of this expression with 3, = I, and I(0) =0 is

I(0,t) = L{1 —¢*"); r=ILG, (8)
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(c) In the limit where G,/Y, is very large
Ty —~1-2(Y,/Ry) (9)
Thus,

I(O,t)—-bIo[l—(l—ng)N ‘], 2(N -1)- <t<gﬂ (10)

Following the same arguments as given by (14.4.28)—(14.4.31), gives
I{0,) — I[1 — e~ W-1(3/Gs)|. (N — 1)% <t< 2N£ (11)

which in the limit here, (14.4.31) holds the same as (8) where (Y,/Gg)(c/!) =
VC/L/WLCG, = 1/ILG,. Thus, the current reponse (which has the same
stair-step dependence on time as for the analogous example represented by
Fig. 14.4.8) becomes the exponential response of the circuit in the limit where
the inductor takes a long time to “charge® compared to the transit-time of an
electromagnetic wave.

14.4.8
b ° V. =0 V. = 1V, (1 — el
A’ZL ;‘F A 2 (
V,=0
AN
v.=0
Z,
- |
< v
Rg = Za ‘Eo_ g T Vo
+ Uy~ _
Ao,y (0 =V.=Vy/2 2
V,/2 : VI,,
[ ' ~ LV
le 2/e
r=Cr(Ry+ 2Z,) V,=(1- %e—(!—l/c)/r)

Figure S14.4.8

The initial conditions on the voltage and current are zero and it follows from
(14.4.4) and (14.4.5) that V; and V_ on characteristics originating on the t = 0
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axis are zero. It follows from (10) that on the lines originating on the z = 0 axis,
V4 = Vo/2. Then, for 0 < ¢ < I/e, the incident V. at z = [ is gero and hence from
the differential equation representing the load resistor and capacitor, it follows that
V- = 0 during this time as well. For I/c < ¢,V = V,/2 at z = . In view of the
steady state established while ¢t < 0, the initial capacitor voltage is zero. Thus, the
initial value of V_.(l,0) is zero and the reflected wave is predicted by

dv_ V.
CL(RL + Zo)— +V_.= —20_1(t - l/c)
dt 2
The appropriate solution is
V_(l,8) = %Vo(l — G-, = OL(RL + Z)

This establishes the wave incident at z = 0. The solution is summarized in the
figure.

14.5 TRANSMISSION LINES IN THE SINUSOIDAL STEADY

14.5.1

14.5.2

STATE

From (14.5.20), for the load capacitor where Z;, = 1/jwCy,

Y, Y, jwCLp

Thus, the impedance is inductive.
For the load inductor where Z1, = jwLy, (14.5.20) gives

Z(pl=-x/2) %,
Zo  jwlp

and the impedance is capacitive.

For the open circuit, Z;, = oo and from (14.5.13), 'y, = 1. The admittance at
any other location is given by (14.5.10).
Y(=l) 1-Tpe 28 128
Y,  14Tpe"28l 1428

where characteristic admittance Y, = 1/Z,. This expression reduces to

Y(-1)
_Y—

o

= 7tan Sl

which is the same as the impedance for the shorted line, (14.5.17). Thus, with
the vertical axis the admittance normalized to the characteristic admittance, the
frequency or length dependence is as shown by Fig. 14.5.2.
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14.5.3 The matched line requires that V_ = 0. Thus, from (14.5.5) and (14.5.8),

>

V=V, exp(—jpz);  I= " exp(~1P2)
(]

V.=0
s
7
Vs .
V'- = —é-sm[ﬂ(z + l)]\,,1
111 ¢
Vs
I v
|
I = _V“_ i N e
=37 sin[B(z + 1)) I
Cc

\ aadl 4

V.' = ()
Figure S14.5.3
At z = -], the circuitis described by
V,=I(-)R,+V(-))

where, in complex notation, V; = Re V,, exp(jwt), v, = —3V,. Thus, for R, = Z,,

A A
(]

and the given sinusoidal steady state solutions follow.

