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PREFACE TO SOLUTION MANUAL


We are fortunate that electromagnetic aspects of engineering systems are ac­
curately described by remarkably concise and general laws. Yet, a price paid for 
the generality of Maxwell's equations is the effort required to make these laws of 
practical use to the engineer who is not only analyzing, but synthesizing and invent­
ing. Key to the maturation of an engineer who hopes to use a basic background in 
electromagnetic fields for effectively dealing with complex problems is working out 
examples that strike the right balance among a number of interrelated objectives. 
First, even in the beginning, the examples should couch the development of skill in 
using the mathematical language of field theory in physical terms. Second, while be­
ing no more mathematically involved then required to make the point, they should 
collectively give insight into the key phenomena implied by the general laws. This 
means that they have to be sufficiently realistic to at least be physically demon­
strable and at best of practical interest. Third, as the student works out a series of 
examples, they should form the basis for having an overview of electromagnetics, 
hopefully helping to achieve an early maturity in applying the general laws. 

In teaching this subject at MIT, we have placed a heavy emphasis on working 
out examples, basing as much as 40 percent of a student's grade on homework solu­
tions. Because new problems must then be generated each term, this emphasis has 
mandated a continual search and development, stimulated by faculty and gradu­
ate student teaching assistant colleagues. Some of these problems have become the 
"examples," worked out in the text. These have in turn determined the develop­
ment of the demonstrations, also described in the text (and available on video tape 
through the authors). The problems given at the ends of chapters in the text and 
worked out in this manual do not include still other combinations of geometries, 
models and physical phonemena. These combinations become apparent when the 
examples and problems from one chapter are compared with those from another. 
A review of the example summaries given in Chap. 15 will make evident some of 
these opportunities for problem creation. 

After about two decades, the number of faculty and teaching assistants who 
have made contributions, at least by preparing the official solutions during a given 
term, probably exceeds 100, so individual recognition is not appropriate. Prelim­
inary versions of solutions for several chapters were prepared by Rayomond H. 
Kotwal while he was a teaching assistant. However, finally, the authors shared re­
sponsibility for writing up the solutions. Corrections to the inevitable errors would 
be appreciated. 

Our view that an apprenticeship of problem solving is essential to learning 
field theory is reflected in the care which has been taken in preparing this solution 
manual. This was only possible because Ms. Cindy Kopf not only "Tex't" the 
manual (as she did the text itself) while taking major responsibility for the art-work, 
but organized and produced the camera-ready copy as well. The "Tex macros" were 
written by Ms. Amy Hendrickson. 
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SOLUTIONS TO CHAPTER 1

1.1 THE LORENTZ LAW IN FREE·SPACE

·1.1.1 For Vi = 0, (7) gives

and from (8)

V = J-2~Ez

(1)

(2)

y

so

v=
2(1 X 10-2)(1.602 X 10-19)(10-2) 31

(9.106 X 10-31) = 5.9 x 10 m/s

z

(3)

-t-o.:::::~--------X

x

y

Figure 91.1.3

1.1.2 (a) In two-dimensions, (4) gives

mcPez = -eE
dt2 z

md2ey __ E
dt2 - e y

so, because V z (0) =Vi, while v y (0) = 0,

dez e
-=--Et+v"
dt m z •

Figure 91.1.3

(1)

(2)

(3)

1



1-2 Solutions to Chapter 1 

de" = -!....E t 
dt m" (4) 

To make es(O) = 0 and e,,(O) = 0 

(5) 

(6) 

(b) From (5), es = 0 when 

and at this time 

1.1.3 The force is 

so, f = 0 if Eo = viPoHo. Thus, 

(7) 

e = -.!...-E (vi 2m)2 
" 2m" eEs 

(8) 

(1) 

dvs =0 dv" = 0 dv" =0 (2)dt dt ' dtI 

and vs , vII and v" are constants. Because initial velocities in :z: and 'Y directions are 
zero, Vs = v" = 0 and v = vii•. 

1.1.4 The force is 

so 

(2) 

and 
mdvs dvs

~ = ev"poHo ~ dt =WeV" (3)


md~ d~ 
~ = -evspoHo ~ ""dt = -WeVs (4) 

where We = epoHo/m. Substitution of (3) into (4) gives 

(5)
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Solutions are sinwet and cos wet. To satisfy the initial conditions on the velocity,

in which case (3) gives:

(6)

(7)

Further integration and the initial conditions on egives

(8)

(9)

x

z

- --H
-Eo 0--

y

z

/
x

Figure 91.1.4

y

1.2 CHARGE AND CURRENT DENSITIES

1.2.1 The total charge is

(1)



1.2.2 

1-4 Solutions to Chapter 1 

Integration of the density over the given volume gives the total charge 

(1) 

Two further integrations give 

(2) 

1.2.8 The normal to the surface is ix, so 

(1) 

1.2.4 The net current is 

(1) 

1.2.5 (a) From Newton's second law 

where 

(b) On multiplying (1) by Vr , 

v 
r 

dEr - ­
- dt 

(1) 

(2) 

and using (2), we obtain 

(3)
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(c) Integrating (3) with respect to t gives

1 2
2"mvr + eEoblner = Cl

When t = 0, Vr = 0, er = b so Cl = eEoblnb and

~mv: + eEobln; = °
Thus,

1-5

(4)

(5)

(6)

(d) The current density is

Jr = p(r)vr(r) =* p(r) = .l(r)
Vr r

The total current, i, must be independent of r, so

.1 = -'-
r 211Tl

and it follows from (6) and (7) that

, m
p(r) = 21frl 2eEobln(b/r)

1.3 GAUSS' INTEGRAL LAW OF ELECTRIC FIELD
INTENSITY

(7)

(8)

(9)

1.3.1 (a) The unit vectors perpendicular to the 5 surfaces are as shown in Fig. 81.3.1.
The given area elements follow from the same construction.

(b) From Fig. 81.3.1,

(1)

r= vz2+y2

Thus, the conversion from polar to Cartesian coordinates gives

(2)

(3)
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-iy

Flpre Sl.3.1

(c) On the given surface, the normal vector is i x and so the integral is of the z
component of (3) evaluated at z = a.

f faA, 11 fa a
EoE· dal,,,=a = -2- 2 y2 dydz

'll"Eo 0 -a a +

= ~tan-1 (~)r = ~(~ +~) = A,
2'11" a -a 2'11" 4 4 4

(4)

Integration over the surface at z = -a reverses both the sign of E", and of the
normal and so is also given by (4). Integrations over the surfaces at 11 = a and
y = -a are respectively the same as given by (4), with the roles of z and y
reversed. Integrations over the top and bottom surfaces make no contribution
because there is no normal component of E on these surfaces. Thus, the total
surface integration is four times that given by (4), which is indeed the charge
enclosed, A,.

1.8.2 On the respective surfaces,

{

l/a2
E·da= -q- 0

4'11"fo 1/62
(1)

On the two surfaces where these integrands are finite, they are also constant, so
integration amounts to multiplication by the respective areas.

(2)
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r 

Figure 91.3.2 

1.3.3	 (a) Because of the axial symmetry, the electric field must be radial. Thus, inte­
gration of Er over the surface at r = r amounts to a multiplication by the 
area. For r < b, Gauss' integral law therefore gives 

(1)2nl€oEr = 10(' 10r" 10r 
pdrrdl/Jdz = 21rl 10r p;2,.s dr 

Po,.s 
Er	 = 4€ob2 i r < b 

For b < r < a, the integral on the right stops at r = b. 

b<r<a	 (2) 

(b)	 From (17) 

(3) 

(c)	 Because it is uniform there, integration of the surface charge density given by 
'(3) over the surface r = a amounts to a multiplication by the surface area. 

(4) /. 

That this is the negative of the net charge within is confirmed by integrating 
over the enclosed charge density. 

( pdV = ('	r" r po(-)2rdl/Jdz = -n{~ob2 (5)
1v 1010 10 b 2 
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(d)	 As shown in the solution to Prob. 1.3.1, 

I.. = (zlx + yl"¥ )h/z2 + y2 j (6) 

and substitution into 

E=.~ {(r:/b2)I.. j r<b	 (7)
4Eo (b /r)l.. j b<r<a 

indeed results in the given field distribution. 

(e)	 For the surfaces at z = ±c, 

da = ±ixdydzj E . n = E,.,(z = ±c) (8) 

while for those at y = ±c, 

da = ±I"¥dzdzj E· n = EII(y = ±c)	 (9) 

The four terms in the given surface integral are the integrations over the 
respective surfaces using the field given by (d) evaluated in accordance with 
(8) and (9). According to (I), this integral must give the same answer as found 
by integrating the charge density over the enclosed volume. This has already 
been done and is given by (5). . 

1.3.4 (a) For r < b, (1) gives 

(1) 

Thus, 
_ por.

Er-
3Eo

, r<b	 (2) 

(3) 

Er = -3 [b
3Pb b3 

j b<r<a (4)1 -2- + (r- 2")Pa ] 
Eo r r 

(b)	 At r = a, (17) can be evaluated with n = i.. ,Ea = 0 and E b given by (4) 

1 [b3Pb b3
]u. = -3 ---;;F + (a - a2 )Pa	 (5) 

(c)	 For r < b, E r is still given by (2), while for b < r < a, (3) has an additional 
term on the right 471'"b2uo • Thus, 

3 3 2 
1 [b Pb b ] b uoEr = - -- + (r - -)Pa +-j b<r<a (6)

3Eo r 2 r 2 Eo r 2 

Then, instead of (5) we have 

1 [b3Pb b
3

] b
2 
uou. = -- - + (a - -)Pa --	 (7)

3	 a2 a2 a2 
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Pa

Figure 81.3.4

a
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1.3.6 Using the volume described in Example 1.3.2, with the upper surface between
the sheets, there is a contribution to the charge enclosed from both the lower sheet
and the volume between that sheet and the position, z, of the upper surface. Thus,
from (1)

(1)

and the solution for E z gives

(2)

Note that the charge density is an odd function of z. Thus, there is no net charge
between the sheets. With the surface above the upper sheet, the field given by (1)
with the integration terminated at z = 8/2 is just what it was below the lower
sheet, Eo.

1.3.6 With the understanding that the charge distribution extends to infinity in the
y and z directions, it follows from arguments already given that the electric field is
independent of y and z and that that part of it due to the charge sheets can result
only in a z directed electric field. It then follows from (1) that if the regions above
and below the charge sustain no electric field intensity, then the net charge from
the three layers must be zero. Thus, not only is

(1)

but also,
(2)

From these relations, it follows that

(3)



1-10 Solutions to Chapter 1

1.3.'1 The gravitational force has a component in the edirection, - M g sin Q. Thus,
the sum of the forces acting on the upper particle in the edirection is

It follows that, for the particle to be in static equilibrium,

(1)

e= 41rfoM g sin Q
(2)

1.4 AMPERE'S INTEGRAL LAW

1.4.1 Evaluation of (1) is carried out for a contour having the constant radius, r,
on which symmetry requires that the magnetic field intensity be constant and in
the ¢ direction. Because the fields are static, the last term on the right makes no
contribution. Thus,

(1)

Solving this expression for H <f> and carrying out the integration then gives

(2)

1.4.2 (a) The net current carried by the wire in the +z direction must be returned in
the -z direction on the surface at r = a. Thus,

(1)

(b) For a contour at the constant radius, r, (1) is evaluated (with the last term
on the right zero because the fields are static), first for r < b and then for
b < r < a.

r<b (2)

b<r<a (3)
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(c)	 From (1.4.16)' 
H~ - H: = K z :::;. H~ = K z + H: (4) 

This expression can be evaluated using (1) and (3). 

2 2 
Ha = _ b Jo + Job = 0 (5)

'" 2a 2a 

(d)	 In Cartesian coordinates, 

Thus, with r = ..jx2 + y2, evaluation of this expression using (2) and (3) gives 

(7) 

(e)	 On x = ±c,H· ds = ±H . i y while on y = ±c,H· ds = =r=H . i x so evaluation 
of (1) on the square contour gives 

(8) 

The result of carrying out this integration must be equal to what is obtained 
by carrying out the surface integral on the right in (1). 

(9) 

1.4.3	 (a) The total current in the +z direction through the shell between r = a and 
r = b must equal that in the -z direction through the wire at the center. 
Because the current density is uniform, it is then simply the total current 
divided by the cross-sectional area of the shell. 

(1) 

(b)	 Ampere's integral law is written for a contour that circulates around the z axis 
at the constant radius r. The fields are constant, so the last term in (1.4.1) 
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is zero. Symmetry arguments can be used to argue that H is q, directed and
uniform on this contour, thus

21f'rH.; = -I => H.; = -1/21rr; 0 < r < b (2)

I 2 [1 (r2
- b

2
) 1]

21rrH.; = -I+ 1f'(a2 _ b2)1f'(r2 -b ) => H.; = I - 21f'r + a2 _ b2 21f'r (3)

(c) Analysis of the q, directed H-field into Cartesian coordinates gives

Hz = -H.;sinq, = -H.;y/Yx2 +y2

Hy = -H~cosq, = H.;x/Yx2 + y2

where r = yx2 + y2. Thus, from (2) and (3),

l(yix - xi:r) { 1; 0 < Yx2 + y2 < b
H = 21f'(x2 + y2) 1- (z3~~;.t); b < r < a

(4)

(5)

(6)

(d) In evaluating the line integral on the four segments of the square contour, on
x = ±c, dB = ±i:rdy and H· dB = ±Hy(±c,y)dy while on y = ±c, dB = Tixdx
and H· dB = THz(x, Tc)dx. Thus,

fa H . dB = [Cc Hy(c, y)dy + f:c -Hz(x, -c)dx

+ [Cc -Hy(-c,y)dy+ [Cc Hz(x,c)dx

This integral must be equal to the right hand side of (1.4.1), which can be
evaluated in accordance with whether the contour stays within the region
r < b or is closed within the shell. In the latter case, the integration over the
area of the shell enclosed by the contour is accomplished by simply multiplying
the current density by the area of the square minus that of region inside the
radius r = b.

c < b/V2
b/V2 < c < b
b < c < a/V2

(7)
where a = cos-1(c/b). The range b/V2 < c < bis complicated by the fact
that the square contour overlaps the circle r = b. Thus, the area over which
the return current in the shell passes through the square contour is the area
ofthe square (2c)2, minus the area of the region inside the radius b (as in the
last case where there is no overlap of the square contour and the surface at
r = b) plus the area where the circle r = b extends beyond the square, which
should not have been subtracted away.
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1.4.4 (a) The net current passing through any plane of constant z must be zero. Thus, 

(1) 

and we are given that 
K za = 2Kzb (2) 

Solution of these expressions gives the desired surface current densities 

Kza 
I K _ I (3)

= 1I"(2a + b); zb - 21I"(2a + b) 

(b)	 For r < b, Ampere's integral law, (1.4.1), applied to the region r < b where 
the only current enclosed by the contour is due to that on the z axis, gives 

-I 
211"rH", = -I~ H", =-j r < b	 (4)

211"r 

In the region b < r < a, the contour encloses the inner of the two surface 
current densities as well. Because it is in the z direction, its contribution is of 
opposite sign to that of I. 

2a 
211"rH", = -I + 211"bKzb = -(--b)I	 (5)

2a+ 

Thus, 

H	 -_~(~). b<r<a (6)
'" - 211"r 2a + b ' 

Note that if Ampere's law is applied where a < r, the net current enclosed is 
zero and hence the magnetic field intensity is zero. 

1.4.5	 Symmetry arguments can be used to show that H depends only on z. Ampere's 
integral law is used with a contour that is in a plane of constant y, so that it encloses 
the given surface and volume currents. With z taken to be in the vertical direction, 
the area enclosed by this contour has unit length in the x direction, its lower edge 
in the field free region x < -8/2 and its upper edge at the location z. Then, (1.4.1) 
becomes 

i H.dS=Hx(Z)=-Ko+!Z Jydz (1) 
G -0/2 

and for	 -8/2 < z < 8/2, 

z	 2Joz Jo [ 2 2]Hx	 = -Ko + --dz = -Ko + - z - (8/2) (2)
! -0/2	 8 8 

while for 8/2 < z, 
(3)
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1.5 CHARGE CONSERVATION IN INTEGRAL FORM 

1.5.1	 Because of the radial symmetry, a spherical volume having its center at the 
origin and a radius r is used to evaluate 1.5.2. Because the charge density is uniform, 
the volume integral is evaluated by simply multiplying the volume by the charge 
density. Thus, 

2 d[4 s ()] rdpo47rr J. + - -7rr p t = 0 => J. =--- (1)
r dt3	 r 3dt0 

1.5.2	 Equation 1.5.2 is evaluated for a volume enclosed by surfaces having area A 
in the planes z = z and z -= O. Because the the current density is z directed. 
contributions to the surface integral over the other surfaces, which have normals 
that are perpendicular to the z axis. are zero. Thus, (1.5.2) becomes 

(1) 

1.5.3 From (12), 

a~. = -n . (JG - Jb) = -(0) + J:(z = 0) = Jo(z, y) cos(wt) (1) 

Integration of this expression on time gives 

Jo(z,y) . 
0'. = Slnwt	 (2)

w 

where the integration function of (z. y) is zero because, at every point on the surface, 
the surface charge density is initially zero. 

1.5.4	 The charge conservation continuity condition is applied to the surface at r = 
R, where Jb = 0 and n = il" Thus, 

Jo(tIJ, z) sinwt + a~. = 0	 (1) 

and it follows that 

0'. = -it Jo(tIJ,z)sinwtdt= Jo(tIJ,z) coswt	 (2) 
o	 W 

1.6 FARADAY'S INTEGRAL LAW 
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1.6.1	 (a) On the contour y = sx/g, 

· d· d (. dy .) d (. s.)ds = dXIx + yIy = X Ix + -dI y	 = X Ix + -Iy (1) 
X 9 

(b)	 On this contour, 

while the line integral from (x,y) = (g,s) [from b ---+ c] to (O,s) along y = s is 
zero because E . ds = O. The integral over the third segment, [c ---+ a]' is 

(3) 

so that f E . ds = Eos - Eos = 0	 (4) 

and the circulation is indeed zero. 

1.6.2	 (a) The solution is as in Prob. 1.6.1 except that dyjdx = 2sxjg2. Thus, the first 
line integral gives the same answer. 

(1) 

Because the other contours are the same as in Prob. 1.6.1, their contributions 
are also the same and the net circulation is again found to be zero. 

(b)	 The first integral is as in (b) of Prob. 1.6.2 except that the differential line 
element is described as in (1) and the field has the given dependence on x. 

(Note that we would now get a different answer, Eosj2, if we carried out this 
integral using this field but the straight-line contour of Prob. 1.6.1.) From 
b ---+ c there is again no contribution because E . ds = 0 while from c ---+ a, the 
integral is 

{" -Eo~l_ dy=_EoxYI_ =0	 (3)J 9 x-a 9 x-ao 

which makes no contribution because the contour is at X = o. Thus, the net 
contribution to the closed integral, the circulation, is given by (2). 
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1.6.3	 (a) The conversion to cylindrical coordinates of (1.3.13) follows from the argu­
ments given with the solution to Prob. 1.3.1. 

(1) 

(b)	 Evaluation of the line integral amounts to recognizing that on the four seg­
ments, 

(2) 

respectively. Note that care is taken to take the endpoint of the integrals as 
being in the direction of an increasing coordinate. This avoids taking double 
account of the sign implied by the dot product E . dB. 

(3) 

These integrals become 

(4) 

and it follows that the sum of these contributions is indeed zero. 

1.6.4	 Starting at (z, y) = (s,O), the line integral is 

£E . dB = ld Ez(z, O)dz +1d 
EII(d, Y)d y -1d 

Ez(z, d)dz 

-ld Ell (0, y)dy + l' Ez(z, s)dz -1' EII(s, y)dy 

(1) 

This expression is evaluated using E as given by (a) of Prob. 1.6.3 and becomes 

i [ld 1d 1d 
AI dz Y ZE . dB = -- - + dy - dz 

o 211"£0' Z 0 rJ.2 + y2 0 z2 + rJ.2 

dy z y ]- -+ dz- d -0l, 

d 

y 
l' 

0	 z2 + s2 
l' 

0 S2 + y2 Y -

(3) 
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y

cos <piy

181
I I

r --:..: coil
da I ,.

:J:=d

Fleure 81.6.5
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(1)

1.6.5 (a) In view of Fig. S1.6.5, the magnetic field given by (1.4.10)

B=I",(J...-)
211"r

is converted to Cartesian coordinates by recognizing that

• • A.. A.. -'11 I + z. - / 2 2 (2)
I", = - sm 'f'lx + cos 'f'1;y = x. J l;y i r = V z + '11

Vz2 + '112 V z2 + '112

so that (1) becomes

B = i.- [ -'11 Ix + z I] (3)
211" z2 + '112 z2 + '112 ;y

(b) The surface of Fig. 1.7.2a, shown in terms of the z - '11 coordinates by Fig.
S1.6.5, can be used to evaluate the net flux as follows.

r rVR~-d.~
>'1= Js"'oB.da=lJo -PoH",(d,y)dy

l ·lVR~-d.~ () I" (4)
= _ Po' -y dy = Po' In(R/d)

211" 0 d2 + '112 211"

This result agrees with (1.7.5), where the flux is evaluated using a different
surface. Just why the flux is the same, regardless of surface, is the point of
Sec. 1.7.

(c) The circulation follows from Faraday's law, (1.6.1),

1 E. ds = _ d>'1 = _po',n(R/d) di (5)
Ja dt 211" dt

(d) This flux will be linked N times by an N turn coil. Thus, the EMF at the
terminals of the coil follows from (8) as

tab = P;': In(R/d) ~~ (6)
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1.6.6	 The left hand side of (1.6.1) is the desired circulation of E, found by deter­
mining the right hand side, where ds = i,.dzdz. 

1 E. ds = -~ r/SoB.. ds 
0'	 dt 1s 

d J'/21V1 

= --d /SoH,Az, 0, z)dzdz (1) 
t -1/2 0 

dHo 
= -/Sowl""dt 

1.6.7	 From (12), the tangential component of E must be continuous, so 

n x (EG
- Eb

) = 0 => 1:; - E1 = 0 => E; = E1 (1) 

From (1.3.17), 

foE; - foE2 = 0'0 => ~ = 0'0 + E2 (2)
f o 

These are components of the given electric field just above the 11 = 0 surface. 

1.6.8	 In polar coordinates, 

(1) 

The tangential component follows from (1.6.12) 

(2) 

while the normal is given by using (1.3.17) 

Er(r = R+) = 0'0 cosq, + Eosinq,	 (3)
f o 

1.1 GAUSS' INTEGRAL LAW OF MAGNETIC FLUX 

1.7.1	 (a) In analyzing the z directed field, note that it is perpendicular to the q, axis 
and, for 0 < fJ < 11"/2, in the negative fJ direction. 

B = Ho(C08fJi.. - sinfJio)	 (1) 

(b)	 Faraday's law, (1.6.1), gives the required circulation in terms of the surface 
integral on the right. This integral is carried out for the given surface by 
simply multiplying the z component of B by the area. The result is as given. 
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(c)	 For the hemispherical surface with its edge the same as in part (b), the normal 
is in the radial direction and it follows from (1) that 

PoH . ds = (PoHocos O)r sin OdOrdtP	 (2) 

Thus, the surface integral becomes 

(3) 

so that Faraday's law again gives 

(4) 

1.7.2 The first only has contributions on the right and left surfaces, where it is of 
the same magnitude. Because the normals are oppositely directed on these surfaces, 
these integrals cancel. Thus, (a) satisfies (1.7.1). 

The contributions of (b) are to the top and bottom surfaces. Because H differs 
on these two surfaces (:.c = :.c on the upper surface while :.c = 0 on the lower one), 
this H has a net flux. 

1 H.ds= AHo:.c	 (1)Is d 

As for (b), the top and bottom surfaces are where the only contributions 
can be made. This time, however, there is no net contribution because H does not 
depend on :.c. Thus, at each location y on the upper surface where there is a positive 
contribution, there is one at the same location y on the lower surface that makes a 
contribution of the opposite sign. 

1.7.S Continuity of the normal flux density,(1.7.6), requires that 

IJoH: -	 IJoHl = 0 => H: = Hl (1) 

while Ampere's continuity condition, (1.4.16) requires that the jump in tangential 
H be equal to the given current density. Using the right hand rule, 

H; - H2 = K o => H; = K o + H2	 (2) 

These are the components of the given H just above the surface. 

1.7.4	 Given that the tangential component of H is zero inside the cylinder, it follows 
from Ampere's continuity condition, (1.4.16), that 

H",(r = R+) = Ko	 (1) 

According to (1.7.6), the normal component of PoH is continuous. Thus, 

poHr(r = R+) = poHr(r = R_) = H l	 (2) 





SOLUTIONS TO CHAPTER 2


2.1 THE DIVERGENCE OPERATOR 

2.1.1 From (2.1.5) 

DivA = 8(Az ) + 8(A,,) + 8(Az ) 
8z 8y 8z 

Ao [ 8 (2) 8 (2) 8 ( 2)=--z +-y +-z	 (1)
tJ.2	 8z 8y 8z 

2AO ( )=	 tJ.2 Z+y+Z (2) 

2.1.2 (a) From (2.1.5), operating on each vector 

V.A= Ao[~(y)+~(z)]=0	 (1)
d 8z 8y 

V· A = Ao [~(z) - ~(y)] = 0	 (2)
d 8z 8y 

V· A = Ao [~(e-1c" cos kz) - ~(e-1c" sin kz)]
8z 8y ~) 

= Ao[-ke- 1c" sin kz + ke- 1c" sin kz] = 0 

(b)	 All vectors having only one Cartesian component, a (non-constant) function 
of the coordinate corresonding to that component. For example, A = ixf(z) 
or A = iyg(y) where f(z) and g(y) are not constants. The example of Prob. 
2.1.1 is a superposition of these possibilities. 

2.1.3	 From Table I 
1 8 18A", 8AzV·A= --(rAr ) + --+-	 (1) 

. r 8r 
Thus, for (a) 

Ao [18(2V·A = - -- r
d r 8r 

= ~O[2coS24J 
for (b) 

1 8 

r 84J 8z


) 8. ]
cos24J - -(sm24J)
84J (2) 

- 2cos24J1 = 0 

1 8 . 
V· A = Ao[--rcos4J - --sm4J] = 0	 (3)

r 8r r 84J 
while for (c) 

Ao 18 AoV·A=---r3 =-3r	 (4)
tJ.2 r 8r tJ.2 

1 



2-2	 Solutions to Chapter 2 

2.1.4	 From (2), 
DivA = lim _1_ 1 A. ds 

4V-+O~V ls (1) 

Following steps like (2.1.3)-(2.1.5) 

t A.da~~~~z[(r+ 6;)Ar (r+ 6;,~,z)] 

_ ~~az[(r - ~r)Ar(r _ ~r, ~,z)] 
(2) 

a~	 a~ 
, +~raz[A<t>(r,~+ 2'z) -A<t>(r,~-2'z)] 

az az 
+r~~ar[Az(r,~,z+2) -Az(r,~,z-2)] 

Thus, the limit


DivA= lim

r.o.<t>.o.z-+O


{ ra~az[(r+ar)Ar(r+ ~,~,z) - (r- ~)Ar(r- ~,~,z)]

ra~azar 

[A<t>(r, ~ + ¥, z) - A<t>(r,~ -	 ¥, z)] (3) 
+	 ra~ 

[Az(r,~,z+ ¥) - Az(r,~,z - ¥)]}
+	 az 

gives the result summarized in Table I. 

2.1.5	 From Table I, 

1 8 2 1 8. 1 8A<t> 
V· A = 2"-8 (r- Ar ) +-.-(J 8(J (AB sm(J) + -.-(J 8'" (1)

r r rSln	 rSln Y' 

For (a)


Ao [1 8 (5)] Ao ( 2
V . A = - - - r = -	 5r ) (2)d3 r2 8r d3


for (b)

Ao 1 8(2V·A=---- r )=0	 (3)
d2 rsin(J 8~


and for (e)


(4) 
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2.1.6 Starting with (2) and using the volume element shown in Fig. S2.1.6, 

(r + ~r)u8 

(r - ~r)u8 

Flcure 82.1.8 

Thus, 



2-4 Solutions to Chapter 2

In the limit

1 a 2 1 a . 1 aA",v ·.A = 2"-a(r Ar ) + -.-./I a./l (smOAo) +-.-./I a'" (3)
r r rSlnl7 17 rSlnl7 'I'

2.2 GAUSS' INTEGRAL THEOREM

~y

iydxdz
-iydxdx .. ----

ixdydz

,/

2.2.1

Figure 83.3.1

(a) The vector surface elements are shown in Fig. 82.2.1.

(b) There is no z contribution, so there are only x = ±dsurfaces, A", = (Ao/d)(±d)
and n = ±ixdydz. Hence, the first two integrals. The second and third are
similar.

(c) From (2.1.5)

V.A = Ao[~x+ ~y] = 2Ao
d ax ay d

Thus, because V . A is constant over the volume

[ V. AdV = 2~o (2d)3 = 16Aod2

(1)

(2)

2.2.2 The surface integration is

I A. da = ~: [jd jd dy2dydz _ jd jd (-d)y2dydz
18 -d -d -d -11-

+ jd jd dx2dxdz _ jd jd (-d)x2dxdz
-d -d -d -d

(1)
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From the first integral 

= :: (2cP) (~d3) 
The others give the same contribution, so 

4Ao 4d5 16Aod2 

= d3 3= 3 

(2) 

(3) 

To evaluate the right hand side of (2.2.4) 

V . A = Ao [!""' Zy2 + !.....z2y] = Ao (y2 + z2)
d3 az ay d3 

So, indeed 

(4) 

(5) 

2.3 GAUSS' LAW, MAGNETIC FLUX CONTINUITY AND 
CHARGE CONSERVATION 

2.3.1 (a) From Prob. 1.3.1 

E A [ z. y'J= - lx+ 1211'Eo z2 + y2 z2 + y2 ~ 

From (2.1.5) 

A [a ( :& ) a( y )]V·E-- ­ +­
- 211'Eo az Z2 + y2 ay z2 + y2

A[1 2:&2 1 2y2 ] 
= 211'Eo z2 + y2 - (z2 + y2)2 + z2 + y2 - (Z2 + y2)2 

A [y2_ Z2 z2_y2] 
= 211'Eo (z2 + y2)2 + (z2 + y2)2 = 0 

except where z2 + y2 = 0 (on the z-axis). 

(b) In cylindrical coordinates 

(1) 

(2) 

(3) 

Thus, from Table I, 
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2.3.2 Feom Table I in cylindrical coordinates with a( )/at/> and a( )/az = 0, 

v .foE = -f o -a (rEr 
) 

r ar 

so 

r<b 
b<r<a 

r < b 
b<r<a 

2.3.3 Using B = Ho(ix + i)') in (2.1.5), 

a(l) a(l)
V . /LoB = /LoHo[- + -] = 0ax ay 

2.3.4 In cylindrical coordinates (Table I): 

1 a 1 aH~ 8H", 1 a (--i ) 

(1) 

(2) 

(3) 

(1) 

V·B=--(rHr )+--+-=-- =0
r 8r r at/> az r at/> 2'll"r	

(1) 

2.3.5	 If V . /LoB = 0 everywhere then the integral of its normal over an arbitrary 
dosed surface in that region will be zero and 

(a)

V/LoB = 0


(b) 

(c) 
Hoay

V . /LoB = - - = 0 
a ax


Thus, only (b) will not satisfy (1.7.1)


2.3.6 Evaluation using (2.1.5) gives 

aE",	 2po
P= V 'foE= f o - =-z 

az	 8 

which is the given charge density. 
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2.3.'1 Using V· F in spherical coordinates from Table I with %f) and 0/0; = 0, 

V oJ = _.!.~(r2Jr) = _.!.~(,.s dpo) = _ dpo 
r2 or r2 or 3 dt dt 

which, since Po is independent of r, checks with (2.3.3). 

2.4 THE CURL OPERATOR 

2.4.1 All cases have only z and y components, independent of z. 

V X A = [i; iX i~] 
8s 811 
Az All 0 

= i.[oAII 
Bz 

_ oAz ]
oy 

Thus 
(a) 

V X A = Ao /1- IJ = 
d 

0 (1) 

(b) 

V X A = Ao 10 ­
d 

oj = 0 (2) 

(c) 
= Aol-e-kll cos kz + ke-kllV X A cos kzl = 0 (3) 

To make a finite curl make a single component having any dependence on a 
coordinate perpendicular to the vector. 

All = I(z), Az =0, A. = 0 (4) 

Say, 

(5) 

2.4.2	 In all cases A. = 0 and B/Bs = 0, so from Table I, 

. [1 0 ( ) 1 oAr]V X A = I. -- rA~ - --	 (1)
r or r 0; 

(a) Thus 

(a) ~ V X A = i. Ao [!.~(_r2 sin 2;) -	 !.~(rcos2;)] 
d r or r 0; (2) 

= i. ~o [-2 sin 2; + 28in 2;1 = 0 
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(b) ==> V x A = i.Ao[~ :r(-rsinq,) - ~ :q, cosq,] 
(3) 

= i.Ao[ _ sinq, + sinq,] = 0 
r r 

• 1 8 (AO r 3 ) • (3Ao r) ( ) ()c ==> V x A = 1.;:- 8r 7 =1. 7	 4 

(b)	 Possible vector functions having a curl make A = A<f>i<f> where rA<f> = j(r) is 
not a constant. For example f(r) = r, r2 , r3 , in which case 

(5) 

2.4.3 From (2) 

(curlA)n = lim } 1 A· ds	 (1)
.o.a--+O ua fa 

Using contour of Fig. P2.4.3a, 

(VxA)r= lim {[6.ZAz(r,q,+¥,z)-6.ZAz(r,q,-¥,z)] 
r.o.<f>.o.z--+O r6.q,6.z 

_ [r6.q,A<f>(r, q" z + ¥) - r6.q,A",(r, q" z - ¥)] } (2) 
r6.q,6.z 

18Az 8 A", 
= ;:- 8q, - 8z 

Using the contour of Fig. P2.4.3b 

(V x A)", = lim {[6.rAr (r,q" z + ¥) - 6.rAr (r, q" z - ¥)] 
.0. r.o. z--+O t::.rt::.z 

_ [t::.zAz(r + ¥, q"z) - 6.zAz(r - ¥, q" z)] } (3) 
6.r6.z 

8Ar 8Az 
= 8z - a; ­

(V X A)z = lim 
.0. rr.o. "'--+0 

[(r+ ¥)t::.q,A",(r+ ¥,q"z) - (r- ¥)6.q,At/>(r-¥,q"z)] 
{ 6.rrt::.q, 

_ [6.rAr (r, q, + ¥, z) - 6.rAr (r, q, - ¥, z)] } 
(4) 

6.rr6.q, 

1 8(rAt/» 1 8Ar

=;:- 8r -;: 8q,


http:P2.4.3a


2.4.4

Solutions to Chapter 2

/'\d.8
Nrsin8t::..dJ

From (2)

(r ~ ~r) sin 8t::..dJ

Flsure 83.4.4

2-9

(
'l"7 A) , {[raOAB(r,o,tP+ ¥) -raOAB(r,O,tP- ¥)]
vX r= hm - .rt:.Br sin Bt:.",-O raOr sm oatP

[rsin (0 + ¥)atPA",(r,O + ¥, tP) - rsin (0 - ¥)atPAfjI(r, 0- ¥, tP)] }
+ raOrsinOatP

= __1__8 A_B + _1__8(.>.-si_n_8A---,fjI~)
rain 0 8tP r sin 0 80

(1)

(VXA)B= lim . {[arAr(r,8,tP+¥),-arAr(r,o,tP-¥)]
t:.rsinBrt:.fjI-O arsmOratP

_ [atP sin8(r + ~)A",(r + ~,O, tP) - atP sin tP(r - ~)A",(r - ~,O, tP)] }
arsin8ratP

1 8Ar 18(rAfjI)
= -:r(-sin-O-=-) 8tP -; 8r

(2)

(V X A)", = lim {[ao(r + ~)AB(r + ~,O, tP) - aO(r - ~)AB(r - ~,O, tP)]
rt:.9t:.r-O raOar

[arAr(r,O + ¥, tP) - arAr(r, 0- ¥, tP)] }
raOar

1 8· 18Ar= --(rA9) ---
r 8r r 80

(3)
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2.4.5 (a) Stokes' integral theorem, (2.4.1) is

£A . ds = 1V X A . da (1)

With S a closed surface, C -+ 0, so

t V X A . da = 0 =1V· (V X A)dV (2)

Because V is arbitrary, the integrand of this volume integral must be zero.

(b) Carrying out the operations gives

V.(VxA) = ~[aAz _ aA,,]+~ [aAz _ aA"]+~[aA,, _ aAz ] = 0 (3)
ax ay az ay az ax az ax ay

2.5 STOKES' INTEGRAL THEOREM

2.6.1 y

h -- - - - ,...--......----,

Z(9----""---~----~x

g

Figure SJ.5.1

(a) Using Fig. S2.5.1 to construct A· ds,

£A . ds = 19+~ Az (x, O)dx + lh A" (g + ~,y)dy

-lg+~ Az(x, h)dx -lh A,,(g, y)dy

= 19+~ (O)dx + lh ~ (g + ~)2dy (1)

-lg+~ (O)dx - r A; g2dy
g 10 d

= ~;[(g+~)2h-g2hl
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(b) The integrand of the surface integral is 

[ 
ix i~ is] aA 2A x 

V X A = a/;x 1" ~ = is ax" = is ,; 

Thus 

r r ru+6. 2A x A1 
s 

VxA·da= 1 
0 

1 
u 

,; dxdy= ,p[(g+d)2_ g2jh (2) 

2.5.2 (a) Using the contour shown in Fig. 82.5.1, 

fa A . ds = ~o [ iU 

+6. (O)dx + lh (g + d)dy 

-i U 
+6. (-h)dx -lh 

gdy] 

Ao[() j 2Aohd = d g + d h + hd ­ gh = d 

(b) To get the same result carrying out the surface integral, 

[ 
ix I)' is] aA aA 

V X A = a/ax a/ ay 0 = is [T -T]
All: A" 0 x Y 

= Ao [1 + 1] = 2Ao 

d d 

and hence l(v X A)· da = 2:0 (dh) 

(1) 

(2) 

2.6 DIFFERENTIAL LAWS OF AMPERE AND FARADAY 

2.6.1 

r<b 
b<r<a (1) 

r<b 
b<r<a 

(2) 



2-12	 Solutions to Chapter 2 

2.6.2	 Ampere's differential law is written in cylindrical coordinates using the ex­
pression for V x B from Table I with ajat/J and ajaz = 0 and Hr = 0, Hz = O. 
Thus 

VXB=i).aa (rH</»=i• .!:.aa {Joa2 [1-e- r/a(1+.!:.)]} = Joe-r/ai. (1) 
r r r r	 a 

2.7	 VISUALIZATION OF FIELDS AND THE DIVERGENCE 
AND CURL 

2.1.1	 (a) For p and E given by 
2po z 

p=­
B 

Ez =	 ~[z2 _ (~)2] (1)
foB 2 

the sketch is shown in Fig. 82.7.1 

Figure 83.1.1 

(b) 
X[i i.]

VxE= 0 
iy
0 ajaz =0	 (2) 

o	 0 Ez 

(c)	 The density of field lines does not vary in the direction perpendicular to lines. 

2.1.2 (a) From Prob. 1.4.1, 

- J	 e- r / a • Joa2 [ -r/a( r)]Jz - 0 , H</>=--1-e 1+- (1)
r a 

and the field and current plot is as shown in cross-section by Fig. 82.7.2. 

(b)	 From Prob. 1.4.4, the currents are a line current at the origin returned as two 
surface currents. 

K	 _ {I/,rr(2a+b); r=a 
,,- ~Ij7l"(2a+b); r=b (2) 
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In the annular regions,

H __.!- { l/r; 0 < r < b
4> - 211" 2a/r(2a + b); b < r < a

2-13

(3)

This distribution of current density and magnetic field intensity is shown in
crosB-section by Fig. S2.7.2.

(a) (b)

Figure 83.7'.3

(c) Because H has no tP dependence with its only component in the tP direction, it
must be solenoidal. To check that this is so, note that a/atP =0 and a/az =0
and that (from Table I)

(d) See (c).

1 a
V.H=--a (rHr ) =0

r r
(4)

2.1.3 (a) The only irrotational field is (b), where the lines are uniform in the direction
perpendicular to their direction. In (a), the line integral of the field around a
contour such as that shown in Fig. S2.7.3a must be finite. Similarly, because
the field intensity is independent ofradius in case (c), the line integral shown
in Fig. S2.7.3b must be finite.



2.7'.4

2-14

C r --'4 --,
"I I.,

I I
I IL __ +

f-- J

(a)
Figure 92.".3

The respective fields are

Solutions to Chapter 2

(b)

(1)

(2)

and the field plot is as shown in Fig. 82.7.4. Note that the spacing between lines is
lesser above to reflect the greater intensity of the field tl;J.ere.

L II!I! l~
//y ,

2.7'.5

Figure 92.7'.4

The respective fields are

Figure 92.7'.5

(1)

(2)

2.7'.6

and the field plot is as shown in Fig. 82.7.5. Note that, because the field is solenoidal,
the number of field lines above and below can be the same while having their spa.cing
reflect the field intensity.

(a) The tangential E must be continuous, as shown in Fig. 82.7.6a, so the normal
E on top must be larger. Because there is than a net flux of E out of the
interlace, it follows from Gauss' integral law [continuity condition (1.3.17)]
that the surlace charge density is positive.
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r L L 
0-----....,..• 
z L L 

(a)	 (b) 

Figure 82.7'.8 

(b)	 The normal component of the flux density 1"011 is continuous, as shown in Fig. 
S2.7.6b, so the tangential component on the bottom is largest. From Ampere's 
integral law [the continuity condition (1.4.16)1 it follows that K", > o. 

http:S2.7.6b




SOLUTIONS TO CHAPTER 3 

3.1	 TEMPORAL EVOLUATION OF WORLD GOVERNED 
BY LAWS OF MAXWELL, LORENTZ, AND NEWTON 

3.1.1 (a) Replace z by z - ct. Thus 

E -
-	

E·
olxe-(z-ct)' /2a'., (1) 

(b) Because	 8( )/8z = 8( )/8y = 0 and there are only single components of 
each field, Maxwell's equations reduce to 

(2) 

Note that we could pick these expressions out of the six components of the laws 
of Faraday and Ampere by first writing the left hand sides of 3.1.1-2. Thus, 
these are respectively the y and z components of these laws. In Cartesian 
coordinates, the divergence equations are automatically satisfied by any vector 
that only depends on a coordinate perpendicular to its direction. Substitution 
of (1) into (2a) and into (2b) gives 

1 
c=--	 (3)

.j#lofo 

which is the velocity of light, in agreement with (3.1.16). 

(c)	 For an observer having the location z = ct+ constant, whose position increases 
linearly with time at the rate c m/s and who therefore has the constant velocity 
c, z - ct = constant. Thus, the fields given by (1) are constant. 

3.1.2 With the given substitution in (3.1.1-4), (with J = 0 and p = 0) 

8E 1
--=--VxH	 (1)

8t f o 

8H 1
-=--VxE	 (2)
8t #lo 

0= V· #loH	 (3) 

0= -V . foE	 (4) 

Although reordered, the expressions are the same as the original relations. 

1 



3-2 Solutions to Chapter 3

3.1.3 Note that the direction of wave propagation is obtained by crossing E into
B. Because it would reverse the direction of this cross product, a good guess is to
reverse the sign of one or the other of the fields. In that case, the steps followed
in Prob. 3.1.1 lead to the requirement that c = -1/';~ofo' We define c as being
positive and so write the solutions with z-ct replaced by z- (-c)t = z+ct. Following
the same arguments as in part (c) of Prob. 3.1.1, this solution is therefore traveling
in the -z direction.

x

}'---'" H y

~--------1~ Y

Figure 83.1.4

"f---- E.

"----+-----z

-HIJ

3.1.4. The role played by z is now taken by :z:, as shown in Fig. S3.1.4. With the
understanding that the z dependence is now replaced by the given :z: dependence,
the magnetic and electric fields are written so that they have the same ratio as in
(1) of Prob. 3.1.1. Further, in order to preserve the vector relation between E, H
and the direction of propagation, the sign of H is reversed. Thus,

E = Eoi. cos P(:z: - ct)j

3.2 QUASISTATIC LAWS

H = -- ~EoiycosP(:z: - ct)V~o
(1)

3.2.1 (a) These fields are transverse to the coordinate, :z:, upon which they depend.
Therefore, the divergence conditions are automatically satisfied. From the
direction of the vectors, we know that the :z: and y components respectively
of the laws of Ampere and Faraday will apply.

8H" 8foEz
- 8z = at (1)

8Ez 8~oH"
8z = ---at"" (2)

The other four components of these equations are automatically satisfied be­
cause 8( )/8y = 8( )/8z = O. Substitution of (a) and (b) then gives

w
P= W';~ofo == - (3)

c
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in each case. 

(b)	 The appropriate identities are 

1 w	 w )cos fjz coswt = 2"[cosfj(z- pt) +cosfj(z+ pt] (4) 

sinfjzsinwt= i[cosfj(z- ~t) -cosfj(z+ ~t)] (5) 

Thus, in view of (3), the fields indeed take the form of the sum of waves 
traveling in the +z and -z directions with the speed c. 

(c)	 In view of (a), this condition can be written as 

fjl = wy'IJoEol = wllc <: 1 (6) 

Thus, the condition is equivalent to having the electromagnetic delay time 
Tem = llc short compared to the time l/w required for 1/21r of a cycle. 

(d)	 In the limit of (c), cosfjz -+ 1 and sinfjz -+ fjz and (a) and (b) become the 
given fields. 

(e)	 The electric field of (c) is irrotational and hence satisfies (3.2.1a) but not 
(3.2.1b) while the magnetic field has curl and indeed satisfies (3.2.2a) but not 
(3.2.2b). Therefore, in the limit of having the frequency low enough to satisfy 
(6), the system is EQS. 

3.2.2 (a) See part (a) of solution to Prob. 3.2.1. 

(b)	 The appropriate identities are 

sin(fjz) sin(wt) = i [ cos fj(z -	 ~t) + cos fj(z + ~t)] (1) 

cos(fjz) cos(wt) = 2"1 [ 
cosfj(z -

wpt) - cosfj(z + 
wpt)] (2) 

Thus, because wlfj = c, the fields indeed take the form of the sum of waves 
traveling in the +z and -z directions with the speed c. 

(c)	 See (c) of solution to Prob. 3.2.1. 

(d)	 In the limit where Ifjll <: I, the given fields become 

E ~ wIJoHozsinwtix (3) 

H ~ Hocoswti~	 (4) 

Thus, the magnetic field is uniform while the electric field varies linearly 
between the source and the "short" at z = 0, where it is zero. 

(e)	 The magnetic field of (4) is irrotational and hence satisfies (3.2.2b) with J = 0 
but not (3.2.2a). The electric field of (3) does have a curl and hence does not 
satisfy (3.2.1a) but does satisfy (3.2.1h). Thus, the system is magnetoqua,... 
sistatic. 
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3.3 CONDITIONS FOR FIELDS TO BE QUASISTATIC 

3.3.1	 (a) Except that it is in the z direction rather than the z direction, the quasistatic 
electric field between the plates is, as in Example 3.3.1, uniform. To satisfy 
the requirement of (a), this field is 

E = Iv(t)/d]ix	 (1) 

The surface charge density on the plates follows from Gauss' integral law 
applied to the plates, much as in (3.3.7). 

cr - {-EoEz(z = d) = -Eov/a; Z = d (2) 
• - EoEz(z = 0) = Eov/d; z = 0 

Thus, the quasistatic surface charge density on the interior surfaces of each 
plate is uniform. 

K.(z) 

17.(z) K.(z)	
y c 

(a)	 (b) 

Fisure S3.3.1 

(b)	 The integral form of charge conservation is applied to the lower and upper 
electrodes using the volume shown in Fig. S3.3.1a. Thus, using symmetry to 
argue that K z = 0 at z = 0, for the lower plate 

ocr.zw	 ZEo dv 
wIK.(z) - Kz(O)] + --ar:- = 0 ~ Kz(z) = -7 dt (3) 

and we conclude that the surface current density increases linearly from the 
center toward the edges. At any location z, it is that current required to 
change the charge on the fraction of "capacitor" at a lesser value of z. 

(c)	 The magnetic field is found using Ampere's integral law, (3.3.9), with the 
surface da = ixda having edges at z = 0 and z = z. By symmetry, Hy = 0 at 
z = 0, so 

(4) 

http:S3.3.1a
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Note that, with this field and the surface current density of (3)' Ampere's 
continuity condition, 1.4.16, is satisfied on the upper and lower plates. We 
could just as well think of the magnetic field as being induced by the surface 
current of (3) as by the displacement current of (3.3.9). 

(d)	 To determine the correction electric field, use Faraday's integral law with the 
surface and contour shown in Fig. 83.3.1b, assuming that E is independent of 
x. 

(5) 

Because of (a), it follows that the corrected field is 

2 
E ( ) = ~	 JoLo€o (z2 _ 2) d v (6)x Z d + 2d Z dt2 

(e)	 With the second term in (6) called the "correction field," it follows that for 
the given sinusoidally varying voltage, the ratio of the correction field to the 
quasistatic field at at most 

(7) 

Thus, because c = 1/VJoLo€o, the error is negligible if 

1 l - [-w] ~ 1	 (8)
2 c 

3.3.2	 (a) With the understanding that the magnetic field outside the structure is zero, 
Amper'es continuity condition, (1.4.16), requires that 

0- H y = K y	 = K top plate 

H y -0 = K y =-K bottom plate	 (1) 

where it is recognized that if the current is essentially steady, the surface 
current densities must be of equal magnitude K(t) and opposite directions in 
the top and bottom plates. These boundary conditions also require that 

H = -iyK(t)	 (2) 

at the surface current density sources at the left and right as well. Thus, 
provided K(t) is essentially steady, (2) is taken as holding everywhere between 
the plates. Note that this uniform distribution of field not only satisfies the 
boundary conditions, but also has no curl and hence satisfies the steady form 
of Ampere's law, (3.2.2b), in the region between the plates where J = O. 

http:83.3.1b
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(b)	 The integral form of Faraday's law is used to compute the electric field caused 
by the time variation of K(t). 

1 E· ds = - ~ 1lo'oH . da	 (3)
fa at s 

(a)	 (b) 

Figure SS.S.Z 

SO that it links the magnetic flux, the sudace is chosen to be in the :z: - z plane, 
as shown in Fig. S3.3.2a. The upper and lower edges are adjacent to the perfect 
conductor and therefore do not contribute to the line integral of E. The left edge 
is at z = 0 while the right edge is at some arbitrary position z. Thus, with the 
assumption that EI/ is independent of :z:, 

(4) 

Thus the electric field is Ez (0) plus an odd function of z. Symmetry requires that 
Ez (0) = 0 so that the desired electric field induced through Faraday's law by the 
time varying magnetic field is 

(5) 

Note that the fields given by (2) and (5) satisfy the MQS field laws in the region 
between the plates. 

(c) To	 compute the correction to H that results because of the displacement 
current, we use the integral form of Ampere's law with the sudace shown 
in Fig. S3.3.2. The right edge is at the sudace of the current source, where 
Ampere's continuity condition requires that HI/{l) = -K(t), and the left edge 
is at the arbitrary location z. Thus, 

(6) 

http:S3.3.2a
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and so, from this first order correction, we have found that the field is 

H = -K( ) WfoJJo (12 
- Z2) cPK (7)

1/ t + W 2 dt2 

(d) The second term in (7) is the correction field, so, at worst where z = 0, 

IHcorrectedI = f o /Jo
l2 ...!....I cPK I (8)IKI 2 IKI dt2 

and, for the sinusoidal excitation, we have a negligible correction if 

(9) 

Thus, the correction can be ignored (and hence the MQS approximation is 
justified) if the electromagnetic transit time 1/c is short compared to the 
typical time 1/w. 

3.4 QUASISTATIC SYSTEMS 

3.4.1	 (a) Using Ampere's integral law, (3.4.2), with the contour and surface shown in 
Fig. 3.4.2c gives 

(1) 

(b) For essentially steady currents, the net current in the z direction through the 
inner distributed surface current source must equal that radially outward at 
any radius r in the upper surface, must equal that in the -z direction in the 
outer wall and must equal that in the -r direction at any radius r in the lower 
wall. Thus, 

21l"bKo = 21l"rK,.(z = h) = -21l"aK.. (r = a) = -21l"rK,.(z = 0) 
b b b (2)

=> K,.(z = h) = -Koi K.. (r = a) = -Koi Kr(z = 0) = -Ko r	 a r 

Note that these surface current densities are what is called for in Ampere's 
continuity condition, (1.4.16), if the magnetic field given by (1) is to be con­
fined to the annular region. 

(c) Faraday's integral law 

1 E . dB = -	~ { /JoB· da (3)
'e	 at ls 
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applied to the surface S of Fig. P3.4.2 gives 

(4) 

Because E.(r = a) = 0, the magnetoquasistatic electric field that goes with 
(2) in the annular region is therefore 

E. = -J.&obln(a/r) d~o (5) 

(d) Again, using Ampere's integral law with the contour of Fig. 3.4.2, but this time 
including the displacement current associated with the time varying electric 
field of (5), gives 

(6) 

Note that the first contribution on the right is due to the integral of Jasso­
ciated with the distributed surface current source while the second is due to 
the displacement current density. Solving (6) for the magnetic field with E. 
given by (5) now gives 

Htf> = !Ko(t)+ EoJ.&oba
2

{(:')2[!ln(:')_!] _(!)2[!zn(!)_!]} f1JKo (7)
r r a 2 a 4 a 2 a 4 dt2 

The last term is the correction to the magnetoquasistatic approximation. 
Thus, the MQS approximation is appropriate provided that at r = a 

(8) 

(e) In the sinusoidal steady state, (8) becomes 

The term in I I is of the order of unity or smaller. Thus, the MQS approxi­
mation holds if the electromagnetic delay time a/e is short compared to the 
reciprocal typical time l/w. 
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4.1 IRROTATIONAL FIELD REPRESENTED BY SCALAR
POTENTIAL: THE GRADIENT OPERATOR AND
GRADIENT INTEGRAL THEOREM

4..1.1 (a) For the potential

(1)

(2)

(b) The unit normal is

4..1.2 For ~ = ~zy, we have

y

(a, a)

-----¥-----... x
o

(3)

(1)

Figure 94.1.2

Integration on the path shown in Fig. 84.1.2 can be accomplished using t as a
parameter, where for this curve z = t and y = d so that in

ds = ixdz + iJ'dy

we can replace dz = dt, dy = dt. Thus,

l
(a,a) la v.

E·ds= - ;(ix+iJ').(ix+iJ')dt=-Va
(0,0) t::::::o a

Alternatively, ~(O, 0) = 0 and ~(a, a) = Va and so ~(O, 0) - ~(a, a) = -Va'

(2)

(3)

1
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4.1.3 (a) The three electric fields are respectively, E = -V~,

E = -(Vo/a)ix (1)

E = -(Vo/a)i), (2)

2Vo ( • • )E = --2 XIx - YI),
a

(3)

(b) The respective equipotentials and lines of electric field intensity are sketched
in the X - Y plane in Figs. S4.1.3a-c.

.... --4-

- .......--

f II

(e)

(f)

(d)

E

_._- - ..

of>

~-- - -- ----

(b)

(r)

Figure 84.1.8

(c) Alternatively, the vertical axis of a three dimensional plot is used to represent
the potential as shown in Figs. S4.1.3d-f.
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4.1.4 (a) In Cartesian coordinates, the grad operator is given by (4.1.12). With (J> de-
fined by (a), the desired field is

(b) Evaluation of the curl gives

ix i)'

VxE= :s :y
Es Ey

11'2 1I'Z 1I'y ~ 1I'Z 1I'y]
= [- cos - cos - - - cos - cos -

ab a b ab a b

=0

so that the field is indeed irrotational.

LL_-I==:=Jt:::==L_...L--.J-.. z

(1)

(2)

Figure 84.1.4

(c) From Gauss' law, the charge density is given by taking the divergence of (1).

(3)

(d) Evalvuation ofthe tantential component from (1) on each boundary givesj at

z = O,Ey = OJ

y=O,Es = OJ

z = a,Ey.= 0

y= a,Es =0
(4)

(e) A sketch of the potential, the charge density and hence of E is shown in Fig.
84.1.5.
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Figure 94.1.5 

(f)	 The integration of E between points (a) and (b) in FIg. P4.1.5 should be the 
same as the difference between the potentials evaluated at these end points 
because of the gradient integral theorem, (16). In this particular case, let 
x = t,Y = (bla)t so that dx = dt and dy = (bla)dt. 

b -P fa 1r 1rt 1rt

f E·ds= [( 1 )2 0 ( Ib)2] [-cos-sin-dt
a f o 1r a + 1r a/2 a a a 

1r • 1rt 1rt]+ -sm-cos- dt 
a a a	 (5)

-Po fa 1r • 21rt d 
= f o[( 1rla)2 + (1r/b)2] a/2 ~ sm -;- t 
_ Po 
- f o[(1rla)2 + (1rlb)2] 

The same result is obtained by taking the difference between the potentials. 

(6) 

(g)	 The net charge follows by integrating the charge density given by (c) over the 
given volume. 

Q = ( pdv = r r r posin(1I"xla) sin(1I"ylb)dxdydz = 4Po:bd (7)1v 101010	 11" 

From Gauss' integral law, it also follows by integrating the flux density foE· n 
over the surface enclosing this volume. 
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(h)	 The surface charge density on the electrode follows from using the normal 
electric field as given by (1). 

(9) 

Thus, the net charge on this electrode is 

(10) 

(i)	 The current i(t) then follows from conservation of charge for a surface S that 
encloses the electrode. 

(11) 

Thus, from (10), 

(12) 

4.1.5	 (a) In Cartesian coordinates, the grad operator is given by (4.1.12). With ~ de­
fined by (a), the desired field is 

a~. a~.]E =- [ -Ix+-Iaz ay ., 
Po [1r • 1r 1r. 1r 1r. 1r • ] (1) 

= f [(1r/a)2 + (1r/b}2J ~ sm ~zcos ;;Y1x + ;; cos ~zsm bY1.,
o 

(b) Evaluation of the curl gives 

so that the field is indeed irrotational. 

(e)	 From Gauss'law, the charge density is given by taking the divergence of (1). 

(3) 
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(d)	 The electric field E is tangential to the boundaries only if it has no normal 
component there.


Ez(O,y) = 0, Ez(a,y) = 0

(4)

Ey(:Z:, O) = 0, Ey(:Z:, b) = 0 

(e)	 A sketch of the potential, the charge density and hence of E is shown in Fig. 
84.1.4. 

(f)	 The integration of E between points (a) and (b) in Fig. P4.1.4 should be the 
same as the difference between the potentials evaluated at these end points 
because of the gradient integral theorem, (16). In this particular case, where 
y = (b/a):z: on C and hence dy = (b/a)d:z: 

r(b) E. de = fa {Ez(:Z:, ~:Z:)d:Z:+ EII(:z:, ~:Z:)(b/a)d:Z:} 
ita) a/2 a a

Po fa 21/"	 • 1/" 1/" 
= [( /)2 (/b)2] - sm -:z:cos -:z:d:z:

Eo	 1/" a + 1/" a/2 a a a
-Po 

= -E-:-::[('-1/"/7"a~)2~+':""";-(1/""""7/b:'7)2=:"]
o

The same result is obtained by taking the difference between the potentials. 

(6) 

(g)	 The net charge follows by integra.ting the charge density over the given vol­
ume. However, we can see from the function itself that the positive charge is 
balanced by the negative charge, so 

(7) 

From Gauss' integral law, the net charge also follows by integra.ting the fiux 
density foE· n over the surface enclosing this volume. From (d) this normal 
flux is zero, so that the net integral is certainly also zero. 

Q =t foE· nda = 0	 (8) 

The surface charge density on the electrode follows from integrating foE .n 
over the "electrode" surface. Thus, the net charge on the "electrode" is 

q =	t foE· nda = 0 (9) 
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4.1.6 (a) From (4.1.2) 

E ( a~. a~.) 
= - az Ix + ay I)'


= -A[mcosh mzsin klly sin kzzix (1)

+ sinh mzkll cos kllysin kzzi)' 

+ kz sinh mz sin klly cos kzzi.1 sin wt 

(b) Evaluation using (1) gives 

(2) 

=-A sinwt{ix(kllkz sinh mz cos kllycos kzz - kllkz sinh mzcos kllycos kzz) 

+ l)'(mkz cosh mzsin kllycos kzz - kzmcosh mzsin kllycos kzz) 

+ i.(mkll cosh mzcos kllysin kzz - mkll cosh mzcos kllysin kzz) 

=0 
(3) 

(c) From Gauss' law, (4.0.2) 

p = V· foE = -EoA(m2 
- k~ - k~)sinhmzsinkllysinkzzsinwt (5) 

(d) No. The gradient of vector or divergence of scalar are not defined. 