V = Re :%V_oe—o'ﬁ(z-fl)eiwi; I =Re .—2-7_'V2¢-J'ﬂ(l+'),iwt

(1]

14.5.4 Initially, both the current and voltage are sero. With the solution written as
the sum of the sinusoidal steady state solution found in Prob. 14.5.3 and a transient
solution,

V =V,(2,t) + Ve(z, t); I=1,(zt) + L(=,t)
the initial conditions on the transient part are therefore,

Vile,0) = ~Vi(2,0) = 22 sin{(s + 1)
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14.6.1

14.6.2
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L(2,0) = —I,(z,0) = EKZO: sin[B(z + 1))

The boundary conditions for 0 < ¢t and with the given driving source are satisfied
by V,. Thus, V; must satisfy the boundary conditions that result if V; = 0. In
terms of a transient solution written as 14.3.9 and 14.3.10, these are that V_ =0
at z = 0 and [from (14.5.10) with V;, = 0 and R, = Z,| that V, =0 at 2 = —L
Thus, the initial and boundary conditions for the transient part of the solution are
as summarized in the figure. With the regions in the z — t plane denoted as shown
in the figure, the voltage and current are therefore,

V=V,+‘,t; I=I,+It

where V, and I, are as given in Prob. 14.5.3 and
1

Vi=V, +V_ L =—(Vys-V))
Z,

with (from 14.3.18-19)

Il
=]

Vy = ngsin[ﬂ(z-i- n o V-
in regions I and III, and

in regions II and IV.

REFLECTION COEFFICIENT REPRESENTATION OF
TRANSMISSION LINES

The Smith chart solution is like the case of the Quarter-Wave Section exem-
plified using Fig. 14.6.3. The load is at r = 2,z = 2 on the chart. The impedance a
quarater-wave toward the generator amounts to a constant radius clockwise rota-
tion of 180° to the point where r = 0.25 and z = —70.25. Evaluation of (14.6.20)
checks this result, because it shows that

J #=—l" y; +jz; 24352 8

From (14.6.3), ' = 0.538 + 70.308 and |I'| = 0.620. It follows from (14.6.10)
that the VSWR is 4.26. These values also follow from drawing a circle through
r+ 7z = 2+ 72, using the radius of the circle to obtain |I'| and the construction of
Fig. 14.6.4a to evaluate (14.6.10).
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14.6.3

14.6.4

14.6.5

14-14 Solutions to Chapter 14

The angular distance on the Smith charge from the point y = 2 + jO to the
circle where y has a real part of 1 is ! = 0.0975). To cancel the reactance, where
y = 1+ 70.7 at this point, the distance from the shorted end of the stub to the
point where it is attached to the line must be I, = 0.347).

Adjustment of the length of the first stub makes it possible to be anywhere
on the circle g = 2 of the admittance chart at the terminals of the parallel stub and
load. If this admittance can be transferred onto the circle g = 1 by moving a distance
I toward the generator (clockwise), the second stub can be used to match the line
by compensating for the reactive part of the impedance. Thus, determination of
the stub lengths amounts to finding a pair of points on these circles that are at the
same radius and separated by the angle 0.042). This then gives both the combined
stub (1) and load impedance (for the case given, y = 2 + 51.3) and combined stub
(2) and line impedance at 2 = — (for the case given, y = 1+ 51.16). To create the
needed susceptance at the load, l; = 0.04). To cancel the resulting susceptance at
the second stub, I3 = 0.38A.

The impedance at the left end of the quarter wave section is 0.5. Thus, normal-
ized to the impedance of the line to the left, the impedance there is Z/Z% = 0.25.
It follows from the Smith chart and (14.6.10) that the VSWR = 4.0.

14.7 DISTRIBUTED PARAMETER EQUIVALENTS AND
MODELS WITH DISSIPATION

14.7.1

14.7.2

The currents must sum to zero at the node. With those through the conduc-
tance and capacitance on the right,

I(z) - I(z+ Az) = GA=V + C’Az%
The voltage drop around a loop comprised of the terminals and the series resistance
and inductance must sum of zero. With the voltage drops across the resistor and
inductor on the right,

V(2) - V(z+ Az) = RAzI + LAz%

In the limit where Az — 0, these expressions become the transmission line equa-
tions, (14.7.1) and (14.7.2).

(a) If the voltage is given by (14.7.12), as a special case of (14.7.9), then it follows
that I(z,¢t) is the special case of (14.7.10)

& (c—jﬁ' - c:'ﬁ:) Jwt

I= Re Zomc
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(b) The desired impedance is the ratio of the voltage, (14.7.12), to this current,

evaluated at 2 = —L.
(78 + ¢35

Z=2 (777 — ¢—38Y)

(c) In the long-wave limit, |8I] <« 1, exp(58l) — 1 + jB! and this expression

becomes

_ 2% _ (R+jwl) _ 1

T8l —-pA T [G+jwC]l

where (14.7.8) and (14.7.11) have been used to write the latter equality. (Note
that (14.7.8) is best left in the form suggested by (14.7.7) to obtain this
result.) The circuit having this impedance is a conductance /G shunted by a
capacitance IC.

z

The short requires that V' (0,t) = 0 gives V, = V_. With the magnitude ad-

justed to match the condition that V(—1,t) = V,(t), (14.7.9) and (14.7.10) become

) (e—iB= JBx
I=Re YVle +e™)

o (e3P — P3)
= Vo' (aw — =) Z, (7' — e=7AT)

|4

Thus, the impedance at z = —l is

Z = zo(ejﬂl - e—.iﬁl)/(ea'ﬁl + c—:'ﬁl)

In the limit where |8I| < 1, it follows from this expression and (14.7.8) and (14.7.11)
that because exp 78l — 1+ 581

Z — 2,58l = I(R + jwL)

which is the impedance of a resistance [R in series with an inductor IL.

(a) The theorem is obtained by adding the negative of V times (1) to the negative

of I times (2).

(b) The identity follows from

Re Ac’“'Re Bel*t = %[ﬁe""” + ﬁ‘c‘j”']%[ﬁc:'ut + B*e9vt)
= JABA 1 e Bremmiet) 4 Z(AB" + A°B)
=Re %ﬁﬁc”m + Re %ﬁﬁ‘

(c) Each of the quadratic terms in the power theorem take the form of (1), a

time independent part and a part that varies sinusoidally at twice the driving
frequency. The periodic part time-averages to zero in the power flux term on
the left and in the dissipation terms (the last two terms) on the right. The only
contribution to the energy storage term is due to the second harmonic, and
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that time-averages to zero. Thus, on the time-average there is no contribution
from the energy storage terms.

The integral theorem, (d) follows from the integration of (c) over the length
of the system. Integration of the derivative on the left results in the integrand
evaluated at the end points. Because the current is zero where z = 0, the only
contribution is the time-average input power on the left in (d).

(d) The left hand side is evaluated using (14.7.12) and (14.7.6). First, using
(14.7.11), (14.7.6) becomes

I=-Y,0,tan B2 (2)

Thus,
lRev it
2

ReV, 1|

1
== 3 IV | Y, tan Bl (3)

=l

Nlb-d

That the right hand side must give the same thing follows from using (14.7.3)
and (14.7.4) to write

N o~ ar*
V* = juCV* -
G Jw " (4)

RI= ——d—V— —jwLf (5)

Thus,

%9
/ L Re[I* RI+VV*Gldz = / lRe[— fw_,wm*
12

+ jwCVV* -V ‘ZI

-l
- [ et 0 Ma
i

°div)
~ 1y
2 € -1 dz

1 W
= ~Re [V*
2

z=-—1

which is the same as (3).

14.8 UNIFORM AND TEM WAVES IN OHMIC CONDUCTORS
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In Ampere’s law, represented by (12.1.4), J,, = oE. Hence, (12.1.6) becomes

0% 2a _ A %A
V(V~A+pa¢+pea)-—v A = —uo 3c P (1)
Hence, the gauge condition, (14.8.3), becomes
04, %
V- A= £ ——po@-—pea (2)

Evaluation of this expression on the conductor surface with (14.8.9) and (14.8.11)
gives

al av
ng- = —[JO'V - LCE (3)
From (8.6.14) and (7.6.4)
uo _ poC g _
L_—_ue —CC’-G’ (4)
Thus,
aI av
35 -GV — C—é-t- (5)

This and (14.8.12) are the desired transmission line equations including the losses
represented by the shunt conductance G. Note that, provided the conductors are
“perfect”, the TEM wave represented by these equations is exact and not quasi-
one-dimensional.