(e) For p = 0 everywhere, make the coefficient in (5) be zero. 

(6) 

4.1.'1 (a) The wall in the first quadrant is on the surface defined by 

y=a-z (1) 

Substitution of this value of y into the given potential shows that on this 
surface, the potential is a linear function of z and hence the desired linear 
function of distance along the surface 

~ = Aa(2z - a) (2) 
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(3)
V

~ = _(z2 - !l)
a2

On the remaining surfaces, respectively in the second, third and fourth quad­
rants

y = z + aj y = -a - Zj Y = Z - a (4)

Substitution of these functions into (3) also gives linear functions of z which
respectively satisfy the conditions on the potentials at the end points.

To make this potential assume the correct values at the end points, where
z = 0 and ~ must be -V and where z = a and ~ must be V, make A = V/a2

and hence

(b) Using (4.1.12),

E ( a~. a~l) V( • • )= - -Ix + - = - - 2ZIx - 2ylaz ay ¥ a2 ¥

From Gauss' law, (4.0.2), the charge density is

(5)

(6)

Figure 84.1.7'

(c) The equipotentials and lines of E are shown in Fig. S4.1.7.

4.1.8 (a) For the given E,

ix i¥ i. a a
v x E = a/az a/ay 0 =i.[-(-Cy) - -(Cz)] = 0 (1)

Cz -Cy 0 az ay

so E is irrotationaL To evaluate C, remember that the vector differential
distance ds = ixdz+i¥dy. For ths contour, ds = i¥dy. To let the integral take
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account of the sign naturally, the integration is carried out from the origin to 
(a) (rather than the reverse)	 and set equal to q>(0, 0) - q>(0, h) = -V. 

1
-V = l

h 

-Cydy = --Ch2	 (2) 
o 2


Thus, C = 2V/h2 
•


(b)	 To find the potential, observe from E = -yrq> that 

aq>
-=-Cx·	 (3)ax ' 

Integration of (3a) with respect to x gives 

q> = -"2
1Cx2 + f(y) (4) 

Differentiation of this expression with respect to y and comparison to (3b) 
then shows that 

aq> df 1 
- = - = Cy '* f = _y2 + D	 (5)
ay dy 2


Because q>(0, 0) = 0, D = °so that


1 (2 2)
q> = -"2C x - y (6) 

and, because q>(0, h) = V, it follows that 

q> = _~C(02 _ h2) (7)
2


so that once again, C = 2V/ h2 •


(c) The potential and E are sketched in Fig. S4.1.8a. 

1...-, I :,...­
'" -- -1----.:;

I I 
I I 
I --''----7---.L----~.. X 

X =-d x=d 
1 

~--------l~X 

w 

(a)	 z (b) 

Figure 84.1.8 
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(d)	 Gauss' integral law is used to compute the charge on the electrode using the 
surface shown in Fig. S4.1.8b to enclose the electrode. There are six surfaces 
possibly contributing to the surface integration. 

t EoE ·nda= q	 (8) 

On the two having normals in the z direction, EoE .n = O. In the region above 
the electrode the field is zero, so there is no contribution there either. On the 
two side surfaces and the bottom surface, the integrals are 

W Jd2+h2 

q =Eo r r E(d, y) . ixdydzJo	 Jh1 

W Jd2 +h2 

+ Eo r r E(-d, y) . (-ix)dydz (9)
Jo Jh1 

w d 

+ Eo r r E(z, hI) . (-i), )dzdz
Jo J- d 

Completion of the integrals gives 

(10) 

4.1.9	 By definition, 
~~ = grad (~) . ~r (1) 

In cylindrical coordinates, 

(2) 

and 
~ifJ = ~(r + ~r, ~ + ~~, z + ~z) - ~(r, ifJ, z) 

a~ a~ a~	 (3) 
= -~r + -~ifJ + -~z 

ar aifJ az 

Thus, 
a~ a~ a~

ar ~r + aifJ ~ifJ + az ~z = grad ~ . (~ril' + r~ifJi", + ~zi.) (4)


and it follows that the gradient operation in cylindrical coordinates is, 

(5) 
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4.1.10 By definition, 
Aw = grad (W) . Ar (1) 

In spherical coordinates, 

Ar = Arir + rA9i8 + rsin9At/>i<f» (2) 

and 
Aw = W(r+ Ar, 9 + A9,t/> + At/» - W(r,9, t/» 

aw aw aw (3) 
= ar Ar + aiA9 + at/> At/> 

Thus, 

and it follows that the gradient operation in spherical coordinates is, 

(5) 

4.2 POISSON'S EQUATION 

4.2.1 In Cartesian coordinates, Poisson's equation requires that 

(1) 

Substitution of the potential 

(2) 

then gives the charge density 

(3) 
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4.2.2 In Cartesian coordinates, Poisson's equation requires that 

o2~ o2~ 

P= -fo ( oz2 + oy2) (1) 

Substitution of the potential 

Po ~ ~ 

~ = f 
o 

[(1l"/a)2 + (1f/b)2] cos ~zcos bY (2) 

then gives the charge density 
1f ~ 

P = Po cos ~zcos bY (3) 

4.2.3 In cylindrical coordinates, the divergence and gradient are given in Table I as 

V. A = !~(rAr) +! oA~ + oA. (1) 
r ar r aq, oz 
au. 1 au. ou.

V u = -1_ + - -1... + -1 (2)ar· r aq,'" az • 
By definition, 

V2u = V. Vu = !~(r ou) + !~(! ou) + ~(ou) (3)
r or or r oq, r oq, oz oz 

which becomes the expression also summarized in Table I. 

2 1 0 (au) 1 02U 02U 
(4)V U = ;:- or r or + r2 oq,2 + oz2 

4.2.4 In spherical coordinates, the divergence and gradient are given in Table I as 

(1) 

(2) 

By definition, 

V2u = V. (Vu) = ..!..~(r2aU) + _~_(! ou sinO) 
r2 or or rsmO roO 

1 0 1 ou (3) 

+ rsinO oq, (ninO oq,) 
which becomes the expression also summarized in Table I. 

V2u = ..!..~(~ou) + _1_~(sinOou) + 1 o2u (4) 
r2 ar or r2 sin 000 00 r2 sin2 0oq,2 
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4.3 SUPERPOSITION PRINCIPLE 

4.3.1 The circuit is shown in Fig. 84.3.1. Alternative solutions Va and Vb must each 

= fa 

= 

satisfy the respective equations 

I(t) 

dVa Va
C---;jj" + R 

dVb Vb
C- + ­

dt R 

v 

( ) 
t; (1) 

h(t) (2) 

R 

Figure S4.3.1 

Addition of these two expressions gives 

which, by dint of the linear nature of the derivative operator, becomes 

Thus, if fa => Va and h => Vb then fa + fb => Va + Vb. 

(3) 

(4) 

4.4 FIELDS ASSOCIATED WITH CHARGE SINGULARITIES 

4.4.1 (a) The electric field intensity for a line charge having linear density AI is 

Integration gives 

(1) 

(2) 

where r o is the position at which the potential is defined to be zero. 
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(b)	 In terms of the distances defined in Fig. 84.4.1, the potential for the pair of 
line charges is 

A, ( r+) A, ( r - ) A, ( r _ ) 
~= ---In - + --In - = --In - (3)

211"lOo r o 211"lOo ro 211"lOo r+ 

where 

Thus, 
A [1 + (d/2r)2 + !! cos 4J] (4)~=	 --In r 

411"lOo 1 + (d/2r)2 - ~ cos 4J 

For d <: r, this is expanded in a Taylor series 

1 +:C)In(-- = In(1 + :c) - In(l + 1/) SI:$ :c - 1/ (5)
1+1/ 

to obtain the standard form of a two-dimensional dipole potential. 

(6) 

4.4.2 Feom the solution to Prob. 4.4.1, the potential of the pair of line charges is 

~ = -A-In [1 + (2r/d)2 + ~ cos 4J] (1)
411"lOo 1+(2r/d)2-~cos4J 

For a spacing that goes to infinity, r / d <: 1 and it is appropriate to use the first 
term of a Taylor's expansion 

l+:c
In(--) ~ :c - 1/	 (2)

1+1/ 

Thus, (1) becomes 
2A 

~ = --rcos4J	 (3)
1I"lOod 

In Cartesian coordinates, :c = rcos4J, and (3) becomes 

(4) 

which is the potential of a uniform electric field. 

(5)
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4.4.3 The potential due to a line charge is 

CI> = -.A-In r o 

21r€o r 

where r o is some reference. For the quadrapole, 

(1) 

(2) 

where, from Fig. P4.4.3, 

r~ = r2[1 + (d/2r)2 + (d/r) sin </ll 

With terms in (d/2r)2 neglected, (2) therefore becomes 

(3) 

for d ~ r. 
Now In(l + x) ~ x for small x so In[(l + x)/(l + y)] ~ 

approximately 

CI> = _.A_ [ ­ (d/r)2 cos2 </l + (d/r)2 sin2 </ll 
41r€o 

-.Ad2 

= --2[cos2 </l - sin2 </ll 

x ­ y. Thus, (3) is 

(4) 
41r€or 

-.Ad2 

= --2 cos2</l 
41r€or 

This is of the form A cos 2</l / ,..r with 

-.Ad
A=--, n=2 (5) 

41r€o 
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4.4.4 (a) For,. <: d, we rewrite the distance functions as 

(la) 

,.~ = (d/2)2 [(d2")2 + 1 + d4,. 
cos 1/>]	 (lb) 

,.~ = (d/2)2[e;)2 + 1 + ~ sin 1/>]	 (Ie) 

,.~ =	 (d/2)2[(2;)2 + 1- ~ cos 1/>] (la) 

With the terms (2,./d)2 neglected, at follows that 

(2) 

Because In(1 + z) !:::! z for z <: 1,ln[(1 + z)/(1 + y)1 ~ z - y and (2) is 
approximately 

>. (4")2[ 2 . 2 I 4>.,.2
~ =-- - cos I/> - sm I/> =--- cos 21/> (3)

411"fo d	 1I"fo d2 

This potential is seen again in Sec. 5.7. With the objective of writing it in 
Cartesian coordinates, (3) is written as 

(4) 

(b) Rotate the quadrapole by 45°. 

4.5	 SOLUTION OF POISSON'S EQUATION FOR SPECIFIED 
CHARGE DISTRIBUTIONS 

4.5.1 (a) With Ir - r'l = .vZ'2 + yl2 + Zl2, (4.5.5) becomes 

(1) 
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(b) For the particular charge distribution, 

~	 Uo fa fa z'y'dz'dtj 

= a211"fo 11/'=01""=0 Vz,2 + y,2 + Z2 
(2)a 

= ~U l [Va2 + y,2 + z2 y' - Vy,2 + z2 y']dy' 
a 1I"fo 1/'=0 

To complete this second integration, let u2 = tj2 + z2, 2udu = 2tjdy' so that 

Similarly, 

(4) 

so that 

(c) At the origin, 

(6) 

(d)	 For z > a, (5) becomes approximately 

~ ~ uo z
3 

{1 + ea2 
+ 1)3/2 _ 2(a

2 
+ 1)3/2}

3~11"~ ~ ~ 
3 2 2 2 2 (7) 

= 2uo z {1 + (1 + 2a )(1 + 2a )1/2 _ 2(1 + a )(1 + a )1/2}
3a211"f z2 z2 z2 z2o


For a2 /z2 <: 1, we use (1 + zP/2 ~ 1+!z and


(8) 
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Thus, 
2w= 20"0a	 (9)

31rEo Z 

For a point charge Q at the origin, the potential along the z-axis is given by 

Qw=-­	 (10)
41rEo Z 

which is the same as the potential given by (9) if 
2

Q = 80"0a (11)
3 

(e)	 From (5), 

E = -VW = - 8W i• = ~lz(2a2 + z2)1/2 + Z2 - 2z(a2 + z2)1/2]i. (12)
8z 1ra2Eo 

4.5.2 (a) Evaluation of (4.5.5) gives 

W_ r fr (fr 0"0 cos ()'R 2sin ()'d4J'd()' 

- 1</>'=0 1(}.=0 41rEo1R2 + z2 - 4Rz cos ()'j1/2 

0"0R2 (fr sin2()'d()' 
(1) 

= 4Eo 1(}.=0 v'R2 + z2 - 2Rzcos()' 

To integrate, let u2 = R2 + z2 - 2Rz cos ()' so that 2udu = 2Rz sin ()' d()' and 
note that cos()' = (R2 + z2 - u2)/2Rz. Thus, (1) becomes 

0" l(R+ll)w= ~ (R2 +z2 -u2)du
4EoZ ll-R 

=	 ~[(R2 + z2)(R + z) _ (R + z)3 
4EoZ2 3 (2) 

-	 (R2 + z2)(Z - R) + (z - R)3 ]
3 

0"0R3 
=	 3E Z 2 

o

(b)	 Inside the shell, the lower limit of (2) becomes (R - z). Then 

W= O"oZ (3)
3Eo 

(c)	 From (2) and (3) 

E = _ t7w = _ 8w i = { ~~:~; i. z > R (4) 
8 Z • -3<01. Z < R.!!.J:I..' 

(d)	 Far away, the dipole potential on the z-axis would be pj41rEoZ2 for the point 
charge dipole. By comparison of (2) to this expression the dipole moment is 

41r0"0R3 
p= W

3 
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4.5.3 (a) To find Q)(O,O,z) we use (4.5.4). For r = (O,O,z) and r' = a point on the
cylinder of charge, Ir - r'l = v(z - z')2 +W. This distance is valid for an
entire "ring" of charge. The incremental charge element is then O'21rRdz so
that (4.5.4) becomes

.....( ) l ' O'0 21rRdz' fO -O'0 21rRdz'
":l" O,O,Z = +

o 41rEoV(Z - Z')2 + W _I 41rEoV(Z - Z')2 + R2

To integrate, let <I = z - z', d<l = -dz' and transform the limits

Q) = O'oR [ -1%-' d<l + 1% dq' ]
2Eo % Vq'2 + W %+1 Vq,2 + R2

R [ 1%-1 1% ]= 0'0 -In q' + VR2 + q'2 + lnlq' + VR2 + q,2
2Eo % %+1

Thus,

(1)

(2)

Q) _ O'oR I [ (z + ..,!R2 + z2)(z + ..,!R2 + z2) ]
- 2Eo n (z -I + VR2 + (z -1)2)(z + 1+ VR2 + (z + 1)2)

= uoR [21n(z + VR2 + z2) -In(z - 1+ VR2 + (z -1)2) (3)
2Eo

-In(z + 1+ VR2 + (z + 1)2)]

z

r' = (x', ,,',z')

r = (O,O,z)

x

Figure S4.5.S
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(b) Due to cylindrical geometry, there is no ix or i)' field on the z axis. 

-2(1+ I) 1+ (I-I!
E __ aCb i _ i.uoR [ yR'J+I'J + ( YR'J+(I_I)'J) 

- az· - 2Eo z + yR2 + z2 Z - 1+ vW + (z - 1)2 

1 + 1+/ 

R'J+(I+I)'J)] (4) 

+ ( z + I + VR2 + (z + 1)2 

• uoR [ -2 1 1]= 1 - + + ~-----,.--= 
• 2Eo yW + z2 V R2 + (z -1)2 W + (z + 1)2 

(c) First normalize all terms in Cb to z 

uoR [ (1+J1+~:)(1+J1+~:) ]
Cb= -In 

2Eo (1- ~ + J(Rlz}2 + (1- ~)2) (1 + ~ + J(Rlz)2 + (1 + ~)2 
(5) 

Then, for z :> I and z :> R, 

uoR , [ (1 + 1)(1 + 1) ] 
~-n / / / /2Eo (1 - :; + 1- i)(1+ :; + 1 + :;) 
_ UoR ,n[ 4 ]

- 2Eo ,.(1 - (IIz)2) (6)


= ~:~ln[1_(~/z)2] ~ ~~ln[1+(llz)2] 
uoR l2 
~-­2Eo z2 

The potential of a dipole with dipole moment p is


''1 p cos(J

()dipole = -4- --2­ (7)1rEo ,. 

In our case, cos (JI,.2 = 1/z2, so P = 21rR12 (note the p = qd, q = 21rRluo, deJ/ = 
I). 

4.5.4 From (4.5.12), 

l
d

/ 
2 >.d1/'

Cb(:z:, 1/, z) = -:--r:===<=:::====;==~=~ (1) 
,/,=-d/2 41rEoV(:I: - a)2 + (1/ - 1/')2 + z2 

To integrate, let u = 1/' - 1/ so that (1) becomes 

>. j-Y+d/2 du 
()- ­

- 41rEo -y-d/2 vu2 + (:I: - a)2 + z2 (2) 

= 4:E In[u + vu 2 + (:I: - a)2 + z2] =:~:~: 
O 

which is the given expression. 
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4.5.5 From (4.5.12), 

A {1' z'dz' Z'dZ'}~ (0, 0, z) = --O - ---;==:;;===;==~ 
4'11'fo1 :z'=o vz'2 + (a - z)2 v z'2 + (a + z)2 

= ~{2z + vl2 + (a - z)2 - vl2 + (a1 + z2)}
4'11'fo1 

4.5.6 From (4.5.12), 

A z'dz' A z
~(O,O,z) = l

a 

0, = _0_ 
l a 

(-1 + --,)dz'
z'=-a 4'11'foa(z - z ) 4'11'foa z'=-a z - Z (1) 

= ~[-a - zln(z - a) - z+ zln(z + a)]
4'11'foa 

Thus, 

-AO [ (z-a)]~(O,O,z) = -4- 2a+z1n -- (2)
'1I'fo , z+ a 

Because of the symmetry about the z axis, the only component of E is in the z 
direction 

a~. Ao [(z-a) {1 1 }].E=--I.=- 1n -- +z ----- I. 
az 4'11'fo z + a z - a z + a 

(3) 
Ao [1 (z-a) 2az].=-n--+ I.

4'11'fo z + a z2 - a2 

4.5.1 Using (4.5.20) 

1b (J' (d- b)l
a 

~ = - 0 Inld - x'ldz'dy'
1/'=0 :z'=-b ~2'11'fo(d - z') 

= _ (J'o(d - b) r 1n(d - z') dz' 
2'11'fo J:z'=-b (d - z') 

= _ (J'o(d - b) { _ ~[ln(d _ z')]2\b }
2'11'fo 2 -b 

= (J'o(d - b) {[In(d _ b)]2 _ [In(d + b)]2}
4'11'fo 
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4.5.8 Feom (4.5.20),

1
2d a lnld - z'l 10 a lnld - z'ldz'

~(d, 0) = _ ° dz' + _0=----"'---_...:.-_
:z'=o 211"Eo :z'=-2d 211"Eo

To integrate let u = d - z' and du = -dz'.

Thus, setting ~(d, 0) = V gives

211"EoV
ao = 3dln3

y

- 2d 2d

Figure 84.5.8

(1)

(2)

(3)

4.5.9 (a) (This problem might best be given while covering Sec. 8.2, where a stick
model is developed for MQS systems.) At the lower end of the charge, ec is
the projection of c on a. This is given by

Similarly,

(1)

(2)

(b) Feom (4.5.20),

(3)
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where 

With (J defined as the angle between a and b, 

Idl = Iblsin(J (4) 

But in terms of a and b, 
. laxbl 

sm(J = lallbl (5) 

so that 
d= laxbl 

lal 
(6) 

and 

(7) 

(c) Integration of (3) using (6) and (7) gives 

(8) 

and hence the given result. 

(d) For a line charge Ao between (z, y, z) = (0,0, d) and (z, y, z) = (d, d, d), 

a = dix + di)'


b = (d - z)ix + (d - y)i)' + (d - z)i.


c = -zix - yi)' + (d - z)i.


b . a = d(d - x) + d(d - y) 

c·a = -xd- yd 

ix iy i. I (9)axb= d d 0Id-x d-y d-z 

= d(d - z)ix - d(d - z)i)' + d(x - y)i. 

la x bl2 = ~[2(d - z)2 + (z _ y)2] 

(b· a)2 = d2[(d - z) + (d - yW 
(c . a)2 = ~(x + y)2 

and evaluation of (c) of the problem statement gives (d). 
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4.5.10	 This problem could be given in connection with covering Sec. 8.2. It illus­
trates the steps followed between (8.2.1) and (8.2.7), where the distinction between 
source and observer coordinates is also essential. Given that the potential has been 
found using the superposition integral, the required electric field is found by taking 
the gradient with respect to the observer coordinates, r, not r'. Thus, the gradi­
ent operator can be taken inside the integral, where it operates as though r' is a 
constant. 

E = -V~ = - r V[ p(r') ]dv' = _ r p(r') V[_1_]dv' (1)
lv 4'11"£0Ir - r'l lv' 4'11"£0 Ir - r'l 

The arguments leading to (8.2.6) apply equally well here 

1	 1 
V[--] = - ir'r	 (2)

lr -	 r'l Ir - r'12 

The result given with the problem statement follows. Note that we could just as well 
have derived this result by superimposing the electric fields due to point charges 
p(r')dv'. Especially if coordinates other than Cartesian are used, care must be taken 
to recognize how the unit vector ir'r takes into account the vector addition. 

4.5.11	 (a) Substitution of the given charge density into Poisson's equation results in the 
given expression for the potential. 

(b)	 If the given solution is indeed the response to a singular source at the origin, it 
must (i) satisfy the differential equation, (a), at every point except the origin 
and (ii) it must satisfy (c). With the objective of showing that (i) is true, note 
that in spherical coordinates with no 6 or q, dependence, (b) becomes 

(1) 

Substitution of (e) into this expression gives zero for the left hand side at 
every point, r, except the origin. The algebra is as follows. First, 

(2) 

Then, 

1 d (Alt -lCr e- lCr 
) 2 Ae-lCr Ak2 

-lCr Ak2 
-lCr 

---	-e + -- - It -- = -e + -e (3)r2 dr r r2 r r2 r 
= OJ r", 0 

To establish the coefficient, A, integrate Poisson's equation over a spherical 
volume having radius r centered on the origin. By virtue of its being singular 
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there, what is being integrated has value only at the origin. Thus, we take the 
limit where the radius of the volume goes to zero. 

lim { (V.V~dV-1I:2 (~dv}=lim{--!.. (sdv} (4) 
r-O Jv Jv r-O fa Jv 

Gauss' theorem shows that the first integral can be converted to a surface 
integral. Thus, 

lim { 1 V~· da - 11:2 ( ~dv} = lim { - -!.. ( sdv} (5) 
r-O Is Jv r-O fa Jv 

H the potential does indeed have the r dependence of (e), then it follows that 

(6) 

so that in the limit, the second integral on the left in (5) makes no contribution 
and (5) reduces to 

. ( All: -lCr Ae-
lCr 

) 2 Q11m - -e - --- 4'11"r = -4'11"A = -- (7)
r-O r r 2	 fa 

and it follows that A = Q/ 4'11"fo ' 

(c) We have found that a point source, Q, at the origin gives rise to the potential 

(8) 

Arguments similar to those given in Sec. 4.3 show that (b) is linear. Thus, 
given that we have shown that the response to a point source p(r')dv at r = r' 
is 

p(r')dve-1C1r- r '\ 
p(r')dv ~ ~ = 4'11"fo

I r - r'I (9) 

1
it follows by superposition that the response to an arbitrary source distribu­
tion is 

p(r')e-lClr-r'l 
~(r) = dv	 (10)

V 4'11"fo(r - r'l 

4.5.12	 (a) A cross-section of the dipole layer is shown in Fig. 84.5.12a. Because the field 
inside the layer is much more intense than that outside and because the layer is 
very thin compared to distances over which the surface charge density varies 
with position in the plane of the layer, the fields inside are as though the 
surface charge density resided on the surfaces of plane parallel planes. Thus, 
Gauss' continuity condition applied to either of the surface charge densities 
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shows that the field inside has the given magnitude and the direction must be
that of the normal vector.

(a)

11

l (oJ

~~! :: + t : ~:J:
d

I

z (b) z+6z

(b)

(1)

Figure 94.5.13

(b) It follows from (4.1.1) and the contour shown in Fig. S4.5.12b having incre­
mental length I::1.x in the x direction that

Divided by I::1.x, this expression becomes

_Ea E b d
aE

" = 0",+ ",+ ax

(2)

(3)

The given expression then follows by using (1) to replace E" with -~l and
recognizing that 1/". == u.d. \ho

4.6 ELECTROQUASISTATIC FIELDS IN THE PRESENCE
OF PERFECT CONDUCTORS

4.6.1 In view of (4.5.12),

l
b A(a-*')

~(O, 0, a) = 4 t-c
') dz'

c 1/"Eo a - z
(1)

The z dependence of the integrand cancels out so that the integration amounts to
a multiplication.

The net charge is

~(O,O,a) = 4 ~o ) (b - c)
1/"Eo a-C

1 a-b
Q = -[Ao (-) + Ao](b - c)

2 a - c

(2)

(3)
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Provied that the equipotential surface passing through (0, 0, a) encloses all of the
segment, the capacitance of an electrode having the shape of this surface is then
given by

Qc = ~(O,O,a) = 211"Eo (2a - b - c) (4)

4.6.2 (a) The potential is the sum of the potentials due to the charge producing the
uniform field and the point charges. With r± defined as shown in Fig. 84.6.2a,

where
z = rcos(J

q
(1)

d
r± = r2 + (d/2)2 T 2r2" cos(J

To write (1) in terms of the normalized variables, divide by Eod and multiply
and divide r± by d. The given expression, (b), then follows.

z

5

1

(a) (b) o 1 -r. 2

(2)

Flsure 94.8.2

(b) An implicit expression for the intersection point d/2 < r on the z axis is given
by evaluating (b) with ~ = a and (J = O.

r= i _ q
- (r. - ~) (r. + ~)

The graphical solution of this expression for d/2 < r(I/2 < r.) is shown in
Fig. 84.6.2b. The required intersection point is r. = 1.33. Because the right
hand side of (2) has an asymptote at r. = 0.5, there must be an intersection
between the straight line representing the left side in the range 0.5 < r..
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(c) The plot of the ~ = 0 surface for 0 < (J < 1r/2 is shown in Fig. S4.6.2c.

z

1

(c)

(3)

1

Flpre 94.8.3

(d) At the north pole of the object, the electric field is z-directed. It therefore
follows from (b) as (0.5 < d

E. = - a~ = -Eo a~ = -Eo!.... (- r + i 1 - ~)ar ar. ar r. - 2" r. + 2

= Eo [1 + q 2= q 2]
(r -!) (r +!)

Evauation of this expression at r = 1.33 and i = 2 gives E. = 3.33Eo•

(e) Gauss) integral law, applied to a surface comprised of the equipotential and
the plane z = 0, shows that the net charge on the northern half of the object
is q. For the given equipotential, 9. = 2. It follows from the definition of 9. that

4.6.3 For the disk of charge in Fig. 4.5.3, the potential is given by (4.5.7)

~ = 0'0 (VW + 212 -1211)
2Eo

At (0)0, d),
~(O,O)d) = 0'0 (VW + d2 - d)

2Eo

(4)

(1)

(2)
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and

Thus

4-29

(3)

(4)

4.6.4 (a) Due to the top sphere,

and similarly,

(1)

(2)

At the bottom of the top sphere

while at the top of the bottom sphere

(3)

(4)

The potential difference between the two spherical conductors is therefore

(3)

The maximum field occurs at z = 0 on the axis of symmetry where the
magnitude is the sum of that due to point charges.

(4)

(b) Replace point charge Q at z = h/2 by Ql = Q~ at z = ~ - 1J.2 and Qo =
Q[l- ~l at z = h/2. The potential on the surface of the -top sphere is now

Q (5)

The potential on the surface of the bottom sphere is

() Qo Ql Q
bottom = 411"€o(h - R) + 411"€o(h _ R _ ~2) - -411"-€-oR- (6)
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The potential difference is then, 

For four charges Ql = QR/h at z = h/2 - R2/hj Qo = Q(1- ~) at z = 
h/2j Q2 = -QR/h at z = -h/2 + R2/hj Q3 = -Q(1- ~) at z = -h/2 and 

Cbtop = ~ + Q(l R) + (Q2 R2)
41rfoR 41rfoR 1 - h 41rfo h - R - h 

(7) 
+ Q3 

41rfo(h - R) 

which becomes 

(8) 

Similarly, 

Cb Q(R/h) Q(R2/h2) 
bottom = 41rfo R + 41rf o R(1 - ~ _ *) 

(9)
QR/h Q(1- R/h) 

41rfo R(1- f) 41rfo 

so that 

(10) 

v Q 2R R/h (R/h)2}{1
= 21rfoR - h + 1 - R/h - 1 - ~ - (R/h)2 (11) 

(12) 
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(1)

4.6.5 (a) The potential is the sum of that given by (a) in Prob. 4.5.4 and a potential due
to a similarly distributed negative line charge on the line at z = -a between
y = -d/2 and y = d/2.

~ =~ln{[~ - y + . /(z - a)2 + (~ - y)2 + z2]
4~ 2 V 2

[ - ~ - y + J(x + a)2 + (~ + y)2 + Z2] /

[ - ~ - y + J(x - a)2 + (~+ y)2 + z2]

[~ - Y + J(x + a)2 + (~- y)2 + z2]}

(b) The equipotential passing through (x, 11, z) = (a/2, 0, 0) is given by evaluating
(1) at that point

(2)

2

~i
1

o 1 2

Figure 84.8.5

(c) In normalized form, (2) becomes

(3)
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where ~ = ~/~(~, 0, 0), e= :&/a,,, = y/a and d = 4a. Thus, ~ = 1 for 
the equipotential passing through (~,O,O). This equipotential can be found 
by writing it in the form f(e, '7) = 0, setting '7 and having a programmable 
calculator determine e. In the first quadrant, the result is as shown in Fig. 
S4.6.5. 

(d)	 The lines of electric field intensity are sketched in Fig. S4.6.5. 

(e)	 The charge on the surface of the electrode is the same as the charge enclosed 
by the equipotential in part (c), Q = Ald. Thus, 

c =	 Aid = 41rE d/ln{ [d + va2 + d2][-d + V9a2 + d2]} (4) 
V 

o
[-d + va2 + d2][d + v9a2 + d2] 

4.7	 METHOD OF IMAGES 

4.7.1 (a)	 The potential is due to Q and its image, -Q, located at z = -d on the z axis. 

(b)	 The equipotential having potential V and passing through the point z = a < 
d, :& = 0, Y = 0 is given by evaluating this expression and taking care in taking 
the square root to recognize that d > a. 

(1) 

In general, the equipotential surface having potential V is 

v--.!L[	 _ 1 ] ()1 
- 41rEo V:&2 + y2 + (z - d)2 V:&2 + y2 + (z + d)2 2 

The given expression results from equating these last two expressions. 

(c)	 The potential is infinite at the point charge and goes to zero at infinity and in 
the plane z = O. Thus, there must be an equipotential contour that encloses 
the point charge. The charge on the electrode having the shape given by (2) 
must be equal to Q so the capacitance follows from (1) as 

Q (~- a2 )
C = - = 21rEo ":"""---<-	 (3)V	 a 

4.7.2	 (a) The line charge and associated square boundaries are shown at the center 
of Fig. S4.7.2. In the absence of image charges, the equipotentials would be 
circular. However, with images that alternate in sign to infinity in each di­
rection, as shown, a grid of square equipotentials is established and hence 
the boundary conditions on the central square are met. At each point on the 
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boundary, there is an equal distance to both a positive and a negative line 
charge. Hence, the potential on the boundary is zero. 

- - - - - - - L "i
I- ~- - - - - - - i- - - - - - - ~.I
I I I

I ' I I

I I I I

I I	 I

I + I - : + I

, I I I


'T------- ­I I I I

I I I I


~----------+- < 

'"--------!~L------ -~I I I

I I I

I I ,


I + I I +

I I I

I I I


I
I I

I I I


~t- ------.± - - --- -- -1-- -- --- -,[-1 

Figure 94.7'.3 

(b)	 The equipotentials close to the line charge are circular. As the other boundary 
is approached, they approach the square shape of the boundary. The lines of 
electric field intensity are as shown, tenninating on negative surface charges 
on the surface of the boundary. 

4.7.3	 (a) The bird acquires the same potential as the line, hence has charges induced 
on it and conserves charge when it flies away. 

(b)	 The fields are those of a charge Q at y = h, z = Ut and an image at y = -h 
and z = Ut. 

(c)	 The potential is the sum of that due to Q and its image -Q. 

~_ Q [1	 1]() 
- 411"Eo y!(z - Ut)2 + (y - h)2 + z2 - y!(z _ Ut)2 + (y + h)2 + z2 1


(d) From this potential 

E a~ Q { y-h

" = - ay = 41l'Eo (z - Ut)2 + (y - h)2 + z 213/ 2


(2) 
y+h } 

- [(z - Ut)2 + (y + h)2 + z213 / 2 

Thus, the surface charge density is 
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U - EEl - QEo [ -h
• - 0 1/ 1/=0 - 411'Eo [(x - Ut)2 + h2 + z213/2

- [(x - Ut)2 : h2 + z213 / 2 ]

-Qh
= 211'[(:Z: - Ut)2 + h2 + z2]3/2

(e) The net charge q on electrode at any given instant is

l
w

{' -Qhd:z:dz
q = .=0 },,,=o 211'[(:Z: - Ut)2 + h2 + z213/2

IT w <: h,
{' -Qhwdx

q = 1z =0 211'[(x - Ut)2 + h2]3/2

For the remaining integration, x' = (x - Ut), d:z:' = dx and

j '-Ut -Qhwdx'
q = -Ut 211'[x'2 + h2]3/2

(3)

(4)

(5)

(6)

Thus

-- -"'---
,/ (2)

"

Qw [ l- Ut Ut]
q = - 211'h V(l - Ut)2 + h2 + V(Ut)2 + h2 (7)

(f) The dabsed curves (1) and (2) in Fig. 84.7.3 are the first· and second terms in
(7), respectively. They sum to give (3)

q

----r-- ...
(\) "",

"--=~--+:--7"T---==--. Ut

(a)

II

(h)

Figure 84..f.S
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(g) The current follows from (7) as 

. dq Qw [-Uh2 Uh
2

] (8),= dt = - 21rh [(l -- Ut)2 + h2]3/2 + [(Ut)2 + h2]3/2 

and the voltage is then tJ = -iR = -Rdq/dt. A sketch is shown in Fig. 
S4.7.3b. 

4..7'.4. For no normal E, we want image charges of the same sign; +.A at (-a, 0) and 
-.A at (-b, 0). The potential in the z = 0 plane is then, 

2.A	 2.A /
~ = --In(a2 + !l)1/2 + -In(b2 + y2)1 2

21rfo 21rfo 

.A a2 + y2 
(1) 

= - 211"f In( b2 + y2 ) 
o 

4..7'.5 (a)	 The image to make the z = 0 plane an equipotential is a line charge -.A at 
(z, y) = (:-d, d). The image of these two line charges that makes the plane 
y = 0 an equipotential is a pair of line charges, +.A at (-d, -d) and -.A at 
(d, -d). Thus 

~ = -_.A-1n[(z - d}2 + (y - d)2] - ~'n[(z + d)2 + (y + d}2]
41rfo	 41rfo 

+ ~ln[(z -- d)2 + (y + d)2] + ~ln[(z + d)2 + (y - d)2] (1)
41rfo 41rfo 

__.A_ { [(z - d)2 + (y + d)2][(z + d)2 + (y - d)2] }
ln 

- 41rfo [(z - d)2 + (y - d)2][(z + d)2 + (y + d)2] 

(b) The surface of the electrode has the potential 

~ a a = _.A_ ln { [(a - d)2 + (a + d)2][(a + d)2 + (a - d)2] } = V (2)( ,) 41rfo [(a - d)2 + (a - d)2][(a + d)2 + (a + d)2] 

Then 

(3) 

4..7'.6 (a)	 The potential of a disk at z = s is given by 4.5.7 with z - z - s 

~(z>s)= {70 [VR2+(z-s)2--lz-sl] (1)2fo 

The ground plane is represented by an image disk at z = -s; (4.5.7) with 
z - z + s. Thus, the total potential is 

http:S4.7.3b
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(b) The potential at z = d < s is

Solutions to Chapter 4

w(z = d < s) = !!!!..[y'R2 + (d - s)2 -Id - sl- y'R2 + (d+ S)2 + \d+ s\]
2Eo

= (To [y'R2+(d-s)2_(s-d)-v'R2+(d+s)2+s+d]
2Eo

= (To [y'R2+(d-s)2+2d-v'R2+(d+s)2] =v
2Eo

(3)
Thus,

4..'1.'1 From (4.5.4),

12'11' lR !!D.rdrdq, 12
'11' lR -!!iJI..rdrdq,W(O, 0, a) = R + _----;~R?=::::====:;::;:

"'=0 r=O 41rEo y'r2 + (h - a)2 "'=0 r=O 41rEo v'r2 + (h + a)2

(To [l R
r2dr l R

r2dr ]
=2EoR r=O y'r2 + (h - a)2 - r=O y'r2 + (h + a)2

= ...!!.2- [R (y'R2 + (h _ a)2
4EoR 2

h-a- yR2 + (h + a)2) + (h - a)21n ( )
y'R2 + (h - a)2

+ (h + a )21n ( R + yr=~::-2+-+-;'a(h:--+~a)=2) ]

The total charge in the disk is

Thus,

0= ~ ={21rR3 Eo}/{ !J[y'R2 + (h - a)2

- y'R2 + (h + a)2]
h-a

+ (h - a)21n ( )
v'R2 + (h - a)2

+ (h + a)21n( R2 + ~~+:}h + a)2) }

(1)



Solutions to Chapter 4 4-37

(1)

4.7.8 Because there is perfectly conducting material at z = °there is the given line
charge and an image from (O,O,-d) to (d,d,-d). Thus, for these respective line
charges

a = dix + di)'

f = (d - xlix + (d - y)i), + (±d - z)i.

c = -xix - yi)' + (±d - z)i.

b· a = d[(d - x) + (d - y)]

c· a = -xd- yd

a x b = d(±d - z)ix - i)'d(±d - z) + i.d[(d - y) - (d - x)]

la x bl = d2(±d - z)2 + d2(±d - z)2 + ~[(d - y) - (d - X)]2

The potential due to the line charge and its image then follows (c) of Prob. 4.5.9.

A {2d - x - y + V2[(d - x)2 + (d - y)2 + (d - z)2]
Cb =--In

41/"Eo -x - Y+ V2[x2 + y2 + (d - z)2]

-x - Y+ V2[x2 + y2 + (d + z)2] }
. 2d - x - y + V2[(d - x)2 + (d - y)2 + (d + z)2]

4.8 CHARGE SIMULATION APPROACH TO BOUNDARY
VALUE PROBLEMS

4.8.1 For the six-segment system, the first two of (4.8.5) are

(2)

Because of the symmetry,

(3)

and so these two expressions reduce to two equations in two unknowns. (The other
four expressions are identical to (4).)

(4)
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Thus, 
V 

0'1 = 2D [(822 - 825) - (812 - 815)] (5) 

V 
0'2 = 2D[(811 + 813 - 814 - 816) - (821 + 823 - 824 - 826)] (6) 

where 

D = (811 + 813 - 814 - 816)(822 - 825) - (821 + 823 - 824 - 826)(812 - 815) 

and from (4.8.3) 

(7) 



SOLUTIONS TO CHAPTER 5


5.1	 PARTICULAR AND HOMOGENEOUS SOLUTIONS TO 
POISSON'S AND LAPLACE'S EQUATIONS 

5.1.1	 The particular solution must satisfy Poisson's equation in the region of in­
terest. Thus, it is the first term in the potential, associated with the charge in 
the upper half plane. What remains satisfies Laplace's equation everywhere in the 
region of interest, so it can be called the homogeneous solution. It might also be 
made part of the particular solution. 

5.1.2 (a)	 The charge density follows from Poisson's equation. 

V2~ = _.!!... => P = Pocos{3z	 (1)
Eo 

(b)	 The first term does not satisfy Laplace's equation and indeed was responsible 
for the charge density, (1). Thus, it can be taken as the particular solution 
and the remainder as the homogeneous solution. In that case, 

~ _ Po cos {3z. ~h = _Po cos {3z cosh {3y 
p - Eo{32 ' Eo{32 cosh {3a 

(2) 

and the homogeneous solution must satisfy the boundary conditions 

Po cos (3z
~h(Y = -a) = ~h(Y = a) = -:.....:...----::-=-­ (3)

Eo{32 

(c)	 We could just have well taken the total solution as the particular solution. 

~p =~; ~h = 0	 (4) 

in which case the homogeneous solution must be zero on the boundaries. 

5.1.3	 (a) Because the second derivatives with respect to y and z are zero, the Laplacian 
reduces to the term on the left. The right side is the negative of the charge 
density divided by the permittivity, as required by Poisson's equation. 

(b) With 0 1 and O2 integration coefficients, two integrations of (b) give 

~ 4po (x - d)4 0 C (1)= - d2 E 12 + 1X + 2 
o 

Evaluation of this expression at each of the boundaries then serves to deter­
mine the coefficients 

(2) 

1 
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and hence the given potential. 

(c) From the derivation it is clear that the Laplacian of the first term accounts 
for all of the charge density while that of the remaining terms is zero. 

(d)	 On the boundaries, the homogeneous solution, which must cancel the potential 
of the particular solution on the boundaries, must be (d). 

5.1.4 (a) The derivatives with respect to y and z are by definition zero, so Poisson's 
equation reduces to 

tP. = _Po sin ('II"z) (1)
dz2 Eo d 

(b) Two integrations of (1) give 

PotP . ('II"z).= --2 sm -d +01Z + 0 2	 (2)
Eo 1/" 

and evaluation at the boundaries determines the integration coefficients. 

(3) 

It follows that the required potential is 

.... PotP. ('II"Z) Vz"I/!=--sm - +-	 (4)
Eo 1r2 d d 

(c)	 From the derivation, the first term in (4) accounts for the charge density while 
the remaining terms have no second derivative and hence no Laplacian. Thus, 
the first term must be included in the particular solution while the remaining 
term can be defined as the homogeneous solution. 

Vz.h=­	(5)
d 

(d)	 In the case of (c), it follows that the boundary conditions satisfied by the 
homogeneous solution are 

(6) 

5.1.5 (a) There is no charge density, so the potential must satisfy Laplace's equation. 
E = (-v/d)i. = -8./8z 

v2 • = ~(8.) = 0	 (1)
8s	 8s 

(b) The surface charge density on the lower surface of the upper electrode follows 
from applying Gauss' continuity condition to the interface between the highly 
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conducting metal and the free space just below. Because the field is zero in 
the metal, 

u. = folO - E~I = f~tJ	 (2) 

(c)	 The capacitance follows from the integration of the surface charge density 
over the surface of the electrode having the potential tJ. That amounts to 
multiplying (2) by the area A of the electrode. 

foA 
q = Au. = -tJ = ev	 (3)

d 

(d) Enclose	 the upper electrode by the surace S having the volume V and the 
integral form of the charge conservation law is 

1 J . nda + ~ rpdV = 0	 (4)J8 dt lv 

Contributions to the first term are confined to where the wire carrying the 
total current i into the volume passes through S. By definition, the second 
term is the total charge, q, on the electrode. Thus, (4) becomes 

(5) 

Introduction of (3) into this expression then gives the current 

dtJ
i =	 e (6)

dt 

5.1.6	 (a) Well away from the edges, the fields between the plates are the potential 
difference divided by the spacings. Thus, they are as given. 

(b)	 The surface charge densities on the lower surface of the upper electrode and 
on the upper plus lower surfaces of the middle electrode are, respectively 

(1) 

(2) 

Thus, the total charge on these electrodes is these quantities multiplied by 
the respective plate areas 

(3) 

q2 = folwum	 (4) 

These are the expressions summarized in matrix notation by (a). 
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5.2 UNIQUENESS OF SOLUTIONS OF POISSON'S EQUATION 

5.3 CONTINmTY CONDITIONS 

5.3.1 (a) In the plane y = 0, the respective potentials are 

(1) 

and are therefore equal. 

(b) The tangential fields follow from the given potentials. 

(2) 

Evaluated at y = 0, these are also equal. That is, if the potential is continuous 
in a given plan, then so also is its slope in any direction within that plane. 

(c) Feom Gauss' continuity condition applied to the plane y = 0, 

(3) 

and this is the given surface charge density. 

5.3.2	 (a) The y dependence is not given. Thus, given that E = -V~, only the :z; and z 
derivatives and hence :z; and z components of E can be found. These are the 
components of E tangential to the surface y = 0. If these components are to 
be continuous, then to within a constant so must be the potential in the plane 
y=O. 

(b) For this particular potential, 

Es = -f3V cos f3:z;sin PZj Ez = -pV sin p:z;cos pz (1) 

If these are to be the tangential components of E on both sides of the interface, 
then the :z; - z dependence of the potential from which they were derived must 
also be continuous (within a constant that must be zero if the electric field 
normal to the interface is to remain finite). 
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5.4	 SOLUTIONS TO LAPLACE'S EQUATION IN CARTESIAN 
COORDINATES 

5.4.1	 (a) The given potential satisfies Laplace's equation. Evaluated at either :r; = 0 or 
y = 0 it is zero, as required by the boundary conditions on these boundaries. 
At :r; = a, it has the required potential, as it does at y = a as well. Thus, it is 
the required potential. 

(b)	 The plot of equipotentials and lines of electric field intensity is obtained from 
Fig. 4.1.3 by cutting away that part of the plot that is outside the boundaries 
at :r; = a, y = a,:r; = 0 and y = O. Note that the distance between the 
equipotentials along the line y = a is constant, as it must be if the potential 
is to have a linear distribution along this surface. Also, note that except for 
the special point at the origin (where the field intensity is zero anyway), the 
lines of electric field intensity are perpendicular to the zero potential surfaces. 
This is as it must be because there is no component of the field tangential to 
an equipotential. 

5.4.2 (a)	 The pote~tials on the four boundaries are 

~(a, y) = V(y + a)/2a; ~(-a, y) = V(y - a)/2a 

~(:r;, a) = V(:r; + a)/2a; ~(:r;,-a) = V(:r; - a)/2a (1) 

(b) Evaluation	 of the given potential on each of the four boundaries gives the 
conditions on the coefficients 

v V 
~(±a,y) = 2aY ±"2 = ±Aa+By+C+D:r;y 

V V 
~(:r;, ±a) = -2:r; ± - = A:r; ± Ba + C + D:r;y (2)

a 2 

Thus, A = B = V /2a, C = 0 and D = 0 and the equipotentials are straight 
lines having slope -1. 

V 
~ = -(:r;+y)	 (3)

2a 

(c)	 The electric field intensity follows as being uniform and having :r; and y com­
ponents of equal magnitude. 

E = -V~ = -!.(ix + i)')	 (4)
2a 

(d)	 The sketches ofthe potential, (3), and field intensity, (4), are as shown in Fig. 
85.4.2. 
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y 

x 

Figure 85.4.3 

(e)	 To make the potential zero at the origin, C = O. Evaluation at (x, y) = (0, a) 
where the potential must also be zero shows that B = O. Similarly, evaluation 
at (x,y) = (a,O) shows that A = O. Evaluation at (z,y) = (a, a) gives D = 
V 12a2 and hence the potential 

v 
C)= -zy	 (5)

2a2 

Of course, we are not guaranteed that the postulated combination of solu­
tions to Laplace's equation will satisfy the boundary conditions everywhere. 
However, evaluation of (5) on each of the boundaries shows that it does. The 
associated electric field intensity is 

(6) 

The equipotentials and lines of field intensity are as shown by Fig. 4.1.3 inside 
the boundaries z = ±a and y = ±a. 

5.4.3	 (a) The given potential, which has the form of the first term in the second column 
of Table 5.4.1, satisfies Laplace's equation. It also meets the given boundary 
conditions on the boundaries enclosing the region of interest. Therefore, it is 
the required potential. 

(b)	 In identifying the equipotential and field lines of Fig. 5.4.1 with this configu­
ration, note that k = 1rIa and that the extent of the plot that is within the 
region of interest is between the zero potentials at z = -1r12k and z = 1r12k. 
The plot is then adapted to representing our potential distribution by multi ­
plying each of the equipotentials by Vo divided by the potential given on the 
plot at (x, y) = (0, b). Note that the field lines are perpendicular to the walls 
at x = ±a/2. 
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5.4.4	 (a) Write the solution as the sum of two, each meeting zero potential conditions 
on three of the boundaries and the required sinusoidal distribution on the 
fourth. 

.... _ T' • (1rZ) sinh(1ry/a) TF' 1ry sinh[;-(a - z)] (1).., - YoSln . h() + Yosm . h( ) a sm1r a Sln1r 

(b)	 The associated electric field is 

E = - as::~1r) {[ cos(1rz/a) sinh(1ry/a) - sin(1ry/a) cosh [;(a - z)]]ix 

+ [sin(1rz/a) cosh(1ry/a) + cos(1ry/a) sinh [;(a - z)]] i y } 

y	 (2) 

Figure 85.4.4 

(c) A sketch of the equipotentials and field lines is shown in Fig. 85.4.4. 

5.4.5	 (a) The given potential, which has the form of the second term in the second 
column of Table 5.4.1, satisfies Laplace's equation. The electrodes have been 
shaped and constrained in potential to match the potential. For example, 
between y = -b and y = b, we obtain the y coordinate of the boundary '7(z) 
as given by (a) by setting (b) equal to the potential v of the electrode, y = '7 
and solving for '7. 

(b)	 The electric field follows from (b) as E = -VCb. 

(c)	 The potential given by (b) and field given by (c) have the same (z, y) depen­
dence as that represented by Fig. 5.4.2. To adjust the numbers given on the 
plot for the potentials, note that the potential at the location (3:, y) = (0, a) 
on the upper electrode is v. Thus, to make the plot fit this situation, multiply 
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each of the given potentials by tI divided by the potential given on the plot at 
the location (x, y) = (0, a). 

(d)	 The charge on the electrode is found by enclosing it by a surface S and using 
Gauss' integral law. To make the integration over the surface enclosing the 
electrode convenient, the surface is selected as enclosing the electrode in an 
arbitrary way in the field free region above the electrode, passing through the 
slits in the planes x = ±l to the y equal zero plane and closing in the y = 0 
plane. Thus, with Yl defined as the height of the electrode at its left and right 
extremities, the net charge is 

Y1 
q = dfo -Ex(x = -l)dy + dfo 

lYl Ex (x = l)dy
l ~o ~o 

+ dfo l~-, -Ey(Y = O)dx 

[lY1
tld1l"fo . 1I"l . h 1I"Y d= - -sm-sm - y (2)

2b sinh (;: ) 0 2b 2b 

l
Y1 1I"l 1I"y+ - sin - sinh -dy 

o 2b 2b 

1I"x]-cosbdx+ j_/
/ 

2 

Note that

. h k sinh ka


sm Yl = --kl- j - sinh2 ky + cosh2 ky = 1 (3)
cos


and (2) becomes the given result.


(e)	 Conservation of charge for a surface enclosing the electrode through which 
the wire carrying the current i passes requires that i = dq/dt. Thus, given the 
result of (d) and the voltage dependence, (e) follows. 

5.4.6	 (a) Reversing the potentials on the lower electrodes turns the potential from an 
even to an odd function of y. Thus, the potential takes the form of the first 
term in the second column of Table 5.4.1. 

1I"Y) 11" X 
~ =	 Acosh ( -b cos- (1)

2 2b 

To make the potential be tI at (x, y) = (0, a)' the coefficient is adjusted so 
that 

coshky k =_ ~ 
~ =	 tI cos kx cos h ka j 2b 

(2) 

The shape of the upper electrode in the range between x = -b and x = b is 
then obtained by solving (2) with ~ = tI and y = '1 for '1. 

'1 -
_ -!

k cos
h- 1 [COSh

k
ka] (3)

cos x 
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(b) The electric field intensity follows from (2) as

E=- tJ:
k

l-sin(kz)cosh(ky)lx+coskzsinhkyly] (4)
cos a

(c) The equipotentials and field lines are as shown by Fig. 5.4.2. To adjust the
given potentials, multiply each by tJ divided by the potential given from the
plot at the location (z, y) = (0, a).

(d) The charge on the electrode segment is obtained by using Gauss' integral law
with a surface that encloses the electrode. This surface is arbitrary in the field
free region above the electrode. For convenience, it passes through the slits
to the y = 0 plane in the planes z = ±l and closes in the y = 0 plane. Note
that there is no electric field perpendicular to this latter surface, so the only
contributions to the surface integration come from the surfaces at z = ±l.

q = 2dEo 1" [co::ka sin(kl) COSh(kY)] dy

2dEo tJ . kl . h k
= hk sm sm YIcos a

With the use of the identities

coshka
cosh(kYI) = kl jcos

(5)

(6)

(5) becomes

2dEotJ •
q = etJ = hk smkl

cos a

(e) From conservation of charge,

[
cosh(ka)] 2 _ 1

cos kl
(7)

. e dtJ ev. .t = - = - cJJJsmwt
dt

5.5 MODAL EXPANSIONS TO SATISFY BOUNDARY
CONDITIONS

5.5.1 (a) The solutions superimposed by the infinite series of (a) are chosen to be zero
in the planes z = 0 and z = b and to be the linear combination of exponentials
in the y direction that are zero at y = b. To evaluate the coefficients, multiply
both sides by sin(m1rz/a) and integrate from z = 0 to z = a
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The integral on the right is zero except for m = n, in which case the integral 
of sin2 (n1r:r:/a) over the interval :r: = 0 to :r: = a gives the average value of 
1/2 multiplied by the length a, a/2. Thus, (1) can be solved for the coefficient 
Am, to obtain (b) as given (if m -+ n). 

(b) In the specific case where the distribution is as given, the integration of (b) 
gives 

3
2 10./' n1r:r:

An = . (Rfrb) V1sin (-)d:r:
a~mh - G 0./' a 

(2) 
2V1 [ n1r:r: ] 30./'= ----=:,--:7" cos (--)

n1rsinh (n:b) a 0./' 

which becomes (c) as given. 

5.5.2	 (a) This problem illustrates how the modal approach can be applied to finding 
the solutions in a rectangular region for arbitrary boundary conditions on all 
four of the boundaries. In general, four infinite series would be used, each 
with zero potential on three of the walls and with coefficients to match the 
potential boundary condition on the fourth wall. Here, the potential is zero 
on two of the walls, so only two infinite series are used. The first is zero in 
the planes y = 0, 'II = band :r: = a and, because the potential is constant in 
the plane :r: = 0, has coefficients that are as given by (5.5.8). (The roles of a 
and b are reversed relative to those in the section for this first term and the 
minus sign results because the potential is being matched at :r: = O. Note that 
the argument of the sinh function is negative within the region of interest.) 
The coefficients of the second series are similarly determined. (This time, the 
roles of :z: and 11 and of a and b are as in the section discussion, but the surface 
where the uniform potential is imposed is at 'II = 0 rather than 'II =b.) 

(b) The surface charged density on the wall at :J: = a is 

8~ 
a. = fo[-Es(:r: = a)1 = -fo 8:r: (:r: = a)	 (1) 

Evaluation using (a) results in (b). 

5.5.3	 (a) For arbitrary distributions of potential in the plane 'II = 0 and :r: = 0, the 
potential is taken as the superposition of series that are zero on all but these 
planes, respectively. 

(1) 
+ L

00 

Bn sin (n;'II) sinh [n1r (:r: - a))
b

'1=1 

The first of these series must satisfy the boundary condition in the plane 
'11=0, 

~(:J: = 0) = f: An sinh ( - mrb) sin (n1r :r:) (2) 
'1=1 a a 
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where 
.(:z: 0) _ { 2Vo.:z:/a; 0 < :z: < a/2 (3), - 2Vo.(1 - :z:/a); a/2 < :z: < a 

Multiplication of both sides of (2) by sin(mll':z:/a) and integration from :z: = 0 
to:z: = a gives 

2V. 10./2 mll':Z: 10. mll':Z:
----!!. nin (-)d:z: + 2Vo. sin (-)d:z: 

a 0 a 0./2 a 

2V0.10. .	 (mll':Z:) (4)-- :Z:SIn -- d:z: 
a 0./2 a 

a	 . mll'b 
=	 Am-sinh ( --)

2 a 

Integration, solution for Am -+ An then gives An = 0, n even and for n odd 

8Vo.sin (T) 
n211'2 sinh (n:b) 

(5) 

Evalution on the boundary at :z: = 0 leads to a similar term with the roles of 
Vo. and a replaced by those of Vb and b, respectively. Thus, Bn = 0 for n even 
and for n odd 

8Vi sin (!!!t)B __ b 0. (5)
n - n211'2 sinh (n~o. ) 

(b) The surface charge density in the plane y = b is 

a. 
0'. = fo[-EI/(Y = b)1 = f o 8y (y = b) 

~ [ (nll'). (nll':Z:) (nll'). [(nll') ] (6)=	 L..J An - Sin - - Bn -b Sinh -b (:z: - a) 
..=1 a a 
odd 

where An and Bn are given by (5) and (6). 

5.5.4	 (a) Far to the left, the system appears as a parallel plate capacitor. A uniform 
field satisfies both Laplace's equation and the boundary conditions. 

E = - V i)' =>.0. = Vy	 (1)
d d 

(b) Because the uniform field part of this solution I .0., satisfies the conditions far 
to the left, the aditional part must go to zero there. However, the first term 
produces a field tangential to the right boundary which must be cancelled by 
the second term. Thus, conditions on the second term are that it also satisfy 
Laplace's equation and the boundary conditions as given 
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(c)	 Because of the homogeneous boundary conditions in the y = 0 and y = d 
planes, the solution is selected as being sinusoidal in the y direction. Because 
the region extends to infinity in the -z direction, exponential solutions are 
used in that direction, with the sign of the exponent arranged to assure decay 
in the -z direction. 

00 

iWo. ~ A • (n1l"Y) rnrz/d (2)....b =	 LJ n sIn d e 
n=l 

The coefficients are determined by the requirement on this part of the poten­
tial at z = o. 

Vy ~ . (n1l"Y)-d =	 LJAnsIn d (3) 
n=l 

Multiplication by sin(m1l"y/d), integration from y = a to y = d, solution for 
Am and replacement of Am by An gives 

2V 2V
An = -cosn1l" = _(_I)n	 (4)

n1l" n1l" 

The sum of the potentials of (1) and (2) with the coefficient given by (4) is 
(e). 

(d)	 The equipotential lines must be those of a plane parallel capacitor, (1), far to 
the left where the associated field lines are y directed and uniform. Because 
the boundaries are either at the potential V or at zero potential to the right, 
these equipotential lines can only terminate in the gap at (z, y) = (0, d), where 
the potential makes an abrupt excursion from the zero potential of the right 
electrode to the potential V of the top electrode. In this local, the potential 
lines converge and become radially symmetric. The boundaries are themselves 
equipotentials. The electric field, which is perpendicular to the equipotentials 
and directed from the upper electrode toward the bottom and right electrodes, 
can then be pictured as shown by Fig. 6.6.9c turned upside down. 

5.5.5	 (a) The potential far to the left is that of a plane parallel plate capacitor. It 
takes the form Az + B, with the coefficients adjusted to meet the boundary 
conditions at z = 0 and z = a. 

Cb(y -. -00) -. Cba = Va (1- 2z)	 (1)
2 a 

(b)	 With the total potential written as 

(2) 

the potential Cbb can be used to make the total potential satisfy the boundary 
condition at y = O. Because the first part of (2) satisfies Laplace's equation 
and the boundary conditions far to the left, the second part must go to zero 
there. Thus, it is taken as a superposition of solutions to Laplace's equation 
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that are zero in the planes y = 0 and y = a (so that the potential there as 
given by the first term is not disturbed) and that decay exponentially in the 
-y direction. 

00 

... ~ A . (n1fz) rury/a.	 (3)....b = L..J "SIn -- e 
,,=1 a 

At y = 0, ~(z, 0) = ~d(Z), Thus, ~b(Z, 0) = ~d(Z) - ~a.(z) and evaluation 
of (3) at y = 0, multiplication by sin(m1fz/a) and integration from Z = 0 to 
Z = a gives 

l a. [ () Vo ( 2z)]. m1fZ a
~d Z -	 - 1- - sID--dz=Am - (4) 

o 2 a a 2 

from which it follows that 

21a. n1fZ { ~. evA" = - ~d(Z) sin (--)dz - ~tr' n en (5)
a 0 a 0, n odd 

Thus, the potential between the plates is 

~ = Vo (1- 2z) + t A" sin (~)e"try/a. (6) 
2 a ,,=1 a 

where A" is given by (5). 