The transverse dependence of the electric and magnetic fields are respectively
the same as for the two-dimensional EQS capacitor-resistor and MQS inductor.
The axial dependence of the fields is as given by (14.8.10) and (14.8.11). Thus,
with (Prob. 14.2.1)

C =2xefln(a/b); L= g—;ln(a/b); G= %C’ = 270 [in(a/b)

and hence 8 and Z, given by (14.7.8) and (14.7.11) with R = 0, the desired fields
are

Oyl 4 %)

E=Re rin(a/b)(e78 + e—3P1) &l

e Vg(e”"é“ _ ejﬁz-v) ej”‘i,,,
27r Z, (9Pl + e~78Y)

H=R
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The transverse dependence of the potential follows from (4.6.18)-(4.6.19),
(4.6.25) and (4.6.27). Thus, with the axial dependence given by (14.8.10),

ad, 9%,

E= —'a—zlx - a—yly

where

ln[j f(, 2,2 R3—z)24y? '
ViR ta) 4y | (e77P% +e7P2) 4,

_g . .
> g+ VRP 1] @)
Using (14.2.2) A, follows from this potential.

$ = —Re

— _1_(8A géﬁi )
dy * 9z ¥

where

— —Re llvoV \/( 2—R2—z)2+42 (e"’ﬂ‘—e“”) Gt
e

In these expressions, 8 and Z, are evaluated from (14.7.8) and (14.7.11) using the
values of C and L given by (4.6.27) and (4.6.12) with R =0 and G = (0/€)C.

(a) The integral of E around the given contour is equal to the negative rate of
change of the magnetic flux linked. Thus,

aE%(z + Az) — aE%(2) + bEb(z + Az) — bEb(z) —(a+ b)Az (p.o H,) (1)
and in the limit Az — 0,

aEa 3E® dH
a— +b—az = —po(a +b) at” (2)

Because ¢, E* = ¢, E?, this expression becomes

oE*

€a _
(a+€_bb) 8z - ”0(

(3)

If E* and Hy were to be respectively written in terms of V and I, this would

be the transmission line equation representing the law of induction (see Prob.
14.1.1).

(b) A similar derivation using the contour closing at the interface gives

dH

aE%z+ Az) — aE%*(2) + AzE, = —ap,Az Bty (4)
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and in the limit Az — 0,

dH, OE°
E, = —apo—73." ~a Ep (5)
With the use of (3), this expression becomes
E, = [apo(— - 1)b/(a+ b)] 3t (6)

Finally, for a wave having a z dependence exp(—jpz), the desired ratio follows
from (6) and (3).
1B _ Hpe), o -
|Bal  a+b

Thus, the approximation is good provided the wavelength is large compared
to a and b and is exact in the limit where the dielectric is uniform.

14.9 QUASI-ONE-DIMENSIONAL MODELS

14.9.1

From (14.9.11)
2

T xR
while, from (4.7.2) and (8.6.12) respectively

2xe B
= ; L==In|(l/a) +V/(l/a)? -1

[t/ + VW) 1 w0+ Viey =1l
To make the skin depth small compared to the wire radius

5= 2 — > R=>w < 2/d’uo
wpo

For the frequency to be high enough that the inductive reactance dominates

oL _ ST 1n[(4/a) + v/ — 1]

Thus, the frequency range over which the inductive reactance dominates but the
constant resistance model is still appropriate is

2 2
<w < ~5—
poR2in[(l/a) + \/(l/a)? — 1] a?puo
For this range to exist, the conductor spacing must be large enough compared to
their radii that !
1< ln[(;) ++/(Y/a)? - 1]

Because of the logarithmic dependence, the quantity on the right is not likely to be
very large.
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From (14.9.11),
1

k= o2ral + omb? ;[E bz]
while, from Prob. 14.2.1

27e
in(a/b)

For the skin depth to be large compared to the transverse dimensions of the con-
ductors

= B . =
L= 2ﬂ_ln(a/b), c

65\/ ’2‘0_>A or b=>w«2/b%u0 and 2/A%uc

This puts an upper limit on the frequency for which the model is valid. To be
useful, the model should be valid at sufficiently high frequencies that the inductive
reactance can dominate the resistance. Thus, it should extend to

wkL wy o 1
7 =3 in(a/v)/ [ +3l>1
For the frequency range to include this value but not exceed the skin depth limit,
2L + ] 2 2

poln(a/b) <w<b’pa and A2u0

which is possible only if

In(a/b)
Al Pamda)

Because of the logarithms dependence of L, this is not a very large range.