5.5.6	 The potential is taken as the sum of two, the first being zero on all but the 
boundary at z = a where it is Voy/a and the second being zero on all but the 
boundary at y = a, where it is Voz/a. The second solution is obtained from the 
first by interchanging the roles of z and y. For the first solution, we take 

00 • h(~) 
~I = L A" sin (~) SID. a.	 (1)

,,=1 a sIDhn1f 

The coefficients follow by evaluating this expression at z = a, multiplying by 
sin(m1fy/a) and integrating from y = 0 to Y = a. 

l a. Voz . (n1fz)
- SID	 - dz = A,,(a/2) (2)

o a a 

Thus, 

A" = -	 2Vo (_1)" (3)
n1f 

The first part of the solution is given by substituting (3) into (1). It follows that 
the total solution is 

... ~ 2Vo (-1)" [ . (n1fz) . h (n1fY) . (n1fY) . h (n1fz)].... = L..J-- SID -- SID -- +SID - SID -- (4)
,,=1 n1f sinh(n1f) a a a a 
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5.5.'1 

5.6 

5.6.1 

(a)	 The total potential is sero at y = 0 and so also is the first term. Thus, ~1 
must be zero as well at y = O. The first term satisfies the boundary condition 
at y = b, so ~1 must be zero there as well. However, in the planes :I: = 0 
and :I: = a, the first term has a potential Vy/b that must be cancelled by the 
second term so that the sum of the two terms is zero. Thus, ~1 must satisfy 
the conditions summarized in the problem statement. 

(b)	 To satisfy the conditions at :I: = 0 and :I: = a, the y dependence is taken 
as sin(ml"y/b). The product form :I: dependence is a linear combination of 
exponentials having arguments (R'JI"y/b). Because the boundary conditions in 
the :I: = 0 and :I: = a planes are even about the plane :I: = a/2, this linear 
combination is taken as being the cosh function displaced so that its origin is 
at:l: = a/2. 

DO 

" • (R'JI"Y) [R'JI"( a)]() = L...J An SIn -b- cosh T :I: - 2'	 (1) 
n=l 

Thus, if the boundary condition is satisfied at :I: = a, it is at :I: = 0 as well. 
Evaluation of (1) at :I: = a, multiplication by sin(m'Jl"y/b) and integration from 
y = 0 to Y = b then gives an expression that can be solved for Am and hence 
An 

A _ 2V(-1)n ( ) 
n - R'JI"cosh(R'JI"a/2b) 2 

In terms of these coefficients, the desired solution is then 
DO 

Vy L • (R'JI"Y) [R'JI" a)]~ = - + AnsIn -- cosh -(:1:-- (3)
b n=l b b 2 

SOLUTIONS TO POISSON'S EQUATION WITH 
BOUNDARY CONDITIONS 

The potential is the sum of two homogenous solutions that satisfy Laplace's 
equation and a third inhomogeneous solution that makes the potential satisfy Pois­
son's equation for each point in the volume. This latter solution, which follows from 
assuming ~p = ~p(y) and integration of Poisson's equation, is arranged to give zero 
potential on each of the boundaries, so it is up to the first two to satisfy the bound­
ary conditions. The first solution is zero at y = 0, has the same :I: dependence as the 
wall at y = d and has a coefficient that has been adjusted so that the magnitude 
of the potential matches that at y = d. The second solution is zero at y = d (the 
displaced sinh function is a linear combination of the sinh and cosh functions in 
column 2 of Table 5.4.1) and so does not disturb the potential already satisfied by 
the first term at that boundary. At y = 0, where the first term has been arranged 
to make no contribution, it has the same y dependence as the potential in the y = 0 
plane and has its coefficient adjusted so that it has the correct magnitude on that 
boundary as well. 
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5.6.2	 The particular solution is found by assuming that the particular potential 
is only a function of 11 and integration of Poisson's equation twice. With the two 
integration coefficients adjusted to make the potential of this particular solution 
zero on each of the boundaries, it is the same as the last term in (a) of Prob. 5.6.1. 
Thus, the homogeneous solution must be zero at 11 = 0, suggesting that it has 
a sinh function 11 dependence. The z dependence of the potential at y = d then 
suggests the z dependence of the potential be made sin(kz). With the coefficient of 
this homogeneous solution adjusted so that the condition at y = d is satisfied, the 
desired potential is 

. sinh k1l Po ( ).= .0 smhkz . hkd - -2 11 y-d	 (1)
sm f o 

5.6.3	 (a) In the volume, Poisson's equation is satisfied by a potential that is independent 
of y and z, 

2 
2 8 • Po ( )= --p	 = --cosk z-6 (1)V .p 

8z2 f o 

Two integrations give the particular solution 

(2) 

Ep = PO sin k(z - 6)ix (3)
f o k 

(b) The boundary conditions at y = ±d/2 are 

(4) 

Because the configuration is symmetric with respect to the z - z plane, use 
cosh(ky) as the 11 dependence. Thus, in view of the two z dependencies, the 
homogeneous potential is assumed to take the form 

.h = [A sin kz + B cos k(z ­ 6)1 cosh ky (5) 

The condition of (4) then requires that 

ElIJh = -[Acoskz ­ B sin k(z ­ 6)lkcoshky (6) 

and it follows from the fact that at 11 = d/2 that (3) + (6) = (4) 

A = -Eo/kcosh(kd/2)j B = -Po/fok2 cosh(kd/2) (7) 

so that the total potential is as given by (d) of the problem statement. 
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(c)	 First note that because of the symmetry with respect to the z plane, there is 
no net force in the y direction. In integrating pEs over the volume, note that 
Es is 

Po	 • ( ) cosh leh [ Po • ( )]Es	 = -le sm le z - 8 + (kd) Eo cos lez - -le sm le z - 8 (8) 
f o cosh "2 f o 

In view of the z dependence of the charge density, only the second term in this 
expression makes a contribution to the integral. Also, P = Po cos le(z - 8) = 
Po[cos le8 cos lez - sin le8 sin kz] and only the first of these two terms makes a 
contribution also. 

12../10 jd/2 cosh ley
fs = Pocosle8coskz (kd) Eocoskzdydz 

o -d/2 cosh "2	 (9) 

= [211"poEocosleHanh(lcd/2)Jlle2 

5.6.4 (a) For a particular solution, guess that 

() = Acoslc(z - 8)	 (1) 

Substitution into Poisson's equation then shows that A = Po/fole 2 so that the 
particular solution is 

()p = Ple°2 cos le(z - 8) (2)
f o 

(b)	 At y = 0 

(3) 

while at y = d, 

()h. = Vocoslez - P° cosle(z - 8) (4) 
f o le2 

(c)	 The homogeneous solution is itself the sum of a part that satisfies the condi­
tions 

(5) 

and is therefore 
sinh ley 

()1 = Vocos lcz sinh led (6) 

and a part satisfying the conditions 

(7) 

which is therefore 

.....	 _ Po le( ~) cosh le(y - ~) 
'\11'2 - - -- cos z - (}

lc2 f o cosh(led/2)	
(8) 
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Thus, the total potential is the sum of (2), (6) and (8). 

Po [COSh k(y - ~)] sinh ky 
~ = -k2 cosk(x - 6) 1- (led) +Vocoskx . hkd (9) 

f o	 cosh 2" sm 

(d) In view of the given charge density and (9), the force density in the x direction 
is 

Po . [ cosh k(y - ~)] 
Fz = -k smk(x - 6) cos k(x - 6) 1- (led) 

f o cosh 2" (10) 
.	 sinhky

+ PokVo sm kx cos k( x - 6) sinh kd 

The first term in this expression integrates to zero while the second gives a 
total force of 

P kV: /	 (11)/z = s~h k~ i0 

2fr 1e i0 

d 

sin kx cos k(x - 6) sinh kydydx 

With the use of cos k(x - 6) = cos kx cos k6 + sin kx sin k6, this integration 
gives 

- v: (cosh kd - 1) sin k6 (12)f z - Po1f 0 ksinhkd 

5.6.5	 By inspection, we know that if we look for a particular solution having only 
a y dependence, it will have the same y dependence as the charge distribution 
(the second derivative of the sin function is once again a sin function). Thus, we 
substitute Asin(1fy/b) into Poisson's equation and evaluate A. 

(1) 

The homogeneous solution must therefore be zero on the boundaries at y = band 
y = 0 and must be -Po b2 sin(1fy/b)/fo1f2 at x = ±a. This latter condition is even 
in x and can be matched by the solution to Laplace's equation 

(2) 

if the coefficient, A, is made 

(3) 

Thus, the solution is the sum of (1) and (2) with A given by (3). 
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5.6.6 (a) The charge distribution follows from Poisson's equation. 

_~ = V
2." => P = foV sin~:l:Sin ~'I (~2 + ;) (1) 

(b)	 To make the total solution satisfy the lero potential conditions. the homo­
geneous solution must also be lero at 11 = 0 and 11 = b. At z = 0 it 
must also be lero but at z = a the homogeneous solution must be ." = 
-V sin('lI'1Ijb) sin~a. Thus. we select the homogeneous solution 

.... _ A' 'lI'1I sinh('lI'zjb) (2)
"It'll. - sm b sinh('lI'ajb) 

make A = -V sin ~a and obtain the potential distribution 

if,	 V. ('lI'1I) [. Q • Q sinh(,rzjb)] 
"It' = sm T sml'Z - sml'asinh('lI'ajb) (3) 

5.6.'1 A particular solution is found by assuming that it only depends on z and 
integrating Poisson's equation twice to obtain 

Pol 2 z z3 
." = - 6Eo (, - "is) (1) 

The two integration constants have been assigned so that the potential is lero at 
z = 0 and z = I. The homogeneous solution must therefore satisfy the boundary 
conditions 

.",(z = 0) = .",(z = I) = 0 

pI2 Z z3 
.",(y= ±d) = - ~o (, -"is) (2) 

The first two of these are satisfied by the following solutions to Laplace's equation. 

~ . n'll'z cosh (7)
~", = LJ An sm (-,-) h (!!!rJ!)	 (3) 

71.=1 COS, 

This potential has an even y dependence. reflecting the fact that the boundary 
conditions are even in y. To determine the coefficients in (3). note that the second 
pair of boundary conditions require that 

.f: A sin n'll'z = _por C~ _ Z3)	 (4)
n=l 71. I 6Eo I 13 

Multiplication of both sides of this expression by sin(m'll'zjl). and integration gives 

I poll'· (m'll'z) Po l' 3 . m'll'zAm - =-- zsm -- dz+ -- z sln--dz (5)
2 6Eo 0 I 6Eo l 0 I 
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or 

Thus, the required potential is 

w= Po l
2 (=- _ X

3
) + ~ ~(_l )3 PO (_1)n sin n'll'x cosh (T) (6) 

6e l ZS L- l n'll' e l cosh (mrd)
o	 n=l 0 I 

5.6.8	 (a) The charge density can be found using Poisson's equation to confirm that the 
charge density is that given. Thus, the particular solution is indeed as given. 

(b) Continuity conditions at the interface where y = 0 are 

(1) 

8wa 8wb 

8y = 8y	 (2) 

To satisfy these conditions, add to the particular solution a solution to Laplace's 
equation in the respective regions having the same x dependence and decaying 
to zero far from the interface. 

(3) 

wb = 
(fj2

Po 
- 0 2 ) 

cos fjxe OlIJ + B cos fjxe f11J (4)
eo 

Substitution of these relations into (1) and (2) shows that 

A = e {fj2 
Po 
_	 02)2

(
1 - Ii0) (5) 

o 

-Po (	 0)
B = e (fj2 _	 02)2 1 + Ii (6) 

o 

and substitution of these coefficients into (3) and (4) results in the given 
potential distribution. 

5.6.9	 (a) The potential in each region is the sum of a part due to the wall potentials 
without the surface charge in the plane y = 0 and a part due to the surface 
charge and having zero potential on the walls. Each of these is continuous in 
the y = 0 plane and even in y. The x dependence of each is determined by 
the respective x dependencies of the wall potential and surface charge density 
distribution. The latter is the same as that part of its associated potential so 
that Gauss' continuity condition can be satisfied. Thus, with A a yet to be 
determined coefficient, the potential takes the form 

w= {V~~:~~: cosfjx - Asinhfj(y - a) sinfj(x - xo ); 0 < y < a (1) 
V~~:~~ cosfjx - A sinh fj(y + a) sinfj(x - xo ); -a < y < 0 
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The coefficient is determined from Gauss' condition to be 

8iI>a 8iI>b]	 -u (2)-Eo [ -8 
y 

- -8
Y y=O 

= uo sin P(z - zo) => A = 2
Eo

P 
cos

°hP
a 

(b) The force is 

(3) 

From (1), 

- ) - VQ sinf3z _ uosinhf3a Q( _ )Ez (Y -	 0 - '" cosh f3a 2Eo cosh f3a 
cos", z Zo (4) 

The integration of the second term in this expression in (3) will give no con­
tribution. Substitution of the first term gives 

duoVf31z+2fr/{1 • .	 d1r cosf3zo 
fz =	 hf3 smp(z - zo) smpzdz = uoV f3( Q) h f3 (5)

cos	 ao ",cos a 

(d) Because the charge and wall potential are synchronous, that is U = w/f3, the 
new potential distribution is just that found with z replaced by z - Ut. Thus, 
the force is that already found. The force acts on the external mechanical 
system (acts to accelerate the charged particles). Thus, U fz is the mechanical 
power output and -U fz is the mechanical power input. Because the system 
is loss free and the system is in the steady state so that there is no energy 
storage, -U fz is therefore the electrical power output. 

.	 1rcosf3zo ()Electrical Power Out = -Ufz = -UduoVf3- hf3 6
f3 cos	 a 

(e) For (6) to be positive so that the system is a generator, ~ < pzo < 3;. 

5.7	 SOLUTIONS TO LAPLACE'S EQUATION IN POLAR 
COORDINATES 

5.1.1	 The given potentials have the correct values at r = a. With m = 5, they 
are solutions to Laplace's equation. Of the two possible solutions in each region 
having m = 5 and the given distribution, the one that is singular at the origin is 
eliminated from the inner region while the one that goes to infinity far from the 
origin is eliminated from the outer solution. Hence, the given solution. 
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5.7'.2 (a)	 Of the two potentials have the same 4J dependence as the potential at r = R, 
the one that is not singular at the origin is 

(1) 

Note that this potential is also zero on the y = 0 plane, 80 it satisfies the 
potential conditions on the enclosing surface. 

(b) The sunace charge density on the equipotential at y = 0 is 

(2) 

and hence is uniform. 

5.7'.3 The solution is written as the sum of two solutions, ~a and ~b. The first of 
these is the linear combination of solutions matching the potential on the outside 
and being zero on the inside. Thus, when added to the second solution, which is zero 
on the outside but assumes the given potential on the inside, it does not disturb 
the potential o~ the inside boundary. Nor does the second potential disturb the 
potential of the first solution on the outside boundary. Note also that the correct 
combination of solutions, (rlb)3 and (blr)3 in the first solution and (ria) and (air) 
in the second solution can be determined by inspection by introducing r normalized 
to the radius at which the potential must be zero. By using the appropriate powers 
of r, this approach can be used for any 4J dependence of the given potential. 

5.7'.4 From Table 5.7.1, column two, the potentials that are zero at 4J = 0 and 4J = a 
are 

r±m sin m4J (1) 

with m = mr/a, n = 1,2, ... In taking a linear combination of these that is zero 
at r = a, it is convenient to normalize the r dependence to a and write the linear 
combination as 

(2) 

where A and B are to be determined. It can be seen from (2) that to make ~ = 0 
at r = a, A = -Band the solution becomes 

(3) 

Finally, the last coefficient and n are adjusted so that the potential meets the 
condition at r = b. Thus, 

(4) 
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5.1.5	 To make the potential zero at 4J = 0, use the second and fourth solutions in 
the third column of Table 5.7.1. 

cos[pln(r)] sinh p4J, sin[pln(r)] sinh p4J	 (1) 

The linear combination of these solutions that is zero at r a is obtained by 
simply normalizing r to a in the second solution. This can be seen by using the 
double-angle formula to write that solution as 

Asin[pln(r/a)]sinhp4J = Asin[pln(r) - pln(a)]sinhp4J 

= A{sin[pln(r)] cos[pln(a)] (2) 

- cos[pln(r)] sin[pln(a)]} sinh p4J 

This solution is made to be zero at r = b by making p = n1r/ln(b/a), where n is 
any integer. Finally, the last boundary condition at 4J = 0 is met by adjusting the 
coefficient A and selecting n = 3. 

A = V / sinh[311"a/ln(b/a)]	 (3) 

5.1.6 The potential is a linear combination of the first two in column one of Table 
5.7.1.


V 311" 24J

~ = A4J + B = - -- (4J - -) = V (1 - -) (1)

(311"/2) 2 311" 

This potential and the associated electric field are sketched in Fig. 85.7.6. 

Figure S5.7'.6 
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5.8 EXAMPLES IN POLAR COORDINATES
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5.8.1 Either from (5.8.4) or from Fig. 5.8.2, it is clear that outside of the cylinder,
the z = 0 plane is one having the same zero potential as the surface of the cylinder.
Therefore, the potential and field as respectively given by (5.8.4) and (5.8.5) also
describe the given situation.

Intuitively, we would expect the maximum electric field to be at the top of
the cylinder, at r = R,q, = 1r/2. From (5.8.5), the field at this point is

Emax = 2Eo (1)

and this maximum field is indeed independent of the cylinder radius. To be more
rigorous, from (5.8.5), the magnitude of E is

(2)

where

e == V[1 + (R/r)2]2 cos2 fJ + [1 - (R/r)2]2 sin2 fJ

IT this function is pictured as the vertical coordinate in a three dimensional plot
where the floor coordinates are rand q" its extremes are located at (r, q,) where
the derivatives in the rand q, directions are zero. These are the locations where
the surface represented by (2) is level and where the surface is either a maximum,
a minimum or a saddle point. Thus, to locate the coordinates which are candidates
for giving the maximum, note that

and

~; = ~o 2~2 {[I + (R/r)2]2 cos2 fJ + [1- (R/r)2] sin2 fJ} = 0 (4)

Locations where (3) is satisfied are either at

or at

with r not equal to R or at

~=o

q,=1r/2

r=R

(5)

(6)

(7)

with q, not given by (5) or (6). Putting (5) into (4) shows that there is no solution
for r while putting (6) into (4) shows that the associated value of r is r = R. Finally,
putting (7) into (4) gives the same location, r = Rand q, = 1r/2. Inspection of (5)
shows that this is the location of a maximum, not a minimum.
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5.8.2	 Because there is no 4> dependence of the potential on the boundaries, we use 
the second m = 0 potential from Table 5.7.1. 

~= Alnr+B (1) 

Here, a constant potential has been added to the In function. The two coefficients, 
A and B, are determined by requiring that 

Vb = Alnb+B (2) 

Va = Alna+B (3) 

Thus, 
A = (Va - Vb)/ln(a/b) 

B = {Vblna- Valnb}/ln(a/b) (4) 

and the required potential is 

~=v. In(r/b) _Vlln(r/b) VI 
a In(a/b) b In(a/b) + b (5) 

= lValn(r/b) - Vbln(r/a)Jlln(a/b) 

The electric field follows as being 

(6) 

and evaluation of this expression at r = b shows that the field is positive on the 
inner cylinder, and everywhere else for that matter, if Va < Vb­

5.8.3	 (a) The given surface charge distribution can be represented by a Fourier series 
that, like the given function, is odd about 4> = 4>0 

U. = L
00 

Un sin mr(4) - 90 ) (1) 
n=l 

where the coefficients Un are determined by multiplying both sides of (1) by 
sin mll"(4) - 4>0) and integrating over a half-wavelength. 

Thus, 
4uo 

Un = -j nodd	 (3)
nll" 
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and u'" = 0, n even. The potential response to this surface charge density is 
written in terms of solutions to Laplace's equation that i) have the same rP 
dependence as (I), ii) go to zero far from the rotating cylinder (region a) and 
at the inner cylinder where r = R and are continuous at r = a. 

~ {[(a/R)'" - (R/a)"'](R/r)"'}' ( ) a < r (4)cP = ~ CP", (R/a)"'[(r/R)'" - (R/r)"'] sm n rP - 00 R < r < a 
odd 

The coefficients CP", are determined by the "last" boundary condition, requir­
ing that 

acpa aCPb]
u.(r=a)=-fo ----	 (5)[ ar ar r=a 

Substitution of (I), (3) and (4) into (5) gives 

(6) 

(b)	 The surface charge density on the inner cylinder follows from using (4) to 
evaluate 

u.(r = R) = -foaa~b Ir=R = - f~2 f: CP",n(R/a)"'sinn(rP - 90 ) (7) 
,,=1
odd 

Thus, the total charge on the electrode segment in the wall of the inner cylin­
der is 

q =	 w l
Q 

u.(R)RdrP = - L
co 

Q",[cosn90 - cosn(a - Do)] (8) 
o	 ..._1 

odd 

where 

(c)	 The output voltage is then evaluated by substituting 90 - Ot into (8) and 
taking the temporal derivative. 

Vo = -Ro ~: = -ORo f nQ",[sin nOt + sin n(a - Ot)] (9) 
,,=1 
odd 
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5.8.4	 The Fourier representation of the square-wave of surface charge density is 
carried out as in Prob. 5.8.3, (1) through (3), resulting in 

00 

u, = L u" sin mr(1fl - ( 0 )	 (1) 
...01 
odd 

where 
4uo

u" = -j nodd 
n7l'" 

The potential between the moving sheet at r = R and the outer cylindrical wall at 
r = a, and inside the moving sheet, are respectively 

~ { (a/R)"[(r/R)" - (R/r)"j}. ( ) a < r < R 
~ = =:~" = (r/R)"[(a/R)" - (R/a)" smn Ifl - 00 r < a (2) 

odd 

where the coefficient has been adjusted so that the potential is zero at r = R and 
continuous at the surface of the moving sheet, where r = a. The coefficients are 
determined by using Gauss' continuity condition with the surface charge density 
written as (1) and the potential given by (2)j 

( a~a a~b)	 n n 
-Eo -a - -a = u, => -Eo~,,(a/R)"[ -(a/R)" + -(R/a)"] 

r r r=a	 a a (3) 

+ ~(a/R)"[(a/R)" _ (R/a)"] = 4uo 
a	 n7l'" 

which implies that 
~ = _ 2uoa (4)

" n 2 71'"Eo 

The surface charge on the detection segment is 

u, = Eo aa~a I = - f: 4uo(a/R)"+l sin n(1fl - ( 0 ) (5) 
r r=R ..=1 7I'"n 

odd 

and so the total charge on that segment is 

(6) 

where 
Q" = 4UowR(a/R)"+l~ 

71'" n 2 

Finally, with 00 = Ot, the detected voltage is therefore 

tlo = -Ro ~: = -ORo f nQ,,[sin nOt + sin n(a - Ot)] (7) 
.._1 
odd 



Solutions to Chapter 5	 5-27 

5.8.5	 Of the potentials in the second column of Table 5.7.1, the requirement that the 
potential be zero where <p = 0 selects the two that vary as sin(m<p) while the fact that 
the space of interest extends to the origin precludes those with negative exponents, 
for m > 0, the last two. The potential will be zero at <p = a if m = n1l"I d, n = 1,2, ... 
Thus, candidate potentials are 

(1) 

Evaluated at r = R, this potential takes the form of a Fourier series, used here to 
represent the uniform potential. 

v = f: An sin (n:<p)	 (2) 
m=l 

Multiplication by sin(q1l"<Pla) and integration from <p = 0 to <p = a gives an expres­
sion which can be solved for the coefficients in (2). 

_ Va cos (q1l"<P)]Q = A ~ =* An = 4V {lin; n odd 
q1l" a 0 q 2 11" OJ n even 

(3) 

Thus, (1) and (3) are the given answer. 

5.8.6	 Far from r = R, the field becomes that of a pair of electrodes extending from 
the origin to infinity in the planes <p = 0 (with zero potential) and <p = a (with 
potential V). The associated electric field is <p directed and simply the voltage V 
divided by the distance ar between the electrodes, following lines of constant r. 

~(r -+ 00) = V! =* E(r -+ 00) = ~i4>	 (1)
a	 ar 

Although this potential satisfies the boundary conditions on the "wedge" electrodes, 
it does not satisfy the boundary conditions over the surface at r = R. On that 
surface, the potential should be the constant V. To satisfy this boundary condition, 
we add to (1) a potential that is zero on the surfaces <p = 0 and <p = a where (1) 
already satisfies the boundary conditions and that goes to zero at r -+ 00, where 
(1) is also the correct potential. 

(2) 

The coefficients An are determined from evaluating (2) on the electrode at r = R, 
where 

V<p ~ A . (n1l"<P)V = -+ LJ n SlD -- (3) 
a n=l a 



Solutions to Chapter 5 5-28 

The first term on the right in (3) is tra.nsferred to the left, both sides of the expres­
sion multiplied by sin(m1/"~/a) a.nd both sides integrated from ~ = 0 to ~ = a to 
obtain 

a (m1/"~) a [. m1/"~ m1/"~ (m1/"~)]}Q AmaV { --cos -- --- sln-----cos -- =-- (4)
m1/" a (m1/")2 a a a 0 2 

This expression can be solved for the coefficient, which (with m - n) is 

_ 2V 
A1'- (5)

n1/" 

Evaluated using this coefficient, (2) is the desired potential. 

5.8.'1 (a) From the four equations in the second column of Table 5.7.1, the sin functions 
satisfy the boundary conditions that Cb = 0 at ~ = 0 and ~ = 21/" if m = 
n/2, n = 1,2, ... With the understanding that n is positive, the solutions 
with exponents -m are excluded so that the potential is finite as r - O. 
Thus, the remaining potential is the superposition of the modes 

DO 

Cb= LAn(r/R)n/2sin(~~) (1) 
1'=1 

(b) The boundary condition at r = R requires that 

00 

Vo = L A,. sin (~~) (2) 
1'=1 

Multiplication of both sides of this expression by sin(p~/2) and integration 
gives 

(3) 

or 
2 

--Volcos(m1/") - 11 = 1/"Am (4)
m 

so that it follows that An = 0, n even and for n odd 

_ 4VoA I' -
n1/" 

(5) 

Substitution of this coefficient into (1) then gives the desired potential. 

(6) 
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(c) The associated electric field follows from this expression as 

14Vo ~ 1 [ nr!-l. n . nrt - n]
E = ---;:- ~;; Il'i Rn/2 Sln (if) + l<I»i Rn/2 cos (if) (7) 

odd 

r 

(b) 

(a) 

(e) 

Figure S5.8.' 

A sketch of the lead term in (6) and (7) is shown in Fig. 85.8.7a. The potential is 
finite at the tip of the fin but the electric field intensity varies as 1/..;r at the tip. 
On the surface 81 shown in Fig. 85.8.7b, the surface charge density follows from 
(7) as 

oo
4foVo L 1 r!j-1 

f E-t-(r ..I. = 0) = - -- --- (8)o ." ,Y' 1/" 2 Rn/2 
..=1 
odd 

On the circular cylindrical surface 82 at radius a, also shown in Fig. 85.8.7b, 

4foVo ~ 1 a!-l. n 
foEr(r = Q, f) = --1/"- L.J "2 Rn/2 Sin (if) (9) 

,.,=1 
odd 

while on surface 83 ,


4 v: 00 1 n-1

-f E-t- = -~ ~_.!:.:...


o ." 1/" L.J 2 Rn/2 (10) 
,,=1 
odd 

http:85.8.7a
http:85.8.7b
http:85.8.7b
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The total charge represented by the first mode in the series is therefore 

2EoVo [ _ fR r-1/2dr _ rrr a-l/2sin(~/2)ad~ _ fR r-1/2dr] = 8EoVo (11)
'frVR Ja Jo Ja 'II" 

(d) The potential and field distribution is sketched in Fig. S5.8.7b. 

5.8.8	 The potential takes the form of (5.8.15) with azimuthal coordinate displaced 
so that ~ -+ ~o - ~. 

4> = ;	 An sin [n'll" ;:~:~:~] sinh [,n(aib) (~o - ~)] (1) 

Evaluated at ~ = 0, this expre88ion is then the same as (5.8.15) evaluated at ~ = ~o' 
Thus, the coefficients are the same as given by (5.8.17). For n even, An = 0 and for 
n odd 

(2) 

5.8.9	 The radial distribution Rn(r) is governed by (5.7.5). 

d (dRn ) 2 
r dr r"d;" +PnRn = 0	 (1) 

Multiplication of this expression by another of the eigenfucntions and the weighting 
factor l/r and integration results in the expression 

r [R-r.!!(r
dRn 

) +p2 !RnRm]dr'= 0	 (2)Ja r dr dr n r


With the identification udtl = d(Uti) - vdu where


( dRn)
du = d r"d;"' tI = R- (3) 

Eq. (2) can be integrated by parts 

ala 
dRn	 ]a ( dRn dRm ) 21 1r-Rm - r--- dr+Pn -RnRmdr=O (4)
dr b b dr dr b r 

This same procedure can be repeated with the roles of n and m reversed. Substrac­
tion of the resulting expression from (4) gives 

dRn dRm]a (2 2) fa 1 
r [---;I;:Rm-Rn b b + Pn-Pm J 

b 
;RnRmdr=O (5) 

l
H boundary conditions require that the first term is zero, or in particular that 
Rn(a) = 0 and Rm(b) = 0, then the orthogonality condition follows. 

a1 
(p~ - p~) -RnRmdr = 0	 (6)

b r 

http:S5.8.7b
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5.9 THREE SOLUTIONS TO LAPLACE'S EQUATION IN 
SPHERICAL COORDINATES 

5.9.1	 (a) The given surface potential has the same fJ dependence as for the uniform 
field potential of (5.9.4) and the dipole field potential of (5.9.3). With the 
coefficients of these potentials adjusted to match the given potential at r = a, 

~	 _ {v(r/a) cos fJj r<a 
- V(a/r)2 cos fJj a<r (1) 

(b)	 A sketch of ~ and E is shown in Fig. 6.3.1. 

5.9.2	 (a) The surface charge density has the same fJ dependence at r = a as the discon­
tinuity in the normal derivative of the potential. This suggests representing 
the potentials inside and outside the sphere with the same fJ dependence as 
the given surface charge distribution. In addition, these potentials must be 
finite at the origin and at infinity. The natural choices are the uniform field 
potential given by (5.9.4) inside the sphere and the dipole potential of (5.9.3) 
outside the sphere. 

~	 _ {A(a/r)2 cos fJj a < r (1) 
- A(r/a)cosfJj r<a 

The coefficients have already been adjusted so that the potential is continuous 
at r = a. Gauss' continuity condition then requires that 

:"'fO(a~a - a~b) r=a = 0"0 cos fJ * -fo [~+ ~] A = (2)0"0 

so that A = 0"0a/3fo and the potential is as given with the problem. 

(b)	 In Example 6.3.1, the potentials inside and outside the sphere take the same 
form as in (1) /(6.3.9) and (6.3.8)] and satisfy boundary conditions which take 
the same form as used here /(6.3.6) and (6.3.7)]. Indeed, we will see in Sec. 
6.3 that with the polarization density given the polarization charge density is 
specified- and the determination of the associated potential and field is much 
the same as in this chapter when the charge is specified. Hence, Fig. 6.3.1 
portrays the potential and field. 

5.9.3	 Because the given charge density does not depend on 1/1, the potential is also 
independent of 1/1. In that case, Poisson's equation in spherical coordinates reduces 
to 

-!. ~ (~ a~) + _1_ ~ ( sin fJ a~) = _ Po cos fJ (1) 
r2 ar ar r2sin fJ afJ afJ f o 

First, given the dependence of the charge density on fJ, look for a particular solution 
having the form ~p = ArP cos fJ. Substitution into (1) then shows that p = 2 and 
A = -Po/4fo so that a particular solution is 

~p = -4
Po 

r 2 cosfJ	 (2)
f o 
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The sum of this potential and a solution to Laplace's equation must satisfy the 
condition that the potential be zero at r = a. Again, for the fJ dependence of the 
particular solution, it is natural to take a uniform field as the homogeneous solution. 
Thus, with B an adjustable coefficient, 

• = _.f!!!...,-2 cos fJ + Br cosO	 (3)
4Eo 

and by requiring that the total potential be zero at r = a, it follows that B = 
poa/4Eo so that the potential is as given with the problem statement. 

5.9.4 Because the given charge density does not depend on q" the potential is also 
independent of q,. In that case, Poisson's equation in spherical coordinates reduces 
to 

1a(2 a.) 1 a('fJa.) Po(/)m ()
r2 ar	 r ar + r2 sin fJ afJ sm tii = - Eo r a cos fJ 1 

First, given the dependence of the charge density on fJ, look for a particular solution 
having the form (r/a) cos fJ. Substitution into (1) then shows that p = m + 2 and 
A = -poa2 /Eo(m + 1)(m + 4) so that a particular solution is 

2 
A;. po a ( / )m+2 fJ 
'Jt'p =	 Eo(m+ 1)(m+4) r a cos (2) 

The sum of this potential and a solution to Laplace's equation must satisfy the 
condition that the potential be zero at r = a. Again, for the fJ dependence of the 
particular solution, it is natural to take a uniform field as the homogeneous solution. 
Thus, with B an adjustable coefficient, 

• = .p + B(r/a) cos fJ	 (3) 

and by requiring that the total potential be zero at r = a, it follows that the 
required potential is 

_P a2 

• = Eo(m+ l)(m+ 4) (rfa) [(rfa)m+l -l]cosfJ (4) 

5.10	 THREE-DIMENSIONAL SOLUTIONS TO LAPLACE'S 
EQUATION 

5.10.1	 Given the zero potential surfaces at y = 0 and y = b and at z = 0 and z = w, 
it is natural to construct the solution from product solutions having the form 

A;. X()' m1rY • n1rZ 
'Jt'=	 z sln-b-sm~ (1) 
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where, to satisfy Laplace's equation

X(x) ={sinh km"x
coshkm"x

5-33

and
km" = .J(m'lr/b)2 + (R'Ir/w)2

The boundary conditions on the surfaces at x =0 and x =a are the same. Thus, if
X(x) is chosen to be even about an origin at x =a/2, the potential that satisfies the
condition of being tI at x = 0 will also be tI at x = a. Thus, X(x) is made a linear
combination of the solutions given with (1) which is the cosh function displaced so
that its argument is zero where x = a/2.

X(x) = Am" coshkm,,(x - i) (2)

The solution therefore takes the form of (a) given with the problem. At x = 0, the
condition at x = 0 requires that

~ ~ A h (km"a) . (m'lr1l ) • (R'lrll) (3)
tI = L..J L..J m" COB -2- sm -b- sm --;;-

m=l,,=l

Note that this expression is the same as (11) if the sinh(kmnb) is replaced by
cosh(km..a/2) and x/a - 1I/b. The evaluation of the coefficient using the orthogo­
nality of the product solutions is therefore essentially the same as given by (5.10.11)­
(5.10.15), resulting in (b) as given with the problem.

5.10.2 Given the :I: and II dependence of the surface charge density, which is the
same as that of the components of E in the II direction on either side of the surface
y = a/2, look for solutions of the form

~ = Y(y) sin (~) sin (II) (1)
a w

where

and

Y(y) = {Sinh klly
coshk1l1l

(2)

kll = ../(1IJa)2 + (7I"/b)2
To satisfy the continuity conditions at y = b/2, the potential function is given a
piece-wise representation. The function in the upper region must be zero at y = b,
so Y(y) is chosen as a sinh with its argument displaced to y = b. In the lower region,
the sinh function with its origin at y = a does the job. Thus,

..... _{Asinhkll(y-b)}. (71":1:). (~)"*" - B . hk sm sinsm llY a w

At 11 = b/2, the potential must be continuous and Gauss' continuity condition must
be satisfied.

-Asinh(kllb/2) = Bsinh(kllb/2)

-fokll(A - B) cosh(kllb/2) = U o

It follows that the coefficients in (2) are

A = -B = -Uo/2fokll cosh(kllb/2)

(3)
(4)

(5)
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5.10.3	 In each case, the solution can be regarded as the superposition of a particular 
solution to Poisson's equation and a homogeneous solution to satisfy the boundary 
conditions. The determination of representation begins with the selection of the 
former. 

As a first solution, select a particular solution that is only z dependent. Then, 
Poisson's equation reduces to 

d2~ Po (1)
dz2 = - €o 

and the particular solution that (for convenience) is also zero at z = 0 and z = a is 

(2) 

With this potential satisfying the boundary conditions on two of the surfaces, the 
homogeneous solution must assure satisfying the conditions on the remaining four 
surfaces. This is done by adding to (2) solutions designed to satisfy the conditions 
at Y = 0 and Y = b while being zero at all the other surfaces and therefore neither 
disturbing the already satisfied conditions at z = 0 and z = a nor those to be 
satisfied by the next homogeneous solution. To satisfy both the conditions at Y = 0 
and y = b, the y dependence is taken as even about y = b/2. A second homogeneous 
solution is then added to this one to assure satisfaction of the conditions at Z = 0 
and Z = w/2 while not disturbing the potential at the other four surfaces. Thus, 
the potential takes the form 

00 00 

~ = -2Po z(z - a) + L L Bmn coshkmn(y - -) 
b 

sin (m'1l" z) sin C~!z) 
Eo m=ln=l 2 a w 

(3)
00 00 

+ L LOmncoshkmn(z- ;) sin (:'1I"z) sin (n'1l"y)
bm=ln=l 

The coefficients Bmn and Omn are determined by requiring that the potential indeed 
be zero on the surfaces y = 0 and Z = 0 (and hence also at y = b and Z = w). 

Po 00 00 kmnb . m'1l" • n'1l"
~z(z - a) = L L Bmn cosh (-2-) sm (-;-z) sm (-;-z) (4) 

o m=ln=l 

Po 00 00 kmnw . m'1l" • n'1l" 
-2z(z-a) = L LOmncosh(--)sm(-z)sm(-by) (5)

Eo	 2 am=ln=l 

The coefficients therefore follow from the same procedure as illustrated by (5.10.11) 
through (5.10.15). For m or n even the coefficients are zero. For m and n odd, 

(6) 
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emn = P(Ic) (4/m!") fa z(z - a) sin (~z)dz 
2Eocosh ~ 10 a 

(7) 
= -Po (4/m!") ~ 

2Eo cosh (Icm;W) (mll")3 

Two more solutions are obtained by replacing the role of z with that of y and of z. 
As a fourth solution, expand the charge distribution in a three dimensional Fourier 
series 

00 00 00 

"" "" "" R . (mll"z) . (nll"Y) . (qll"z)Po = LJ LJ LJ mnq sm -- sm -b- sm -- (8)
a w

m=l n=lq=l 

The coefficients Rmnq follow by multiplying by 

. (rll"z) . (slI"Y) . (ulI"z)sm -- sin -- sm -­
a b w 

integrating over the volume and solving for Rr,u. Then, with rsu -+ mnq, 

(9) 

for m and nand q odd and zero for m or n or q even. Given this (z, y, z) dependence 
and given that the second derivative of each of the sinusoids results in the same 
sinusoidal function, we are motivated to look for a particular solution having the 
same form. 

00 00 00 

...... "" "" ""...... . (mll"z) . (nll"Y) . (qll"z) (10)-.r = LJ LJ LJ -.rmnq sm -- sm -b- sin -­
m=l n=l q=l a w 

Substitution of this expression into Poisson's equation shows that term by term it 
is not only a solution to Poisson's equation (and therefore a particular solution) if 

(11) 

but satisfies the boundary conditions as well. 
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6.1	 POLARIZATION DENSITY 

6.1.1	 (a) From (6.1.6), the polarization charge density is 

P1' = -V·p = Popsinfh; (1) 

(b) The polarization surface charge density at the respective surfaces follows from 
(6.1.7) evaluated at the respective interfaces.


u 81' = -n . (pa _ pb)


(2) _{-(O -Pocospz) = PoCOSPZj y=d 
- -(Pocospz - 0) = -PoCOSPZj y=O 

6.2	 LAWS AND CONTINUITY CONDITIONS WITH 
POLARIZATION 

6.2.1 (a) Given the polarization density, the polarization current density follows from 
(6.2.9). 

ap dPo .)Q (.J l' = lit = "dt cos fJZ Ix + I~ (1) 

The polarization charge density is as found in Prob. 6.1.1. 

(b) Substitution of these quantities into (6.2.10) gives


ap1' V J apo • dPo •
at + . l' = --atpsmpz - "dtpsmPz = 0 (2) 

6.3	 PERMANENT POLARIZATION 

6.3.1	 (a) The polarization charge density between the electrodes is 

P1' = -V . P = Popsinpz (1) 

Thus, at each point between the electrodes, 

V2W= _P1' = _PoP sinpz (2)
Eo Eo 

1 
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and a particular solution is gotten from

82~ PofJ. Q .... Po. Q
--2 = -- sm,.,z => 'VI'p = - sm,.,z
8z Eo fJEo

To satisfy the boundary conditions, use the homogeneous solutions Az

~ = Az + ~o sinfJz
,.,Eo

which satisfies ~(z = 0) = o. To make ~(z = a) = -V,

A V Po. Q= --- --sm,.,a
a fJEoa

so that (6.3.4) becomes

~ = Po (sinfJz - =sinfJa) - V=
fJEo a a

(3)

(4)

(5)

(6)

/ t/J=-V
a

f

"
o --.~ y

(b) In this case,

and

P = Po cos {3xix ~ = 0

Flpre 98.3.1

Pp = -V· P = fJPosinfJy (7)

82~p fJPo • Po • ( )-- =--sm fJy => ~ = - sm fJy 88y2 Eo p EofJ
Boundary conditions at z = 0 and z = a, are satisfied by ~ = -Vz/a. Thus,
we let

~ = Po sinfJy - V= + ~1 (9)
EofJ a

Then ~1 must be -(Po/EofJ) sinfJy at z = 0 and z = a. Such a solution to
Laplace's equation is symmetric about z = a/2;

~= P~sinfJY- VZ+AcoshfJ(z-~)sinfJY (10)
Eo,., a 2

To satisfy boundary conditions

A = _ Po 1 ( )
EofJ cosh (~ ) 11

Thus, from (6.3.4) and (6.3.5),

.... Po. Q [ cosh fJ (z - ~) ] V Z
'VI' = - sm,.,y 1 - - -

EofJ cosh (~) a
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6.3.2 The polarization charge density inside the rectangular region is 

(1) 

The potential is therefore a solution to 

V 2"", P. 11" • 11""*" = - o-Sln-X (2)
aEo a 

that satisfies the zero potential boundary conditions. Two of these conditions are 
satisfied by the particular solution to (6.3.2) that follows from assuming that it, 
like the charge distribution,. only depends on X. 

tP~p 11" • 11"-- = -Po - sm-x (3)
dx2 aEo a 

Two integrations, with the integration constants adjusted to make the potential at 
x = a and x = 0 zero then give the particular solution 

"'" p. a . 11""*" = o-sm-x (4)
p 1I"Eo a 

The homogeneous solution must also be zero on these boundaries and cancel this 
particular solution when evaluated at y = ±b. 

(5) 

Because these conditions are even in y, and because of the former boundary con­
ditions, the potential is therefore taken as having a cosh dependence on x and the 
potential distribution suggested by the conditions of (6.3.5) at y = ±b. 

a 11" cosh ~y 
~h = -Po - sin -X--:-'=:-:- (6)

1I"Eo a cosh ~b 

The required potential is then the sum of the particular and homogeneous solutions, 
(6.3.4) and (6.3.6). 

a 11" [ cosh :zr.. y ] (7)~ = Po - sin -x 1 _ G 

1I"Eo a cosh;b 
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(a) First,
ap"

Pp = -v·p= -- =0ay

Solutions to Chapter 6

(1)

and

(2)

r
p = Po cos[(211"/A)xJill

-x

(3)

Figure 88.8.8

(b) The CJ> above and below must satisfy Laplace's equation and the boundary
conditions that at y = 0

EoE; - Eo~ = -Eo a:a I + Eo aaCJ>b I = Po cos [(2;)z]
Y ",=0 Y ",=0

To these ends, and to make CJ> -+ 0 at y -+ ±oo, make

(4)

(5)

6.3.4 In the region -a < y < 0, the divergence of the polarization density is zero
and so the polarization charge density is zero as well. Thus, in both regions (a)
and (b), the potential must satisfy Laplace's equation. Boundary conditions on the
potential are that it be the given values at y = ±a, that it be continuous at y = 0
and that it satisfy Gauss' continuity condition at y = O. This condition requires
that

-n. [aCJ>a _ aCJ>b] = O',p

ay ay ,,=0

where the polarization sudace charge density follows from

(1)

Thus, the fields are the same as if there were an unpaired sudace charge density
o',u = Posin,8(z - zo) in the plane y = o. With the identification of 0'0 -+ Po,
the physical situation is the same as considered in Prob. 5.6.12 and the solution as
outlined there.
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6.3.5	 The given polarization density is uniform, so there is no volume polarization 
charge density. The polarization surface charge density at the cavity interface is 

(1) 

Thus, the boundary conditions at r = R are 

~a = ~b	 (2) 

(3) 

On the right in this last expression is the sum of the polarization and unpaired 
surface charge densities. Superposition can be used to find the potentials due to 
the respective terms on the right and then their sum can be taken. Symmetry and 
Gauss' integral law give the electric field due to the uniform unpaired surface charge 
density. 

1
411"Eor 2 E~ = 411"R20'o => E~ = -(R/r)20'o	 (4)

Eo 

There is no electric field intensity inside, so the potential there is what it is on the 
surface. Thus, 

{ 
~. r<R 

~_ Eo' ­

- R~"'Q. r> R	 (5) 
r' ­

To find the potential from the second term in (6.3.3), assume that 

.... _ {AiCOS()	 (6)~-	 R~

Arrcos() 

where the coefficient has been adjusted to satisfy (6.3.2). Substitution of these 
expressions into (6.3.3) then gives 

A = _PoR	 (7)
3Eo 

The sum of (6.3.5) and (6.3.6) with the latter evaluated using (6.3.7) is the given 
potential. 

6.3.6 In polar coordinates, the uniform y directed polarization density is 

p = PJ)' = Polcos <Pi.. - sin <Pi",)	 (1) 

Because the divergence of P is zero in the volume, the only polarization charge is 
a surface charge density at r = R. This is 

O'.p = -n . cos(pa - pb) = -Po cos <p	 (2) 
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The equipotential boundary condition in the plane 11 = 0 is met by assuming 
solutions 

ibQ = -A 
cos ;i ibb = Br cos; (3) 

r 

Boundary conditions at r = R are 

(1'- [ -
BibQ	

- -Bibb] = ~ '* (-A + B) cos; = -Pocos; (4)
Br Br r=R Eo W 

A
-=BR	 (5)
R 

Simultaneous solution for the coefficients gives


A __ PoR2. Po

- 2' B=-­

2	
(6) 

and hence, 

Q PoRR b PoR rib = ----cos;· ib = ----cos;	 (7)
2 r ' 2 R 

6.3.1	 The fields in regions (a) and (b), respectively above and below the interface, 
are taken as uniform. Because the line integral of E between the electrodes is zero, 

aE:+b~ =0	 (1) 

At the interface, there is a polarization surface charge density 

(2) 

Thus, Gauss) continuity condition requires that 

(3) 

Solution of (6.3.1) and (6.3.3) then gives 

E'!. = _ Po 1 (4) 
:I: Eo (~ + 1) 
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6.3.8 (a)	 The polarization charge density is 

Pp = -V· P = -V· V,p = _V2 ,p (1) 

where ,p = Por cos(¢> - a) is a solution to Laplace's equation. Thus, PP = O. 

(b) The surface polarization charge density at r = b is 

It is assumed that there is no unpaired surface charge density on this interface, 
so the boundary conditions are 

cpI(r = a) = 0 (3) 

cpI(r = b) = cpII(r = b) (4) 

foE; - foB;I = Pocos(¢> - a) (5) 

Solutions to Laplace's equation that have the same dependence as the right 
hand side of (6.3.5) take the form 

cp _ {A[(rla) - (air)] cos(¢> - a)	 (6)
- B(rlb) cos(¢> - a) 

Here, the solution that is infinite at the origin has been omitted and the two 
contributions to the outer potential adjusted to satisfy (6.3.3). Substitution 
of (6.3.6) into (6.3.4) and (6.3.5) then gives 

b a Pob2 b a 
B = A(- - -) = --(- --)	 (7)

a b 2foa a b 

Thus, (6.3.6) and (6.3.7) are the given potentials. 

6.3.9	 (a) Note that the scalar function inside the gradient operator is a solution to 
Laplace's equation. Thus, 

(1) 

and there is no polarization charge density in the volume of the rotor. However, 
at the interface there is a surface polarization charge density given by 

(2) 

(b) Boundary and continuity conditions are 

(2) 
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awa aWb ]
-Eo [--a;:-(r = b) - ar (r = b) = Pomcos mtP (3) 

Given the tP dependence of a.p , solutions to Laplace's equation are assumed 
to take the form 

wa = A[(r/a)m - (a/r)mJcos mtP (4a) 

wb = A(r/b)m[(b/a)m - (a/b)m] cosml/l (4b) 

where a linear combination of solutions has been selected in the annular region, 
(a), that satisfies the zero potential condition at r = a and the coefficients 
have been arranged so that the potential is continuous at r = b. The last of 
the boundary conditions then determines A. 

Thus, the potential is 

b<r<a 
r<b (6) 

(c)	 With the substitution tP -+ tP - Ot, at a given instant in time there is only a 
shift in the origin of tP. Because the field laws do not involve a time rate of 
change, they are satisfied by the new solution. To stay at a point of constant 
tP - Ot and hence constant P requires being at the angular position tP = Ot+ 
constant. Thus, the new solution is one that represents the fields associated 
with a rotor having the angular velocity O. 

(d) From (6.3.6), the surface charge density on the wall at r = a is 

awa bPo 2m 
a.u	 = Eo - (r = a) = --(b/a)m-cos m(tP - Ot) (7)ar 2 a 

The net charge on the segment is then 

q = l r a.uadtP = -lbPo(b/a)m[sin(-mOt) - sinm( - ~ - Ot)] 
~~m	 m 

(8)=lbPo(b/a)m[sin(mOt) - sin(1l" + mOt)]


= 2lbPo(b/a)m sin(mOt)


and hence the output voltage is 

(9)
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6.3.10	 (a) The potential in regions (a) and (b), respectively 0 < z and z < 0, take the 
form of (6.6.26) and (6.6.27) with V = 0 in the latter because both of the 
electrodes are grounded over their full length in the z direction and a -. d. 

00

L Vne-A[ssin n; y~a = (1) 
n=l 

~b = 
00

L Vne.llfs sin n; y (2) 
n=l 

The coefficient in these expressions, Vn , has been adjusted so that the po­
tential is continuous at the interface. Given V(y), these coefficients follow by 
evaluating either of these expressions at y = 0 

00 

LVnsin n;y=V(y) (3) 
n=l 

multiplying by sinemll'y/ d) and integrating from y = 0 to Y = d. 

(4) 

Given V(y), this integral can be evaluated and the coefficients needed to 
complete (1) and and (2) determined. 

(b) In addition to the continuity of potential which is already satisfied by (1) and 
(2), the continuity condition at z = 0 is 

(5) 

(c) With Po now the given quantity, substitution of (1) and (2) into (5) gives 

(6) 

The coefficients are evaluated in this case by the same procedure as leading 
to (4). 

(7) 

Evaluated using this coefficient, (1) and (2) become the given potential. 
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6.8.11	 In region (b), the potential must satisfy Poisson's equation with the charge 
density found in Prob. 6.1.1. 

(1) 

while in region (a) it satisfies Laplace's equation. At the interface, the potential 
must be continuous and satisfy Poisson's continuity condition for the polarization 
surface charge density found in Prob. 6.1.1. 

(2) 

Finally, the potential must go to zero as 'II -+ 00 and be zero in the plane 'II = O. The 
particular solution to (1) is taken as depending only on z. Thus, two integrations 
give 

~:= P~sinfJz	 (3) 
Eo,", 

The z dependence of the potential due to the surface charge density is cos(fJz) 
while that due to the volume charge denisty is sin(fJz). The potential is taken as 
the sum of potentials due to these two sources, ~ =~. + ~". The potential due to 
the surface charge satisfies Laplace's equation in each region and takes the form 

A.e-I'(u-d) cos fJz 
~. = Binb (4)

{ A. Binb I'd cos fJz 

Here, the coefficients have been adjusted to make the potential continuous at 'II = d, 
while the sinh function satisfies the zero potential boundary condition at 'II = O. The 
coefficient is determined by requiring that Gauss' continuity condition be satisfied 
with the surface charge density given by (2). 

-EoA.[-fJ - fJcoth(fJd)]cos(fJz) = Pocos(fJz) => A. 
Po (5)= -:-:--....:;....".....,~:'":' 

EofJ[l + coth(fJd)] 

The part of the potential due to the bulk charge takes the form 

A"e-I'(u-d) sin(fJz) 
~,,= { £i; [1 + B" sinh(fJ'Y) + C" cosh(fJ'Y)] sin(fJz) (6) 

where the solution in the lower region has been taken as the sum of the particular 
solution, (3), and two solutions to Laplace's equation. This·part of the potential 
must also be zero at 'II = 0, so C = -1. In addition both the potential and its 
normal derivative must be continuous at 'II = d. 

A" = P~[l + B" sinh(fJd) - cosh(fJd)]	 (7) 
Eo,", 
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-fJAu = Po [Bu cosh(fJd) - sinh(fJd)	 (8)
Eo 

Simultaneous solution of these expressions gives (sinh2 Z - cosh2 Z = -1). 

Au = Po [cosh(fJd) - 1] 
EofJ [cosh(fJd) + sinh(fJd)J (9) 

B =	 cosh(fJd) + sinh(fJd) - 1 (10) 
u 

cosh(fJd) + sinh(fJd) 

Finally, the total solution is the sum 'of (4) and (6) with the coefficients given by 
(5), (9), and (10). 

6.4	 POLARIZATION CONSTITUTIVE LAWS 

6.4.1 In terms of the number density N, the polarization density is given by 

P =	 Nqd = (E - Eo)E (1) 

It follows that the, separation d of single electronic charges needed to account for 
the given polarization is 

d = (E - Eo)E = (1.5)(8.85 x 10-12)(10'1) = 11 10-1. (2)
Ng (6 x 1026/8)103(1.6 X 10-19) . X 

This is less than 1/1000 of a dimension typical of an atom. 

6.5	 FIELDS IN THE PRESENCE OF ELECTRICALLY LINEAR 
DIELECTRICS 

6.5.1 (a) Tlte divergence of EE is zero 

a [V·EE= - E(Z)-] =0a1/ 
t1 

d	
(1) 

and the curl of E, a unifoJ:ID field, is as well. Given that the field is normal 
to the perfectly conducting boundaries, which extend to infinity, it follows 
that the solution, which does indeed satisfy the relevant field laws, is uniquely 
specified. 

(b) On the upper surface of the lower electrode in the regions to right and left, 

(2) 
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It follows that the net charge on the lower electrode is 

(3) 

and hence the capacitance is as given. 

(c) In this case, the surface charge density on the lower electrode is 

(4) 

and so the net charge on the lower electrode is 

(5) 

so that C is as given. 

6.5.2 A uniform electric field, E = (v/d)i)' is irrotational and satisifies Gauss' law 
with the permittivity varying with z, a direction perpendicular to the proposed 
electric field. 

a [ v (1)V· fE = oy fall + acos,8z)d] = 0 

Thus, E is indeed uniform and 

(2) 

This is also the density of unpaired surface charge on the lower electrode, so the 
total charge on that electrode is 

f' v 
q = C1 fa(l + acos,8z)ddz 

0 (3a) 
Cfa [ a. ]'= d z+ psm,8z Ov = Cv 

Cfa [ a. ]
C == d 1+ psm,81 (3b) 

6.5.S (a) Because the field is independent of z and z, 

aDyV·D=-=O (1)ay 

and from this it follows that Dy = DII(t). 
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(b) In terms of the given distribution of permittivity, 

(2) 

This expression can be solved for E" and hence for the y dependence of E". 
To determine the unknown D", that expression is integrated from the lower 
to the upper electrode and the result equated to the voltage. 

The total charge on the lower electrode, and hence G, follows from this result 

= AD = [€oXa A /l (1 + 2Xa)] 
q " l n (1 + Xa) tI	

(4) 

6.5.4	 Because the field is independent of x and z, 

(1) 

and from this it follows that D" = D,,(t). This means that 

(2) 

is independent of y and can be solved for E". The voltage is then 

(3) 

and this expr.ession can be solved for D", which is the surface charge density on the 
lower electrode. 

q = AD" = Gtlj 
G=

- d(1 -
A€p

e-l / d )	
(4) 

6.5.5	 (a) For each, the electric field intensity in each region takes the form E = irA/r 
[the potential takes the form cP = Aln(r)]. In the first case, the integral of 
this field between the electrodes must be the same whether it is taken in the 
dielectric or in the free space region. Thus, in the first case, 

laA 
tI = -dr = Aln(a/b) => E = irtl/rln(a/b) (1) 

b r 

Note that this solution satisfies the conditions that the tangential field be 
continuous at the dielectric-free space interfaces and that the normal D be 
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continuous (there is no normal D). The field is normal to the circular cylinder 
electrodes and so these are equipotentials, as required. In the second case, the 
coefficient A has a different value in each of the regions. The two coefficients 
are found by requiring that 

(2) 

and that at the interface 
(3) 

Thus, in the second case, 

E_ irv {1; b < r< R (4)
- [In(R/b) + E: In(a/R)]r E/Eo; R<r< a 

(b) The capacitance follows from integrating the surface charge density over the 
inner electrode. In the first case, 

q = l[abEEr(r = 6) + (27r - a)6EoEr(r = 6)] = Cv; (5a) 

C == l[aE + (27r - a)Eol/ln(a/6) (56) 

while in the second case 

e 
q = l27rbDr (r = b) == Cv; C == 27rlE/[ln(R/b) + -In(a/R)) (6) 

Eo 

6.5.6 Based on experience in the special case where the wedge is of uniform permit­
tivity (so that the spatial variations in permittivity are bumps at the interfaces) 
postulate that the electric field is no different than if the dielectric wedge were not 
present. 

E = [v/rln(a/6»)i r (1) 

Because the electric field is perpendicular to the gradient in permittivity, there is 
no induced polarization charge, (6.5.9), and hence no distortion of this field by the 
dielectric. The field of (1) has no divergence (and of course no curl) and hence does 
satisfy the bulk conditions throughout the volume. It also has no tangential value 
on the boundaries, as required. The given capacitance follows from integrating the 
unpaired surface charge over the surface of the inner electrode. 
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6.6	 PIECE-WISE UNIFORM ELECTRICALLY LINEAR 
DIELECTRICS 

6.6.1	 Given that the imposed potential takes the form 

.(r - (0) = -Eor cos 0	 (1) 

assume postentials of the form 

A• = -EorcosO + r2 cosO; r> R	 (2) 

r	 A) r
.=BRcos6=(EoR+ WRcosO; r<R (3) 

Here I the coefficients have already been adjusted to make the potential continuous 
at r = R. The remaining condition is that 

(4) 

from which it follows that 
A = EoR3(Ea - Eo} (&)

(2Eo + Ea) 

The given potentials follow from substitution of (5) into (2) and (3). 

6.6.2	 (a) Assume a potential within the cavity that is consistent with the dipole being 
at the origin with the addition term satisfying Laplace's equation while having 
the same 0 dependence as the dipole and being finite at the origin. Outside 
the cavity, the potential again has the 6 dependence of the dipole and goes to 
zero at infinity. 

...L-co;9 + Brcod' r < a 
•	 _ 4t1'Eo r , (1)

- { Acos 9 • a < r 
r2 I 

Potential .continuity and continuity of normal D at r = a requires that the 
coefficients A and B satisfy 

[i:	 ~a] [~] = [~] (2) 
(is"	 0 4'1l"~i 

Thus, 

A- 3p • (3)
- 41r(Eo + 2E)' 

so that ~he required potential is 

{ 
~ 2~ r<a• = pcos 0 ;:t" - aa Tl+B r ; (4)

41rEo 3 1. 
1+2-'- ;:;, a<r 

'0 
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The electric field follows as 

2 2 ~] • [ 1 2 -f--l 
3 3	 3E = --.!!..- [ r + a ~ cos 01.. + - a3 l+~ r<a 

r 

4'11"Eo { 6 c088i + 3 8in8i.	 a<r1+* rr.. 1+* rr 8,	

(5) 

(b) In the limit E --+ 00, the tangential electric field at r = a becomes 

1 2(.£ - 1) 1 1 
lim-- =---=0	 (6) 

E-CO a3 a3(1 
Eo 

+ ~:) 3 a3a

and the potential inside the cavity, (1a), becomes 

lim ~b = pcosO (.!.. _~)	 (7) 
E-CO 4'll'Eo r 2 a3 

(c) IT the cavity is regarded as an equipotential at the outset, it follows from (ta) 
that 

P 1 P---+Ba=O=>B=--­	(8)
4'11"Eo a2	 4'11"Eoa3 

in agreement with what was obtained by taking the limit, (7). 