Comparison of (14.9.18) and (10.6.1) shows the mathematical analogy between
the charge diffusion line and one-dimensional magnetic diffusion. The analogous
electric and magnetic variables and parameters are

H, oV, KoV, puo+-RC, beol zez

Because the boundary condition on V' at z = 0 is the same as that on H, at =0,
the solution is found by following the steps of Example 10.6.1. From 10.6.21, it
follows that the desired distribution of V is

0 _1\n 2
V= —V,,% - E 2Vp( nlﬂ_) sin (#)e"""* T = kot
n=1

P E ()2

This transient response is represented by Fig. 10.6.3a where H,/K, — V/V,, and
z/b— z/l.

See solution to Prob. 10.6.2 using analogy described in solution to Prob. 14.9.3.
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SOLUTIONS TO CHAPTER 15

15.1 SOURCE AND MATERIAL CONFIGURATIONS

15.1.1

TABLE P15.1.1.

Modal Field Representation

Physical Constraints

Example/Prob.

Cartesian

Laplace’s Eq.

EQS Potential

EQS 3-Dimensional

Sec. 5.5, Demo. 5.5.1
Probs. 5.5.1-7
Examp. 5.10.1
Probs. 5.10.1,3

Polarization Examp. 6.6.3, 6.7.1
Prob. 6.3.10, 6.6.9
Prob. 6.7.1
Conduction Examp. 7.4.1
Charge Relax. Prob. 7.9.12
MQS, Equi-A Examp. 8.6.3
Demo. 8.6.2
Prob. 8.6.10
Magnetization Prob. 9.6.9
MQS E Prob. 10.1.2
MQS Eddy Current Prob. 10.1.5
Poisson’s Eq. EQS Potential Probs. 5.6.7-9, 13
MQS Equa-A Prob. 8.6.7
Polar
Laplace’s Eq. EQS Potential Examp. 5.8.2-3
’ Probs. 5.8.3-9
Conduction Prob. 7.4.4,7.5.6
MQS, Constrained Current  Prob. 8.5.2
MQS, Equi-A Prob. 8.6.5
MQS E Examp. 10.12
Prob. 10.1.3
Initial Value Diffusion Eq. Examp. 10.6
Prob. 10.6.1-2
Helmholtz Eq. TM Modes Examp. 13.3.1
Prob. 13.3.1-6
3-Dimensional Probs. 13.4.3-4
Demo. 13.3.1
TE Modes Examp. 13.3.2

Demo. 13.3.2
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15.2 MACROSCOPIC MEDIA

A
15.2.1

15.2.2

15.3

15.3.1

In each case, the excitation is an imposed uniform field at infinity. For (a),
the field is tangential to the spherical surface everywhere except at the singular
points at the poles. Thus, i) the system could be EQS with the regions insulating
dielectrics and eq > €, ii) the system could be a stationary conductor with the
field lines either J or E and o, > 0y, iii) it could be MQS with the lines B or H,
the materials insulating and p, 3> pp and iv) it could be a perfectly conducting
sphere in an insulating media with the lines either B or H changing in time rapidly
enough to induce the currents in the sphere required to exclude the field.

For (b), the field is perpendicular to the surface. Thus, i) it could be EQS
and a perfect conductor in an insulating medium with the lines representing E, ii)
it could be EQS E with the materials perfect insulators (the field changing rapidly
compared to the charge relaxation time in either material) with e, > ¢4, iii) it
could be J or E in stationary conduction with o3 3> 0,4, iv) and it could be MQS
H or B with the materials insulating and pp > pa.

The excitation is inside the sphere. In (a), the field in that region is perpendic-
ular to the interface. Thus, i) the lines could be EQS E with the inside an insulator
and the outside a perfect conductor, ii) the system could again be EQS and the
lines could be E with both materials perfect insulators and ¢, 3 €3, iii) it could be
stationary conduction with the lines either E or J and a dipole current source with
0q > o3 and iv) the lines could be MQS H or B with a magnetic dipole and the
regions magnetizable insulators with pg > up.