6.6.3	 Feom (5.8.4), the potential around a perfectly conducting rod of radius R in 
a uniform electric field is 

~ = -EaR(!:... - R) costIJ	 (1)R r 

The potential for a two-dimensional electric dipole is given by (a) of Prob. 4.4.1. 

~ = Aid costIJ (2) 
2'11"Eo r 

Comparison of these expressions shows that the induced two-dimensional dipole 
moment is 

Aid = (2'11"EoR 2 )Ea	 (3) 
The density of the rods is (1/82 ) per unit area and therefore the polarization density 
IS 

(4) 

6.6.4 The dielectric spheres have induced dipole moments that follow from (a) of 
Prob.6.6.1.


n3 (E, - Eo)

p = 4'11"EoEo n.- (

E, + 2Eo
)	 (1) 

Using the arguments of (6.6.6)-(6.6.9), it follows that the equivalent permittivity is 

E= 1 + 4'll'(R/8)3 (E, - Eo) (2) 
(E, + 2Eo) 
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6.6.5 Writing the potential in the upper region as that of the point charge q at
y = h and its yet to be determined image at y = -h, both on the y axis, we have
(Sec. 4.4)

~ = _1_ { ~ - ~j 0 < y (1)
4'll"Eo r+ j Y < 0

where
r+ = y z2 + (y - h)2 + z2 j r_ = y z2 + (y + h)2 + z2

In their respective regions, these have been chosen to satisfy Poisson's equation (in
the upper region) and Laplace's equation. At the interface, where y = 0 in (1), the
potential must be continuous for all z and z

(2)

(3)

and the normal electric flux density must be continuous (there is no unpaired surface
charge density)

Simultaneous solution of these expressions gives the relations for qa and qb sum­
marized by (b) in the problem. To determine the force on the charge caused by
the surface polarization charge it induces at the interface of the dielectric, compute
the electric field at y = h, z = 0, z = 0 using (1) and ignoring the self field (it can
produce no net force on itself) and multiply by q.

f = i)'qEI/(z = O,y = h,z = 0)

Thus, the force is one of attraction, as given.

(4)

6.6.6 In the upper half space, the particular solution is that of a line charge. Because
it has the same z dependence of its potential in the y = 0 plane, a homogeneous
solution is added to this which is the potential of an image line charge at (z, y) =
(0, -h).

(1)

In the lower half space, the potential is taken as that due to a line charge located
at (z, y) = (0, h).

(2)

The coefficients, ~a and ~b are now adjusted to satisfy the continuity conditions on
the potential and the normal dielectric flux density in the y = 0 plane.

(3)

(4)
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Because each of the terms in one or the other of these expressions has (by design) 
the same :z; dependence, the boundary conditions can be satisfied by adjusting the 
coefficients. Simultaneous solution gives 

,xa = ,x(€a - €b)/(€a + €b) (5) 

,xb = 2€b,x/(€a + €b) (5) 
In the limit where €b -+ 00 the field in the upper region, (5), becomes that of a line 
charge over a ground plane, where the image line charge is equal in magnitude and 
opposite in sign to that of the line charge and the field lines are perpendicular to 
the surface. In the opposite extreme where the upper region has a very large €, the 
field lines in the upper region tend to have no normal component. One way to see 
this is to observe that in the limit €a -+ 00 the image line charge becomes equal to 
the line charge. 

6.6.1	 (a) The uniform electric field that would exist if the permittivities were equal is 
written in polar coordinates as 

iP = -Eorcos 4J => E = Eo(cos 4Jir - sin 4Ji",) (1) 

(b) The surface polarization charge density induced by this imposed field is 

a.v = -P: + P: = -(fa - €b)Er 

= €b(1-€a)Er = lt€bEocos4J (2)
€b 

(c) The potential induced by this surface charge density is of the form 

iP = {A cr1"J j r > R 
A(r/R) cos 4Jj r < R	 (3) 

where the outer solution leaves the field as that imposed at infinity and the 
coefficients have been adjusted to insure continuity of the potential at the 
surface. The continuity condition from Gauss' law then gives 

BiPa BiPb) 
- ( €a a;: - €b Br = lt€bEo cos 4J	 (4) 

hence 
A = ItEoR	 (5) 

2 
Substitution of this coefficient into (3) confirms the given potential. 

(d) The exact solution given by (6.6.21) and (6.6.22) is first written in terms of 
It. 

iPa = -REocos4J[':" _ !!:,_It_] (6)
R r2-1t 

iPb = -REocos4J[':" 2(1- It)]	 (7)
R 2-1t 

To linear terms in It, note that 

_It_ -+~. 2(1 - It) -+ 1 _ ~	 (8) 
2-1t 2' 2-1t 2 

Using these expressions in (6) and (7) gives the same approximate expressions 
for the potential as given with the problem. 
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6.6.8 (a) If the dielectric is uniform, then so is the electric field.

6-19

(1)

(b) From (6.6.25), if (1) approximates the electric field then the approximate
polarization surface charge density is

(2)

(c) For Eb < Eel, trap < O. Thus, the distribution of surface charge density and
hence electric field is as shown in Fig. S6.6.8.

(a)

j f\ \¥W
++ ..... ±+=++

(b)
Flpre se.e.8

(d) For the second case, the polarization surface charge density is as sketched in
Fig. S6.6.8b.

6.6.9 (a) The potential is represented as a piece-wise continuous function. In regions
(a) and (b) where the permittivity is uniform, it is expanded in solutions to
Laplace's equation that have zero potential on the boundaries. To satisfy the
potential boundary condition to the left, Y is added to the potential in region
(b).

!
~ sinh [n; (z - a)]. rur

_ ~-An sinh(nll'a/d) sm(d"Y)i

~- ~B sinh [n;(z+a)] . (nll') y.
LJ n . h( /d) sm d Y + ,
n=l sm nll'a

Continuity of Dz at the interface requires that

O<z<a

-a < z < 0

(1)

(nll') (nll'a) (nll') (nll'a)
EaAn d coth T = -BnEb d coth T

which gives

(2)

(3)
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To make the potential continuous at z = 0, the constant V is expanded in 
the same Fourier series as representing the y dependence in the other terms 
in (1). 

V = L
00 

On sin (n~y)	 (4) 
n=l 

Multiplication by sin(m'll'"y/d) and integration on y from 0 to d then gives an 
expression that can be solved for the coefficients. 

4V. 
On = rnr' n odd (5){ o·, n even 

The potential continuity condition is then satisfied by each term in the series. 

4V 
An = Bn + -j n odd	 (6)

n'll'" 

It follows from (3) and (6) that the coefficients in (1) are An = B n = 0 for n 
even and for n odd. 

A 
_ 4V 1 . (7)

n - n'll'" 1 + fa / fb ' 

(b)	 In sketching ~ and E, as shown in Fig. S6.6.9a for the case where the permit­
tivities are equal, note that the potential varies from V to 0 across the gaps. 
Every other point on the boundaries is either at potential V or potential o. 
Thus, equipotentials all terminate and originate in the gaps. The equipoten­
tial ~ = V /2 is in the z = 0 plane. Thus, the potential and field lines in each 
region are as shown in Fig. 5.5.3. 

(c)	 The surface charge density is given by using (6.6.25) with E approximated by 
what it would be if the permittivities were equal. 

(8) 

In the case where f a / fb > 1, U ap < 0, as illustrated by Fig. S6.6.9b. Some 
of the field lines originating to the left terminate in the negative U ap on the 
interface. Thus, the dielectric to the right tends to shield out the field. With 
f a / fb < 1, the surface charge density is positive, and the field tends to be 
shielded out of the material to the left. 

(d)	 With fa :> fb, the surface becomes an equipotential and the field is concen­
trated in the region to the left, as shown in Fig. S6.6.9c. 

http:S6.6.9b
http:S6.6.9c
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c'[) = v--

('l)

-,,

(b)
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(e)

FIKure 98.8.9

(e) With Eb :> Ea , the field is shielded out of the region to the left. The field looks
much as in Fig. S6.6.9c except that the fields are on the right rather than the
left. The equipotential ~ = V /2 is in the z = 0 plane. Thus, the potential and
field lines in each region are as shown in Fig. 5.5.3.

6.7 SMOOTHLY INHOMOGENEOUS ELECTRICALLY
LINEAR DIELECTRICS

6.7.1 Far from the lower end, the system becomes a pair of parallel plates having
the potential difference V separated by a dielectric having its permittivity gradient
in the y direction. Thus, as y - 00, the potential becomes simply

z
~(y - 00) - V- (1)a

The product solutions throughout the region between the plates are as developed
in Example 6.7.1. From those, we add to (1) those that are zero at z = 0 and
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x = a (so as not to disturb the fact that (1) already satisfies the conditions on the 
potential there) and that go to zero as y -+ 00 [again, so that the potential there 
becomes (1)]. 

(2) 

To determine the coefficients, Vn , (2) is evaluated at y = 0 and set equal to the 
potential there. 

V = L
00	

Vn sin n1r x +V:: (3) 
a	 a 

n=l 

Multiplication by sin(m1rx/a) and integration from x = 0 to x = a then gives the 
coefficients and hence the potential. 

a
21 x. n1rVn = - V(I- -) sm -xdx = (2/n1r)V	 (4) 
a 0 a a 

6.1.2	 The solutions to (6.7.2) for the given distributions of permittivity are as found 
in Example 6.7.1 with the roles of x and y interchanged. In the region to the left, 
{3 -+ -{3. Because the system extends to infinity in the ±x directions, exponential 
solutions are selected in each of the regions that decay to zero at infinity. 

(1) 

Continuity of D~ gives one condition on the coefficients. 

[€pe{t~ E~l~=o = [€pe-{t~ E;I~=o => B n = -An (2) 

To match the potential in the x = 0 plane, the first term in the solution to the left, 
in (lb), is expanded in the same series as the other terms. 

V(a_y)= f:Cn sin(n1r y)	 (3)
a	 a 

n=l 

The coefficient is found by multiplying this expression by sin(m1rY/ a) and integrat­
ing from y = 0 to Y= a. 

(4) 

It follows from (2) and (4) that 

(5) 
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6.7'.3 (a) The polarization charge density is approximately

6-23

(1)

I

(b) For EoXp > 0, the field induces positive and negative regions of charge density
in the upper and lower regions respectively. These are centered on the y axis
where the function yexp(-y2/a2) peaks, at y = a/-/i Thus, some of the
field lines entering from below in Fig. 86.7.3 terminate on the negative charge
while some leaving at the top originate on the positive charge. The field is
that of a diffuse dipole.

y

\ )
+

+++
+

( \
Figure 88.'.S





SOLUTIONS TO CHAPTER 7 

7.1 CONDUCTION CONSTITUTIVE LAWS 

'T .1.1 H there are as many conduction electrons as there are atoms, then their num­
ber density is 

N _ ~ _ (6.023 X 1026 (8.9 X 103) _ 4 1028 electrons (1)- - M P - 63.5 - 8. X rn3 
o 

The mobility is then 

0' 5.8 x 107 -3 
IJ- = N_q_ = (8.4 X 1038)(1.6 X 10-19) = 4.3 X 10 (2) 

The electric field required to produce a current density of lA/cm2 is 

E= -
J = 104 

= 1.7 X 1O-4v/rn (3) 
0' 5.9 X 107 

Thus, in copper, the velocity of the electrons giving rise to this current density is 
only 

(4) 

7.2 STEADY OHMIC CONDUCTION 

'T .2.1 Boundary conditions on the conducting region are that Cl> = 0, Cl> = v on 
the perfectly conducting surfaces at r = a and r = b respectively and that there 
is no normal current density on the insulating surfaces where z = 0, z = d. The 
latter are satisfied by a potential that is independent of the axial coordinate, so 
an appropriate solution to Laplace's equation, arranged to be zero on the outer 
electrode, is 

Cl> = Aln(r/ a) (1) 
The coefficient is adjusted to make the potential v on the inner electrode so that 
A = v/ln(b/a) and (1) becomes 

Cl> = vln(r/a)/ln(b/a) (2) 
The current density is 

vO' 1 
(3)

In(b/a) ;: 
and so the total current is 

211'bdO' 1 211'0'd v
i = 21rbdJr = -= v=- (4)

In(b/a) b In(a/b) R 
Thus, R is as given. 

1 
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1.2.2	 The net current passing through the wire connected to the inner spherical 
electrode, " must be equal to the net current at any radius r. 

i = { J . da = 41rr2uE r => E r = ' 2	 (1)-4Js	 1rur 

Thus,

, dr ill


t} = l
a 

Erdr = -
l a 

- 2 = - [ - - -]	 (2) 
b 41ru b r 41ru b a 

By definition 1I = iR 80 R = <t - ~)/41ru. 

1.2.3 (a) Associated with the uniform field is the potential 

1I 
(p = --(y - d)	 (1)

d 

IT the surrounding region is insulating relative to that between the elec­
trodes, the normal component of the current density on the conductor surfaces 
bounded by the insulating surroundings is zero. The potential is constrained 
on the remainder of the surface enclosing the conductors, so the solution is 
uniquely specified. Provided the laws are satisfied everywhere inside the con­
ducting region, the solution is exact. The given solution does indeed satisfy 
the boundary conditions on the surfaces of the conducting region. In the case 
of (a), the potential and normal component of current density must be contin­
uous across the interior interface. Further, in the uniformly conducting regions 
of (a), Laplace's equation must be satisfied, as it is by a uniform field. In the 
case of (b), (7.2.4) is satisfied by the given potential. 

(b) The total current is related to 1I by integrating the current density over the 
surface of the lower conductor. 

(c) A similar calculation gives the resistance in the second case. 

,. cl' -zdz = -UallC l' (1 + -z) dz = 2ua lc = GlI (3)= Ull --1I 
odd 0 1 2d 

1.2.4 The potential in each of the uniformly conducting regions takes the form 

(1) 

where the four coefficients are adjusted to make the potentials zero and 1I on the 
respective electrodes, and make both the potential and the normal current density 
continuous at the interface between the conductors. On the surfaces at r = a and 
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r = b, the current density must be zero, as it is for the potential of (1) because the 
electric field 

E __ !. 8~ _ {(Alr)i~ (2)- r 8q, - (B/r)l~ 

has no radial component. Rather than proceeding to determine the four coefficients 
in (1), we work directly with the electric field. The integration of E from one 
electrode to the other must be equal to the applied voltage. 

"" A "" B-r- + -r- = fJ (3)
2 r 2 r 

Further, the current density must be continuous at the interface. 

(4) 

It follows from these relations that 

(5) 

The current through any crosB-section of the material [say region (a)1 must be equal 
to that through the wire. Thus, 

. l a l a 
[2dO'a dr]s = d O'aE~dr = ( /) - fJ == G'lJ (6)

b "" 1 + O'a O'b b r 

and the resistance is

2dO'a ( / )
G = ( a) In a b (7)

"" 1+:<.A.a. 

'1.2.5 (a) From (7.2.23) 

(1) 

(b) We need the electric field, which follows from (7.2.19) by using the result of 
(1) to evaluate Jo = i/A = GfJ/A' 

(2) 

Thus, the unpaired charge density is evaluated using (7.2.8). 

(3) 
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1.2.6	 (a) The inhomogeneity in permittivity has no effect on the resistance. It is there­
fore given by (7.2.25). 

(b)	 With the steady conduction laws stipulating that the electric field is uniform, 
the unpaired charge density follows from Gauss' law. 

( v) v BE EaV 1
pu=V·EE=V· E-i =--=--------::c (1)

d Y d By da (1 + ~)2 

1.2.7' At a radius r, the area of the conductor (and with r = a and r = b, of the 
outer and inner electrodes, respectively) is 

(1) 

Consistent with the insulating surfaces of the conductor is the requirement that 
the current density and associated electric field be radial. Current conservation 
(fundamentally, the requirement that the current density be solenoidal) then gives 
as a solution to the field laws 

CTEr [2,",2(1- cos i)] = i	 (2) 

and it follows that 

(3) 

The voltage follows as 

v = r Erdr = i(aS 
- 63 )/611"CTo(1- cos ~)6Sa (4)lb	 2 

and this relation takes the form i = vG, where G is as given. 

7' .2.8 There can be no current density normal to the interfaces of the conducting 
material having normals in the azimuthal direction. These boundary conditions are 
satisfied by an axially symmetric solution in which the current density is purely 
radial. In that case, both E and J are independent of q,. Then, the total current is 
related to the current density and (through Ohm's law) electric field intensity at 
any radius r by 

i =	 211"QdrJr = 211"QdCToaEr (1) 
Thus, ,

Er = 
211"QdCToa 

(2) 

and because 
Erdr = i(a - b) = vl a 

(3)
b 211"QdCToa 

G = 211"QdaCTo/(a - b)	 (4) 
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7.3	 DISTRIBUTED CURRENT SOURCES AND ASSOCIATED 
FIELDS 

'1.3.1 In the conductor, the potential distribution is a particular part comprised of 
the potential due to the point current soruce, (6) with i p -+ I and 

In order to satisfy the condition that there be no normal component of E at the 
interface, a homogeneous solution is added that amounts to a second source of the 
same sign in the lower half space. Of course, such a current source could not really 
exist in the lower region so if the field in the upper region is to be given some 
equivalent physical situation, it should be pictured as equivalent to a pair of like­
signed point current sources in a uniform conductor. In any case, this second source 
is located at r = vz2 + (y + h)2 + z2 and hence the potential in the conductor is as 
given. In the lower region, the potential must satisfy Laplace's equation everywhere 
(there are no charges in the lower region). The field in this region is uniquely 
specified by requiring that the potential be consistent with (a) evaluated at the 
interface 

(1) 

and that it go to zero at infinity in the lower half-space. The potential that matches 
these conditions is that of a point charge of magnitude q = 2Ie/u located on the y 
axis at y = h, the given potential. 

'[.3.2 (a) First, what is the potential associated with a uniform line current in a uniform 
conductor? In the steady state 

(1) 

and for a surface S that has radius r from the line current, 

K,
K, = 27rrJr = 27rruEr => E r = - ­	 (2)

27rur 

Within a constant, the associated potential is therefore 

K, 
~ = --In(r)	 (3)

27rU 

To satisfy the requirement that there be no normal current density in the 
plane y = 0, the potential is that of the line current located at y = h and an 
image line current of the same polarity located at y = -h. 
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Note that the normal derivative of this expression in the plane y = 0 is indeed 
zero. 

(b)	 In the lower region, the potential must satisfy Laplace's equation everywhere 
and match the potential of the conductor in the plane y =o. 

(5) 

This has the potential distribution of an image line current located at 11 = h. 
With the magnitude of this line current adjusted so that the potential of (5) 
is matched at z = 0, 

(6) 

the potential is matched at every other value of z as well. 

1.3.3	 First, the potential due to a single line current is found from the integral form 
of (2). 

(1) 

Thus, for a single line current, 

(2) 

For the pair of line currents, spaced by the distance d, 

X,	 X, [ dCOS 4J ] K,dcos4J
~ =	 --lln(r - dcos4J) -InrI = --In 1--- --. --':::------'- (3)

2~q	 2~q r 2~qr 

7.4	 SUPERPOSITION AND UNIQUENESS OF STEADY 
CONDUCTION SOLUTIONS 

1.4.1 (a) At r = b, there is no normal current density 80 that 

(1) 

while at r = a, 

(2)
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Because the dependence of the potential must be the same as the radial deriva­
tive in (2), assume the solution takes the form 

cos(}
Cb = Arcos(} + B-

2
­	 (3)

r 

Substitution into (1) and (2) then gives the pair of equations 

1	 -2b-~] [A] = [ 0 ] (4)[ 0' -20'a S B Jo 

from which it follows that 

(5) 

Substitution into (3) results in the given potential in the conducting region. 

(b)	 The potential inside the hollow sphere is now specified, because we know that 
the potential on its wall is 

(6) 

Here, the origin is included, so the only potential having the required depen­
dence is 

Cb = Crcos(} (7) 

Determination of C by evaluating (7) at r = b and setting it equal to (6) gives 
C and hence the given interior potential. What we have carried out is an 
"inside-outside" calculation of the field distribution where the "inside" region 
is outside and the "outside" region is inside. 

'1.4.2 (a) This is an example of an inside-outside problem, where the potential is first 
determined in the conducting material. Because the current d~nsity normal 
to the outer surface is zero, this potential can be determined without regard 
for the geometry of what may be located outside. Then, given the potential 
on the surface, the outside potential is determined. Given the tP dependence 
of the normal current density at r = b, the potential in the conducting region 
is taken as having the form 

(1) 

Boundary conditions are that 

8Cbb 
Jr = -0'-- =0	 (2)

8r 

at r = a, which requires that B = asA/2 and that 

(3)
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at r = b. This condition together with the result of (2) gives A = Jo/CT[(a/b)3­
11. Thus, the potential in the conductor is 

(4) 

(b)	 The potential in the outside region must match that given by (4) at r = a. 
To match the 0 dependence, a dipole potential is assumed and the coefficient 
adjusted to match (4) evaluated at r = a. 

a 3Joa ( / )2	 (5)~ = 2CT[(a/b)3 _ 11 a r cos 0 

1.4.3	 (a) This is an inside-outside problem, where the region occupied by the conductor 
is determined without regard for what is above the interface except that at the 
interface the material above is insulating. The potential in the conductor must 
match the given potential in the plane y = -a and must have no derivative 
with respect to y at y = o. The latter condition is satisfied by using the cosh 
function for the y dependence and, in view of the x dependence of the potential 
at y = -a, taking the x dependence as also being cos(,Bx). The coefficient is 
adjusted so that the potential is then the given value at y = o. 

~b _ V cosh ,By ,B 
-	 cosh f3a cos x (1) 

(b)	 in the upper region, the potential must be that given by (1) in the plane y = 0 
and must decay to zero as y --> 00. Thus, 

~a = V cos f3x e-{3Y (2)
cosh f3a 

1.4.4	 The potential is zero at 4J = 0 and 4J = 11"/2, so it is expanded in solutions to 
Laplace's equation that have multiple zeros in the 4J direction. Because of the first 
of these conditions, these are solutions of the form 

~ ex r±n sin nO	 (1) 

To make the potential zero at 4J = 11"/2, 

11"n2" = 'If, 2'1f, ... => n= 2,4, ... 2m; m = 1,2,3, ... (2) 

Thus, the potential is assumed to take the form 

2m + Bm r-
2m~ =	 L

00 

(Am r ) sin 2m4J (3) 
m=l 
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At the outer boundary there is no normal current density, so 

a.
-(r= a) =0 (4)ar 

and it follows from (3) that 

(5) 

At r = b, the potential takes the form 

• = E
co 

Vm sin2mtP = V (6) 
m=l 

The coefficients are evaluated as in (5.5.8) through (5.5.9). 

Jr 2 
VVn -

11" l / v sin 2nOdO = - i nodd 
4 0 n 

Thus, 
Am = 4v/m1rb2m[l- (a/b)4mJ (8) 

Substitution of (8) and (5) into (8) results in the given potential. 

'1.4.5 (a) To make the tP derivative of the potential zero at tP = 0 and tP = Q, the tP 
dependence is made cos(n1l"tP/Q ). Thus, solutions to Laplace's equation in the 
conductor take the form 

where n = 0, 1,2, ... To make the radial derivative zero at r = b, 

(2) 

so that each term in the series 

(8) 

satisfies the boundary conditions on the first three of the four boundaries. 
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(b)	 The coefficients are now determined by requiring that the potential be that 
given on the boundary r = a. Evaluation of (3) at r = a, multiplication by 
cos(m'lrt/J/oe) and integration gives 

a 2	 a 
tI 1/ m'lrt/J tI1 m'lr-- cos (-)dt/J + - cos (-t/J)dt/J
2 0 oe 2 a/2 oe 

=	 fa f An [(a/b) (ntr/a) + (b/a)(ntr/a)]
10 n=O (4) 

cos (n'lrt/J) cos (m'lrt/J)dt/J 
oe oe 

2oe. m'lr
=--sm(-)

m'lr 2 

and it follows that (3) is the required potential with 

(5) 

'1.4.6 To make the potential zero at t/J = 0 and t/J = 'Ir/2, the t/J dependence is made 
sin(2nt/J). Then, the r dependence is divided into two parts, one arranged to be zero 
at r = a and the other to be zero at r = b. 

00 

~ = 2: {An[(r/a)2n - (a/r)2nJ + Bn{(r/b)2n - (b/r)2nJ} sin(2nt/J) (1) 
n=l 

Thus, when this expression is evaluated on the outer and inner surfaces, the bound­
ary conditions respectively involve only Bn and An. 

~(r = a) = tla = L
00 

Bn[(a/b)2n - (b/a)2nJ sin 2nt/J (2) 
n=l 

~(r = b) = tlb = L
00 

An[(b/a)2n - (a/b)2nJ sin2n.p (3) 
n=l 

To determine the Bn's, (2) is multiplied by sin(2mt/J) and integrated 

(4) 

and it follows that for n even Bn = 0 while for n odd 

(5)
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A similar usage of (3) gives 

(6) 

By definition, the mutual conductance is the total current to the outer electrode 
when its voltage is zero divided by the applied voltage. 

'a. I "..=0 = d 
fr

/ _':11'_1 _ ad4J = _ d 
fr 2 

co	 (7)G = _-.!!.. l 2 a""'" ua l / E An 4n sin 2n4Jd4J 
Vb Vb 0 ar r-a Vb 0 n=l a 

and it follows that the mutual eonductance is 

(8) 

7.5	 STEADY CURRENTS IN PIECE-WISE UNIFORM 
CONDUCTORS 

7.5.1 To make the current density the given uniform value at infinity, 

Jo 
• -+ --rcosOj r -+ 00	 (1)

Ua 

At the surface of the sphere, where r = R 

(2) 

and 
(3) 

In view of the 0 dependence of (I), select solutions of the form


Jo cosO


.a=.b 

.a = --rcosO + A--' .b = BrcosO	 (4)
Ua r 2 '


Substitution into (2) and (3) then gives


A __ JoRs (ua - Ub) • 

- Ua (2ua + Ub) , 
(5) 

and hence the given solution. 
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1.5.2 These are examples of inside-outside approximations where the field in region 
(a) is determined first and is therefore the "inside" region. 

(a)	 HUb:::> 0'.. , then 
~a(r =R) $lid constant =0 (1) 

(b)	 The field must be -(Jolu..)I. far from the sphere and satisfy (1) at r = R. 
Thus, the field is the sum of the potential for the uniform field and a dipole 
field with the coefficient set to satisfy (1). 

~.. $lid RJo [ -r - (IR r )2] cosO	 (2) 
0'.. R 

(c)	 At r = R, the normal current density is continuous and approximated by 
using (2). Thus, the radial current density at r = R inside the sphere is 

A solution to Laplace's equation having this dependence on 0 is the potential 
of a uniform field, ~ = Brcos(O). The coefficient B follows from (3) so that 

~b $lid _ 3JoR(rIR) cosO	 (4)
Ub 

In the limit where Ub :::> 0'.. ,	 (2) and (4) agree with (a) of Prob. 7.5.1. 

(d)	 In the opposite extreme, where 0'.. :::> Ub, 

(5) 

Again, the potential is the sum of that due to the uniform field that prevails 
at infinity and a dipole solution. However, this time the coefficient is adjusted 
so that the radial derivative is zero at r = R. 

.. $IId---RJo [ -+-r 1 ( R1 )2]	 (6)~	 r cosO 
0'.. R 2 

To determine the field inside the sphere, potential continuity is used. From 
(6), the potential at r = R is ~b = -(3RJo/2u..)cos 0 and it follows that 
inside the sphere 

b 3 RJo 1 )~	 $lid ---(r R cosO (7)
2 0'.. 

In the limit where 0'.. :::> Ub,	 (a) of Prob. 7.5.1 agrees with (6) and (7). 
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'1.5.3 (a)	 The given potential implies a uniform field, which is certainly irrotational and 
solenoidal. Further, it satisfies the potential conditions at z = 0 and z = -I 
and implies that the current density normal to the top and bottom interfaces 
is zero. The given "inside" potential is therefore the correct solution. 

(b)	 In the "outside" region above, boundary conditions are that 

t»(z = O,z) = -vz/'j t»(z, 0) = OJ 
z

t»(a, z) = OJ	 ~(-l, z) = v(1- -) (1)
a 

The potential must have the given linear dependence on the bottom horizontal 
interface and on the left vertical boundary. These conditions can be met by 
a solution to Laplace's equation of the form :sz. By translating the origin of 
the z axis to be at z = a, the solution satisfying the boundary conditions on 
the top and right boundaries is of the form 

v 
t» = A(a - z)z = - la (a - z)z	 (2) 

where in view of (1a) and (1c), setting the coefficient A = -v/l makes the 
potential satisfy conditions at the remaining two boundaries. 

(c)	 In the air and in the uniformly conducting slab, the bulk charge density, Pu, 
must be zero. At its horizontal upper interface, 

CTu = faE: -	 fbE~ = -fovz/'a (3) 

Note that z < 0 so if v > 0, CTu > 0 as expected intuitively. The surface 
charge density on the lower surface of the conductor cannot be specified until 
the nature of the region below the plane z = -b is specified. 

(d)	 The boundary conditions on the lower "inside" region are homogeneous and 
do not depend on the "outside" region. Therefore the solution is the same as 
in (a). The potential in the upper "outside" region is one associated with a 
uniform electric field that is perpendicular to the upper electrode. To satisfy 
the condition that the tangential electric field be the same just above the 
interface as below, and hence the same at any location on the interface, this 
field must be uniform. H it is to be uniform throughout the air-space, it 
must be the same above the interface as in the region where the bounding 
conductors are parallel plates. Thus, 

v. v.	 ()E = ;Ix + yl.	 4 

The associated potential that is zero at z = 0 and indeed on the surface of 
the electrode where z = -za/l is 

v v 
~ = -z+ -z	 (5)

a I 
Finally, instead of (3), the surface charge density is now 
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'1.5.4 (a) Because they are surrounded by either surfaces on which the potential is con­
strained or by insulating regions, the fields within the conductors are deter­
mined without regard for either the fields within the square or outside, where 
not enough information has been given to determine the fields. The condi­
tion that there be no normal current density, and hence no normal electric 
field intensity on the surfaces of the conductors that interface the insulating 
regions, is automatically met by having uniform fields in the conductors. Be­
cause these fields are normal to the electrodes that terminate these regions, 
the boundary conditions on these surfaces are met as well. Thus, regardless 
of what d is relative to a, in the upper conductor, 

E = -ix!j ~ = !Zj J = -O'!ix	 (l) 
a a a 

while in the conductor to the right 

• tJ .... tJ J tJ.	 ( )E = -I)' -j 'W' = -1Ij = -0'-1	 2 a a a )' 

(b) In the planes 11 = a and Z = a the potential inside must be the same as given 
by (l) and (2) in these planes, linear functions of Z and of 11, respectively. It 
must also be zero in the phmes Z = 0 and 11 = O. A simple solution meeting 
these conditions is 

tJ 
~= AZ1I= -Z1I	 (3)

a2 

Figure Sf.&•.( 

(c)	 The distribution of potential and electric field intensity is as shown in Fig. 
S7.5.4. 