In (b), the interior field lines are tangential to the surface. Thus, i; the dipole
could be electric and the materials perfect insulators having ¢, 3 ¢,, ii) the dipole
could be a current source for stationary conduction with the lines E or J and
Op P 0, iii) the system could be MQS with the dipole magnetic and the materials
magnetizable insulators having u; > g4, and iv) the system could be MQS with
a magnetic dipole varying rapidly enough with time to make the outer material a
perfect conductor while the interior one remains a perfect insulator.

CHARACTERIC TIMES, PHYSICAL PROCESSES, AND
APPROXIMATIONS

Because it does not involve o,w is normalized to 7.,,. Thus, the horizontal
axis is '
log(wTem ) = log(wly/ne)
Then

Thus, with the characteristic conductivity defined as

o* = Velufl
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the critical line indicating charge relaxation, wr, = 1, is written in terms of the
independent variables of normalized frequency and conductivity as

logwem = log (a%)

Similarly,

wfm=1=>wr,m=1:m—ﬁ§ ( )_ =>logw1'¢,,.—-—log( )
m

{I log(o/0*)

QSC

log(wr,,) —*

Figure S15.3.1

Thus, the plot is as shown in Fig. $15.3.1. If 0 > o*, raising the frequency results
in a transition from stationary conduction to the MQS regime while if & < o*, the
transition is to the EQS regime.

15.8.2 (a) In the limit of zero frequency, the electric and magnetic fields are as summa-
rized by (7.5.7) and (7.5.11) and by (11.3.10) and (11.2.12). With (a) and (b)
respectively designating the nonconducting annulus and the rod,

v

Eb = Ik (1)
B =~ e+ @
B = T2, (3)
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(b)
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ov b?

e .
H =7l (4)

The magnetic field is induced by the uniform current density

J=‘%i.; 0<r<b (5)
which is returned as the surface current density K = —[ovb?/2La] in the

perfectly conducting wall. There is no volume charge density in the interior of
the rod. On its surface and on the inner surface of the outer wall, the surface
charge densities are

€V 2z €Y 2z

= pemer T Remn O

These fields and sources are sketched in Fig. $15.3.2a.

- = =% = o}
v ) © / 0] / /|
+ + o 1@ Q + @ + ©
(0] Q Q Q. ©
© 9] © o
(©] ®
(a)

Figure S15.3.28,b

With all dimensions on the same order, the argument is as given in this section.
Any one of the dimensions, a,b or L is the typical dimension. The ratio of
that dimension to either of the other two is presumed to be perhaps 2 or 3.
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The permittivity and permeability can similarly be taken as that of either
region with the respective ratios of these quantities again presumed to be less
than an order of magnitude. Thus, the system is first EQS as the frequency
is raised if the characteristic dimension, a,b or L, is small compared to {*,
where the latter is based on the conductivity of the rod and the permittivity
and permeability of either region. In the case where the charge relaxation
time is the longest of the characteristic times, the EQS case, the magnetic
induction is not important as the frequency is raised to the point where the
sources begin to alter their distribution. In this case, the dominant source
is the charge density, specifically the surface charge density. With each half-
cycle, the surface charge density on the surface of the rod undergoes a sign
reversal. To change this charge, the current density of (5) must be revised so
that there is a component normal to the interface. In the “distributed circuit”
picture of Fig. P15.3.2a, this is the current required to charge the capacitors.
(In the next problem, the energy stored in the capacitors is used as a means
of establishing the equivalent capacitance needed to account for the charging
of the surface.)

In the case where the characteristic length is large compared to {*, the system
is MQS. The displacement current is negligible. This is equivalent to saying
that the accumulation of charge has essentially no effect on the current density,
which is itself solenoidal. Thus, the conductivity of the rod is large enough that
the current that enters at one end is negligibly diverted by supplying surface
charge, essentially all reaching the far end. However, because the magnetic
induction is important, these currents try to link as little magnetic flux as
possible. As suggested by the distributed circuit picture of Fig. P15.3.2b,
the current distribution tends to crowd to the outer surface of the rod. The
inductive reactance for a current circulating through the interior of the rod is
less than that of a current nearer the surface. Thus, as the frequency is raised,
the dominant field source, the current density, displays skin effect.

In Cartesian rather than cylindrical geometry, Example 10.7.1 illustrates the
distribution of magnetic field and current density. The radial direction in this
problem plays the role of the z direction in the example. In both cases, the field
and current density are independent of the axial direction (y in the example
and z in this problem). One dimensional magnetic diffusion was pictured in
Sec. 14.8 in terms of an L — G transmission line (negligible capacitance). Note
that this is equivalent to the R — L distributed circuit used to schematically
portray the MQS behavior in Fig. P15.3.2b. The transmission line would be
an exact representation if the rod were replaced by a “slab” conductor and
the return conductors were planar rather than circular cylindrical. Such a
configuration is shown in Fig. $15.3.2b.

Demonsatration 10.7.1 makes use of a transformer rather than a current source
to drive the currents through the conductor. In the limit where the probed
conductor is very long compared to its depth, it gives rise to the same current
distribution as obtained in the slab conductor of Fig. $15.3.2b. In the problem,
the current distribution is somewhat different from that in the slab when the
skin depth is on the order of the rod radius because of the cylindrical geometry.


http:PI5.3.2a
http:PI5.3.2b
http:PI5.3.2b
http:SI5.3.2b
http:SI5.3.2b
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The conditions are as discussed in Sec. 14.9. So that the skin depth is large
compared to the rod radius, the frequency must be low enough that the current
distribution in the center conductor is essentially uniform. The inductance
will nevertheless be self-consistently retained in the model provided that the
conditions found in Prob. 14.9.2 are satisfied.

1< in(a/b) - (1)

(Here, the outer conductor has been effectively made to have an infinite con-
ductivity by setting A — oo in the solution to Prob. 14.9.2.). Once we have
decided to consider systems that are long in the axial direction, 2, compared
to the transverse dimensions and taken the quasi-one-dimensional model as
representing the dynamics, it is interesting to see how the length, [, in the 2
direction determines the order of the characteristic times

ru=%5 Tem=£=l"LC§ g = PRC (2)
§ log(l/1*)

\ L — wry =1

— log(wrm)
wrg=1

—W—n—e 1

2

Pl
WTem = 1
-1
(c)

Figure S15.3.2¢

In the limit where the inductance is not important, the system is a charge diffusion
line as discussed in Sec. 14.9. Interestingly, the characteristic time associated with
this EQS limiting model depends on the square of the length. Again, by contrast
with a system having a single typical length, the interaction between the inductance
and the resistance is independent of length (magnetic relaxation rather than diffu-
sion). Thus, in constructing a length-frequency plane for sorting out the physical
possibilities, it is the time L/R that can be selected for normalizing the frequency.
Thus, in this plane the critical lines are

l
wiM =1, wiem=1=> E = ()™t wrg=1= li* = (wru)™?  (3)
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and it follows (see Fig. S15.3.2c) that for the system to first be EQS as the frequency

is raised, [ > I* = /L/C/R.

15.4 ENERGY, POWER, AND FORCE

15.4.1 The electric field intensity in the three regions follows from Example 7.5.2.
From (7.5.7) and (7.5.11), respectively,

= (v/L)is (1)

T Lt ] @

The magnetic field intensity is summarized in Example 11.3.1. From (11.3.10) and
(11.2.12), respectively,

E°=-—

ov

Hb 2L 7'14, (3)
o ovb?,
=T (4)

The required electric energy, magnetic energy, and dissipation follow by carrying
out the piece-wise volume integrations.

0 a 1 0 b 1
= / / ~¢,E® - E*2nrdrdz + / / ~e,E® - E*27rdrdz (5)
~LJb 2 -LJ0 2
0 b 1
/ / ~pgH® -H%2xrdr + / / Eu;,H"-H"Zwrdrdz (6)
LJ0
and
0 b
Pa = / / oE® - Eb2rrdrdz (7)
-LJo

Note that this last integral is essentially one of the two carried out in (5). Evaluation
of these expressions, using (1)-(6), gives

Ye = 1"2{1;1::(:'/5)[ <L%In(afb) + = { + (b/a)?[In(b/a) — In?(b/a) — _]}]}

+ oL
b u” )
wm = 2 In(a/b) + ”;‘;;Z v?b* (9)
pa= v’[”’;:b ] (10)
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Written with the voltage replaced by the total current,

i= v("’g’a) (11)
the magnetic energy, (9), becomes
From a comparison of (8), (12), and (10), respectively, to
w, = %Cu’; Wy, = -;-Li’; pa=1’R =42G (13)

it follows that the quasi-stationary parameters that model the system at frequencies
that are low compared to either R/L or 1/RC, whichever is the lower, are

c= E%"(Zim{gmn(a/b) + %[% + (b/a)?[in(s/a) — In?(b/a) — %]] } "
+ Eb”—Iblz'
1= 3[n o), ol (19)
oprh?
G= "L (16)

(Note that L on the right is the length L of the device, to be distinguished from
the inductance L on the left in (15).) Written in the form of (15.2.8), the ratio of
the total magnetic to the total electric energy is, from (9) and (8)

’:’”—': = K(l%)’; = \/-;—Ta% (17)
where
K = (in(ay) + £2) /{l‘;—(,;‘(/:"/ll5 [%(L/a)'-*zn(a/b)
+ 313 + (/a)lin(s/e) - 1w3e/a) - 3] (17
+ iﬂ}

Provided the ratio of all dimensions and of the permittivities and permeabilities
are on the same order, the coefficient K is “of the order of unity.”






PRENTICE HALL, ENGLEWOOD CLIFFS, NEW JERSEY 07632

ISBN 0-13-248980-5




	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160
	00000161
	00000162
	00000163
	00000164
	00000165
	00000166
	00000167
	00000168
	00000169
	00000170
	00000171
	00000172
	00000173
	00000174
	00000175
	00000176
	00000177
	00000178
	00000179
	00000180
	00000181
	00000182
	00000183
	00000184
	00000185
	00000186
	00000187
	00000188
	00000189
	00000190
	00000191
	00000192
	00000193
	00000194
	00000195
	00000196
	00000197
	00000198
	00000199
	00000200
	00000201
	00000202
	00000203
	00000204
	00000205
	00000206
	00000207
	00000208
	00000209
	00000210
	00000211
	00000212
	00000213
	00000214
	00000215
	00000216
	00000217
	00000218
	00000219
	00000220
	00000221
	00000222
	00000223
	00000224
	00000225
	00000226
	00000227
	00000228
	00000229
	00000230
	00000231
	00000232
	00000233
	00000234
	00000235
	00000236
	00000237
	00000238
	00000239
	00000240
	00000241
	00000242
	00000243
	00000244
	00000245
	00000246
	00000247
	00000248
	00000249
	00000250
	00000251
	00000252
	00000253
	00000254
	00000255
	00000256
	00000257
	00000258
	00000259
	00000260
	00000261
	00000262
	00000263
	00000264
	00000265
	00000266
	00000267
	00000268
	00000269
	00000270
	00000271
	00000272
	00000273
	00000274
	00000275
	00000276
	00000277
	00000278
	00000279
	00000280
	00000281
	00000282
	00000283
	00000284
	00000285
	00000286
	00000287
	00000288
	00000289
	00000290
	00000291
	00000292
	00000293
	00000294
	00000295
	00000296
	00000297
	00000298
	00000299
	00000300
	00000301
	00000302
	00000303
	00000304
	00000305
	00000306
	00000307
	00000308
	00000309
	00000310
	00000311
	00000312
	00000313
	00000314
	00000315
	00000316
	00000317
	00000318
	00000319
	00000320
	00000321
	00000322
	00000323
	00000324
	00000325
	00000326
	00000327
	00000328
	00000329
	00000330
	00000331
	00000332
	00000333
	00000334
	00000335
	00000336
	00000337
	00000338
	00000339
	00000340
	00000341
	00000342
	00000343
	00000344
	00000345
	00000346
	00000347
	00000348
	00000349
	00000350
	00000351
	00000352
	00000353
	00000354
	00000355
	00000356
	00000357
	00000358
	00000359
	00000360
	00000361
	00000362
	00000363
	00000364
	00000365
	00000366
	00000367
	00000368
	00000369
	00000370
	00000371
	00000372
	00000373
	00000374
	00000375
	00000376
	00000377
	00000378