'1.5.5 (a) Because the potential difference between the plates, either to the left or to 
the right, is zero, the electric field there must be zero and the potential that 
of the respective electrodes. 

(l) 

(b) Solutions that satisfy the boundary conditions on all but the interface at z = 0 
are 

(2a) 
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DO

~b = V + L Bnenrrs/4 sin n1l' y
a

n=1

(c) At the interface, boundary conditions are

8~4 8~b
-0'4-- = -0'1>--

8z 8z

~4=~1>

(d) The first of these requires of (2) that

Written using this, the second requires that

00 DO

""' A . n1l' ""' O'a A . n1l'LJ nsm-y= v- LJ - nsm-y
n=1 a n=1 0'1> a

7-15

(26)

(3)

(4)

(5)

(6)

The constant term can also be written as a Fourier series using an evaluation
of the coefficients that is essentially the same as in (5.5.3)-(5.5.9).

DO 4v . n1l'
v= L-sm-y

1I'n a
n=1

Thus,

(
O'a) 4vAn 1+- =-
0'1> n1l'

and it follows that the required potential is

(7)

(8)

(9)

=~=
I

==Ql[)~'~==

Figure 57'.&.&
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(e) In the case where Ub ::> U a , the "inside" region is to the left where bound­
ary conditions are on the potential at the upper and lower surfaces and on 
its normal derivative at the interface. In this limit, the potential is uniform 
throughout the region and the interface is an equipotential having ~ = tI. 
Thus, the potential in the region to the right is as shown in Fig. 5.5.3 with 
the surface at 11 = b playing the role of the interface and the surface at 11 = 0 
at infinity. In the case where the region between electrodes is filled by a uni­
form conductor, the potential and field distribution are as sketched in Fig. 
87.5.5. In the vicinity of the regions where the electrodes abut, the potential 
becomes that illustrated in Fig. 5.7.2. By symmetry, the plane z = 0 is one 
having the potential ~ = tI/2. 

(f) The surface at 11 = a/2 is a plane of symmetry in the previous configuration 
and hence one where E" = O. Thus, the previous solution applies directly to 
finding the solution in the conducting layer. 

7.6 CONDUCTION ANALOGS 

'1.6.1 The analogous laws are 

E=-V~ E=-V~ (1) 

V'UE=8 V'EE=pu (2) 

The systems are normalized to different length scales. The conductivity and per­
mittivity are respectively normalized to U c and E£ respectively and similarly, the 
potentials are normalized to the respective voltages Vc and V£. 

(z, 11, z) = (~'ll' &:)l£ (3) 

~=Vc~ ~=V£~ (4) 

E = (Vc/lc)~ E = (V£/l£)~ (5) 

8 = (ucVc/~)I. (6) 

Pu = (E£Vdl~)p (7)
'-U 

By definition, the normalized quantities are the same in the two systems 

Q:(r) = .€(r) (8) 

I.(r) = !!.u(r) (9) 

so that both systems are represented by the same normalized laws. 

E=-~ (10) 
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(11) 
Thus, the capacitance and conductance are respectively 

C = fEIE£fE . d1!/ LE . d!	 (12) 

G = uele £d . dll/ L::&· dll	 (13) 

where, again by definition, the normalized integral ratios in (12) and (13) are the 
same number. Thus, 

~G=~~=!~	 (~ 
U e Ie U Ie 

Note that the deductions summarized by (7.6.3) could be made following the same 
normalization approach. 

7.7 CHARGE RELAXATION IN UNIFORM CONDUCTORS 

1.1.1 (a)	 The charge is given when t = 0 

.1r.1r	 ()
P =	 Pi sm ~ xsm ,? 1 

Given the charge density, none of the bulk or surface conditions needed to 
determine the field involve time rates of change. Thus, the initial potential 
distribution is determined from the initial conditions alone. 

(b)	 The properties of the region are uniform, so (3) and hence (4) apply directly. 
Given the charge is (c) of Prob. 4.1.4 when t = 0, the subsequent distribution 
of charge is 

• 1r • 1r tff' f (2)P =	 Po ()t sm ~zsm "bY; Po = Pie- j T == ; 

(c)	 As in (a), at each instant the charge density is known and all other conditions 
are independent of time rates of change. Thus, the potential and field distri­
butions simply go along with the changing charge density. They follow from 
(a)	 and (b) of Prob. 4.1.4 with Po(t) given by (2). 

(d) Again, with Po(t) given by (2), the current is given by (6) of Prob. 4.1.4. 

1.1.2	 (a) The line charge is pictured as existing in the same uniformly conducting ma­
terial as occupies the surrounding region. Thus, (7.7.3) provides the solution. 

AI = AI(t = O)e-tff'; T = f./u	 (1) 

(b) There is no initial charge density in the surrounding region. Thus, the charge 
density there is zero. 

(c)	 The potential is given by (1) of Probe 4.5.4 with AI given by (1). 
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1.1.3 (a) With q < -qc, the entire surface of the particle can collect the ions. Equation 
(7.7.10) becomes simply 

i =	 -p.p61fR2 E a r (cos6 +!!...) sin6d6 (1)Jo qc 

Integration and the definition of qc results in the given current. 

(b)	 The current found in (a) is equal to the rate at which the charge on the 
particle is increasing. 

dq p.p 
-=--q	 (2)
dt	 E 

This expression can either be formally integrated or recognized to have an 
exponential solution. In either case, with q(t = 0) = qo, 

(3) 

1.1.4 The potential is given by (5.9.13) with q replaced by qc as defined with (7.7.11) 

~ = -EaRcos6[..!:.. _ (R/r)2] + 121rEoR2Ea (1)
R 41rEo r 

The reference potential as r - 00 with 6 = 1f/2 is zero. Evaluation of (1) at r = R 
therefore gives the particle potential relative to infinity in the plane 6 = 1r/2. 

~= 3REa	 (2) 

The particle charges until it reaches 3 times a potential equal to the radius of the 
particle multiplied by the ambient field. 

7.8	 ELECTROQUASISTATIC CONDUCTION LAWS FOR 
INHOMOGENEOUS MATERIAL 

1.8.1	 For t < 0, steady conduction prevails, so a( )/at = 0 and the field distribu­
tion is defined by (7.4.1) 

v ·(uV~) =-8	 (1) 

where 
~ = ~I: on S'j -uV~ = 3I: on S" (2) 

To see that the solution to (1) subject to the boundary conditions of (2) is unique, 
propose different solutions ~a and ~b and define the difference between these solu­
tions as 

~d = ~a - ~b	 (3) 
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Then it follows from (1) and (2) that 

(4) 

where 
~d = 0 on S'; (5) 

Multiplication of (4) by ~d and integration over the volume V of interest gives 

Gauss' theorem converts this expression to 

(7) 

The surface integral can be broken into one on S', where ~d = 0 and one on SIt, 
where UV~d = O. Thus, wha.t is on the left in (7) is zero. If the integrand of what 
is on the right w.ere finite anywhere, the integral could not be zero, so we conclude 
that to within a constant, ~d = 0 and the steady solution is unique. 

For 0 < t, the steps beginning with (7.8.11) and leading to (7.8.15) apply. 
Again, the surface integration of (7.8.11) can be broken into two parts, one on S' 
where ~d = 0 and one on SIt where -UV~d = O. Thus, (7.8.16) and its implications 
for the uniqueness of the solution apply here as well. 

1.9	 CHARGE RELAXATION IN UNIFORM AND PIECE­
WISE UNIFORM SYSTEMS 

'T.9.1 (a)	 In the first configuration, the electric field is postulated to be uniform through­
out the gap and therefore the same as though the lossy segment were not 
present. 

E = irv/rln(a/b)	 (1) 

This field is iITotational and solenoidal and integrates to v between r = b 
and r = a. Note that the boundary conditions at the interfaces between the 
lossy-dielectric and the free space region are automatically met. The tangential 
electric field (and hence the potential) is indeed continuous and, because there 
is no normal component of the electric field at these interfaces, (7.9.12) is 
satisfied as well. 

(b) In the second configuration, the field is assumed to take the piece wise form 

R<r<a	 (2)
b < r < R 
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where A and B are determined by the requirements that the applied voltage be 
consistent with the integration of E between the electrodes and that (7.9.12) 
be satisfied at the interface. 

Aln(a/R) + bln(R/b) = 4)	 (3) 

;w [EoA _ Ebb] _ ub = 0 (4)
R R R 

It follows that 
A = (;WEb + u)v/Det (5) 

!J =;wEov/Det	 (6) 

where Det is as given and the relations that result from substitution of these 
coefficients into (2) are those given. 

(c) In the first case, the net current to the inner electrode is 

'l • 1[( )b b I v lo:buv , =1w 271" -	 0: Eo + 0: E bln(a/b) + bln(a/b) (7) 

This expression takes the form of the impedance of a resistor in parallel with 
a capacitor where 

i = vG + jwCv (8) 

Thus, the C and G are as given in the problem. 
In the second case, the equivalent circuit is given by Fig. 7.9.5 which implies 

that 
'l v(;wCa )(1 + ;wRCb),=	 (9)

1 + jwR(Ca + Cb) 

In this case, the current to the inner electrode follows from (6) as 

27l"l~·WE(1 + i!!!!)
'l	 In a R tT , = ---_...>....:.!.~----'---~	 (10) 

1 + jwln(Rlb) [~ + E ] 
tT InlalR) 'n(rlb) 

Comparison of these last two expressions results in the given parameters. 

1.9.2	 (a) In the first case, where the interface between materials is conical, the electric 
field intensity is what it would be in the absence of the material. 

(1) 

This field is perpendicular to the perfectly conducting electrodes, has a contin­
uous tangential component at the interface and trivially satisfies the condition 
of charge conservation at the interface. 
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In the second case, where the interface between materials is spherical, the field 
takes the form 

E _. R { 1/,-2j R < r < a 
-I.. e A	 (2)

D/r2
j b<r<R 

The coefficients are adjusted to satisfy the condition that the integral of E 
from r = b to r = a be equal to the voltage, 

.. 11 1'.11 ..A(---)+D(---)=v	 (3)
R a b R 

and conservation of charge at the interface, (7.9.12). 

0' A • (1 ~) 0--D+3W f --f- ==	 (4)R2 Ow W 

Simultaneous solution of these expressions gives 

1 = (0' + jWf)fJ/Det	 (5) 

iJ = jWfo/Det 

where

a-R . [a-R R-b]


Det:= O'(~) + 3W f(~) + fo(---,;Il) 

which together with (2) give the required field. 

(b)	 In the first case, the inner electrode area subtended by the conical region oc­
cupied by the material is 271"b2 [1- cos(a/2)J. With the voltage represented as 
v = Re fJexp(jwt), the current from the inner spherical electrode, which has 
the potential v, is 

(6) 

Equation (6) takes the same form as for the terminal variables of the circuit 
shown in Fig. S7.9.2a. Thus, 

(7) 

abO' 
G = 271"[1 - cos(a/2)J­

a- b 

. (271"-a)]abfo
Ca = 271" [1 - cos -2- a _ b	 (8) 

http:S7.9.2a


7-22 Solutions to Chapter 7

abf
Cb = 211"[1 - cos(a/2)] a _ b

t-
+
v

(a)

t-•
+

v

(b)

Flpre Sf.9.J

(9)

(11)

(12)

(10)= 411'Rba _ ,'w(411'RbE + 411'aR Eg )
R-b R-b a-R

This takes the same form as the relationship between the terminal voltage
and current for the circuit shown in Fig. S7.9.2b.

"I ;wCa(G + ;wCb) ~
t= v

G + ;w(Ca + Cb)
Thus, the elements in the equivalent circuit are

G = 4 Rbu. C = 41rRbfo • C
b

= 41rRbf
1r R _ b, a R-b I R-b

In the second case, the current from the inner electrode is

"I 2(ufJ. fJ)
t = 41rb b2 + ,wfb2

,'w( 411'aREg ) (4l1'Rba + ,'w 411'Rb f)
a-R R-b R-b

7.9.3 In terms of the potential, v, of the electrode, the potential distribution and
hence field distribution are

(3)

(2)

(1)
va

~ = v(a/r) => E = il'2
r

The total current into the electrode is then equal to the sum of the rate of increase
of the surface charge density on the interface between the electrode and the media
and the conduction current from the electrode into the media.

i = l [:t fEr +uEr]da

In view of (1), this expression becomes

. (fa dv ua) dv
t = 21ra2

- - + -v = 21rfa- + (21rua)v
a2 dt a2 dt

The equivalent parameters are deduced by comparing this expression to one de­
scribing the current through a parallel capacitance and resistance.
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J 
'1.9.4 (a)	 With A and B functions of time, the potential is assumed to have the same 

; dependence as the applied field. 

cos; 
~a = -Ercos;+A-­	(1)

r 

~b = Brcos; (2) 

The coefficients are determined by continuity of potential at r = a 

(3) 

and the combination of charge conservation and Gauss' continuity condition, 
alsoatr=a 

(UaE: - ubE~) + :t(f:aE: - f:bE~) = 0 (4) 

Substitution of (1) and (2) into (3) and (4) gives 

A	 A 
- - Ba = Ea => B = - - E	 (5)
a	 a2 

A	 d A 
CTa(E - a2) + Ub B + dt [f:a(E + a2) + f:b B ] = 0 (6) 

and from these relations, 

With Eo the magnitude of a step in E(t), integration of (7) from t = 0- when 
A = 0 to t = 0+ shows that 

(8) 

A particular solution to (7) for t > 0 is 

A = (Ub - ua)a2Eo	 (9)
Ub+Ua 

while a homogeneous solution is exp(-t/T), where 

(10) 

Thus, the required solution takes the form 
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where the coefficient Al is determined by the initial condition, (8). Thus, 

[(fb- fa) (Ub - Ua )] 2E -t/" + (Ub - Ua ) 2EA --
(fb + fa) 

-
(Ub + O'a) 

a oe 
(Ub + u a ) 

a 0 (12) 

The coefficient B follows from (5). 

A
B= --Eo	 (13) 

a2 

In view of this last relation, and then (12), the unpaired surface charge density 
is 

A A 
U au = fa (Eo + R2) + fb( R2 - Eo) 

(14) 
= 2(faUb - fbUa) E (1 _ e- t /,,) 

Ua + Ub 
o 

(b)	 In the sinusoidal steady state, the drive in (7) takes the form Re t'exp(jwt) 
and the resonse is of the form Re ..4exp(jwt). Thus, (7) shows that 

..4 - [(Ub - u a ) + jW(fb - fall 2 t (15) 
- (O'b + u a ) + jW(fb + fa) a p 

and in turn, from (5), 

lJ = _ 2(ua + jWfa ) (16) 
(Ub + u a ) + jW(fb + fa) 

This expressions can then be used to show that the complex amplitude of the 
unpaired surface charge density is 

A 2(Ubfa - Uafb) ( ) 

U 
au = (Ub + Ua ) + jW(fb + fa) 17 

(c)	 From (1) a.nd (2) it is clear that the plane <p = 7f/2 is one of zero potential, 
regardless of the values of the drive E(t) or of A or B. Thus, the z = 0 
plane can be replaced by a perfect conductor. In the limit where U a --+ 0 and 
W(fa + fb)/Ub <: 1, (15) and (16) become 

(18) 

iJ --+ - 2jwfa E (19) 
Ub p 

Substitution of these coefficients into the sinusoidal steady state versions of 
(1)	 and (2) gives 

~a = -Re EA a [r- - -a] cos<peJw. t (20)Par 

A ...b R 2jwfa E J·wt ....	 =-e--pe (21) 
Ub 

These are the potentials that would be obtained under sinusoidal steady state 
conditions using (a.) and (b) of Prob. 7.9.5. 
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1.9.5	 (a) This is an example of an "inside-outside" situation. The "inside" region is the 
one where the excitation is applied, namely region (a). In so far as the field 
in the exterior region is concerned, the surface is essentially an equipotential. 
Thus, the solution given by (a) must be constant at r = a (it is zero), must 
become the uniform applied field at infinity (which it does) and must be 
comprised of solutions to Laplace's equation (which certainly the uniform 
and dipole fields are). 

(b) To approximate	 the interior field, note that in general charge conservation 
and Gauss' law (7.9.12) require that 

(1) 

So long as the interior field is much less than that applied, this expression can 
be approximated by 

(2) 

which, in view of (a), is a prescription for the normal conduction current den­
sity inside the cylinder. This is then the boundary condition on the potential 
in region (b), the interior of the cylinder, and it follows that the potential 
within is 

b 2fo dE 
Cl> = Arcosq, = --;;rcosq,"dt	 (3) 

Note that the approximation made in going from (1) to (2) is valid if 

f dE
fo~:> f~ ~ f02cosOE:> -f02cosq,-d (4)

0' t 

Thus, if E(t) = Eocoswt, the approximation is valid provided 

1 >­
Wf	 (5) 
U 

V 
1.9.6	 (a) Just after the step, there has been no time for the relaxation of unpaired 

charge, so the system is still behaving as if the conductivity were zero. In any 
case, piece-wise solutions to Laplace's equation, having the same 0 dependence 
as the dipole potential and having the dipole potential in the neighborhood 
of the origin are 

(1) 

b P cosO
Cl> = ---- + Br cos 0	 (2)

411"fo r 2 

At r = a, 
Cl>a = Cl>b	 (3) 
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a~a a~b 
-f--=-f -	 (4)ar 0 ar 

Substitution of (1) and (2) into these relations gives 

[ -!s- -a] [A] P [a]	 (5)!t fo B = 411"foa3 1 

Thus, the desired potentials are (1) and (2) evaluated using A and B found 
from (5) to be 

A= ~ (6)
411"(fo + 2f) 

B = 2(fo - f)p ( ) 
411"foa3(fo + 2f) 7 

(b)	 After a long time, charge relaxes to the interface to render it an equipotential. 
Thus, the field outside is zero and that inside is determined by making Bin 
(2) satisfy the condition that ~b(r = a) = O. 

A=O (8) 

B=--P­ (9)
411"foa3 

(c)	 In the general case, (4) is replaced by 

a~a a a~a a~b 

ua;:- + at (fa;:- - fo ar ) = 0 (10) 

and substitution of (1) and (2) gives 

2uA + dd [2fA + fo( -2p + B(3 )] = 0 (11)
t 411"fo 

With B replaced using (5a),


dA A 3 dp 2f+fo
-+-- . T=-­ (12)
dt T - 411"(2f + fo) dt' 2u 

With p a step function, integration of this expression from t = 0- to t = 0+ 
gives 

(13) 

It follows that 

(14) 

and in tum that 
T

Po / 1 ) (3e- t 

B = 411"a3 2f + f - f	 (15)o o 

As t - 0, these expressions become (6) and (7) while as t - 00, they are 
consistent with (8) and (9). 
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1.9.1	 (a) This is an fIIinside-outside- situation where the layer of conductor is the fIIin_ 
side- region. The potential is constrained at the lower surface by the electrodes 
and the y derivative of the potential must be zero at the upper surface. This 
potential follows as 

ebb - V cosh fjy Q	 (1) 
-	 cosh fjd cos 1JZ 

The potential must be continuous at the upper interface, where it follows from 
(1) with y = 0 that it is 

ebG(y = 0) = V cos fjz (2)
coshfjd 

The potential that matches this condition in the plane y = 0 and goes to zero 
as y goes to infinity is 

ebG= V cosfjz e-{J" (3) 
coshfjd 

Thus, before t = 0, the surface charge density is 

ebG ebb 
a. u = - [€o aa _ € aa ] = €ofjV cosfjz (4) 

y y 1/=0 cosh fjd 

(b) Once	 the potential imposed by the lower electrodes is zero, the potentials in 
the respective regions take the form 

ebG= Ae-{JI/ cos fjz	 (Sa) 

.....b _ Asinhfj(y + d) Q (Sb) 
'I/' - sinhfjd cos1Jz 

Here, the coefficients have been adjusted so that the potential is continuous 
at y = o. The remaining condition to be satisfied at this interface is (7.9.12). 

b) bata (€oE; - €E" - aE" = 0	 (6) 

Substitution from (S) shows that 

ata [(€ofj + €cothfjd) cos <p A]+ afj cothfjdcos <pA = 0 (7) 

The term inside the time derivative is the surface charge density. Thus, (7) 
can be converted to a differential equation for the surface charge density 

dt1.a a.a 
dt+~=O	 (8) 

where 
T= ( €otanhfjd+€)/a 

Thus, given the initial condition from part (a), the surface charge density is 

_ €ofjV cos fjz -tIT	 (9) 
a.a - cosh fjd e 
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'1.9.8 (a)	 Just after Qhas been turned on, there is still no surface charge on the interface. 
Thus, when t = 0+, 

~<I(y = 0) = ~b(y = 0)	 (1) 

B~<I B~b 
Eo-(Y = 0) = E-(Y = 0)	 (2)

By By 

It follows from the postulated solutions that 

(3) 

-EoQ - Eoqb = -Eq<l	 (4) 

and finally that q<l(O+) and qb(O+) have the given values. 

(b)	 As t -+ 00, the interface becomes an equipotential. It follows from the postu­
lated solution evaluated at the interface, where the potential must be what it 
is at infinity, namely zero, that 

(5) 

(c)	 Throughout the transient, (1) must hold. However, the condition of (2) is 
generalized to represent the buildup ofthe surface charge density, (7.9.12). At 
y=O 

(6) 

When t > 0, Q is a constant. Thus, evaluation of (6) with the postulated 
solutions gives 

dqb dq<l
E0-;U - Edt - uq<l = 0	 (7) 

Using (1) to eliminate qb, this expression becomes 

(8) 

where T = (Eo + E)/U. The solution to this expression is Aexp(-t/T), where 
A is the initial value found in part (a). The other image charge, qb, is then 
given by using (1). 

'1.9.9 (a)	 As t -+ 00, the surface at z = 0 requires that there be no normal current 
density and hence electric field intensity on the (b) side. Thus, all boundary 
conditions in region (b) and Laplace's equation are satisfied in region (b) by 
a uniform electric field and a linear potential. 

(1) 
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The field in region (a) can then be found. It has a potential that is zero on 
three of the four boundaries. On the fourth, where z = 0, the potential must 
be the same as given by (1) 

(2) 

To match these boundary conditions, we take the solution to Laplace's equa­
tion to be an infinite sum of modes that satisfy the first three boundary 
conditions. 

~" = _ ~ An sinh ~(z - b) sin (nll"Y) (3) 
LJ sinh (mrb) a 
n=l " 

The coefficients are determined by requiring that this sum satisfy the last 
boundary condition at z = o. 

co 

v = L'Ansm-)(nll"Y	 (4)-(a - y)
a	 a 

n=l 

Multiplication by sin(mll"y/a) and integration from z = 0 to z = a gives 

21" v . mll"Y) 2vAm = - -(a- y)sm(- dy=- (5)
a 0	 a a mll" 

Thus, it follows that the potential in region (a) is 

(6) 

(b)	 During the transient, the two regions are coupled by the temporal and spatial 
evoluation of unpaired charge at the interface, where z = o. So, in region 
(b) we add to the asymptotic solution, which satisfies the conditions on the 
potential at y = 0, y = a and as z -+ -00, one that term-by-term is zero on 
these boundaries and as z -+ -00 and that term-by-term satisfies Laplace's 
equation. 

co 
b	 v '"' /. nll"y~ =	 -(a - y) + LJ Bn en 1l'''' "sm (-) (7) 

a n=l a 

The result of (4)-(5) shows that the first term on the right can just as well be 
represented by the same Fourier series for its y dependence as the last term. 

A;,b	 ~ 2v . (nll"Y) ~ B n1l''''/" • (nll"Y)
"It' =	 LJ - sm -- + LJ n e sm-- (8) 

n=l nll" a n=l a 

The potential in region (a) can generally take the form of (3). There remains 
finding An(t) and Bn(t) such that the continuity conditions at z = 0 on the 
potential and representing Gauss plus charge conservation are met. Evaluation 
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of (3) and (8) at z = 0 shows that the potential continuity condition can be 
satisfied term-by-term if 

2v
A,. = -+B,.	 (9)

n'1l" 

The second condition brings in the dynamics, (7.9.12) at z = 0, 

(10) 

Substitution from (3) and (8) gives an expression that can also be satisfied 
term-by-term if 

n'1l" (n'1l"b) n'1l" n'1l" (n'1l"b dA,.-ua - coth - A,. - ub-B,. - Ea - coth -)- ­
a a a a a dt (11)

n'1l"dB,.
-Eb---=O

b dt 

Substitution for B,. from (9) then gives one expression that describes the 
temporal evolution of A(t). 

(12) 

where

E coth ("1l'b) + E


T	 = a a b 

- Ua coth (n:b) + Ub 

To find the response to a step, the volue of A,. when t o is found by 
integrating (12) from t = 0- when A,. = 0 to t = 0+. 

(13) 

The solution to (12), which takes the form of a homogeneous solution exp(-tIT) 
and a constant particular solution, must then satisfy this initial condition. 

A,. = A,.1 e 
-tiT + Ub 

(
-
2 ) 

( 
Vo
b) (14)

n'1l" Ua coth ,.: + Ub 

The coefficient of the homogeneous term is adjusted to satisfy (13), and (14) 
becomes 

(15) 
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There is some insight gained by writing this expression in the alternative form 

Given this expression for An, Bn follows from (9). In this specific situation 
these expressions are satisfied with U a = 0 and Ea = Eo. 

(c)	 In this limit, it follows from (15) that as t - 00, An - Vo{2/n'll") and this is 
consistent with what was found for this limit in part (a), (5). 

With the permittivities equal, the potential and field distributions just after 
the potential has been turned on and therefore as there has been no time for 
unpaired charge to accumulate at the interface, is as shown in Fig. 87.9.9a. 
To make this sketch, note that far to the left, the equipotentials are equally 
spaced straight lines (surfaces) running parallel to the boundaries, which are 
themselves equipotentials. All of these must terminate in the gap at the origin. 
In the neighborhood of that gap, the potential has the form familiar from Fig. 
5.7.2 (except that the equipotential. =V is at tP = 'II" and not at tP = 211-)' 

(a) 

(b) 

Figure Sf.9.9 

In the limit where t - 00, the uniform equipotentials in region (b) extend up 
to the interface. Just as we could solve for the field in region (b) and then 
for that in region (a), we can also draw the fields iIi th~t order. In region 
(a), the potential is linear in y in the plane z = 0 and zero on the other 
two boundaries. Thus, the equipotentials that originate on the boundary at 

http:87.9.9a
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z = 0 at equal distances, must terminate in the gap, where they converge like 
equally spaced spokes on the hub of a wheel. 

The transient that we have described takes the field distribution from that 
of Fig. 87.9.9a, where there is a conduction current normal to the interface 
from the (b) region side supplying surface charge to the interface, to that of 
Fig. S7.9.9b, where the current density normal to the surface has subsided 
because charges on the interface have created just that field necessary to null 
the normal field in region (b). 

http:87.9.9a
http:S7.9.9b


SOLUTIONS TO CHAPTER 8 

8.1	 THE VECTOR POTENTIAL AND THE VECTOR POISSON 
EQUATION 

8.1.1 (a) Ampere's differential law inside the solenoid gives 

VxB=O (1) 

The continuity law of magnetic flux gives 

V"lo'oB=O	 (2) 

Therefore, H is the gradient of a Laplacian potential. A uniform field is, of 
course, one special case of such a field. At the boundary, representing the coil 
as a surface current 

. Ni
K =14>­

d 
we have 

n X (Ba
- B b) = K (4) 

where n = -i.., the outside region is (b). Further we have 

n "1o'0(Ba 
- B b

) = 0	 (5) 

(b)	 An axial z-directed uniform field inside, zero field outside, automatically sat­
isfies (1), (2) and (5). On the surface we get from (4) 

•	 H a • • Ni 
-I.. x zl. = 14>d 

and since

I .. x I. = -I.,.


H a = Ni 
z	 d 

(c)	 A is tP directed by symmetry. From the integral form of V x A = 1o'0B we 
obtain 

Taking a radius r we find 

2'11"rA (r) = {'1I"r21o'0H; for r < a 
4> '1I"a211 Ha for r > a 

"'0	 z 

Therefore 
r	 Ni £A _ '210'07 lor r < a 

4> - { a' !li £ 
2r 10'0	 d lOr r > a 

1 
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8.1.2 Using the coordinates defined in Fig. P4.4.3, superposition of line current
vector potentials (8.1.16) gives

(1)

where

To linear terms in (d/2)2, the numerator of this expression is

(2)

where

r= "';z2+ 112

Similarly, the denominator is

(3)

Thus, to linear terms in (d/2r)2, (1) becomes

Observe that

(4)

=. = cos q,j ~ = sin q,.
r r '

Z2_'; 2..1.. 2
2 = cos ." - sm q, = cos 2q,

r
(5)

and it follows that (4) is the given vector potential.
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8.1.3 We can take advantage of the analog of a solution of Poisson's equation for
a two dimensional charge problem, and for a two dimensional current problem
(because the structure is long, l ::> wand l ::> d we treat it as two dimensional). The
analog charge problem is one with two charge sheets of opposite signs, producing
a uniform field, and a potential Cb ex y. Thus (see Fig. S8.1.3)

-y

Flsure S8.1.3

inside, A. = const outside, and we adjust A so that we get the proper discontinuity
of 8AII /8y to account for the discontinuity of H",

Therefore

and
Ni.

A. = J.'o-y inside
w

_± Ndi. { top
- 1'0 2w bottom

8.2 THE BIOT-SAVART SUPERPOSITION INTEGRAL

8'.2.1 The Biot-Savart integral, (7), is evaluated recognizing that

(• .) r
II/) X Ir'r 11= V

z2 +r2 (1)
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Thus, 
Jo li!:t.12 

11' r (2)fa dzrdtPdr 
H. = 4,," 0 0 J" vr + r2 (z2 + r2) 

The integration on z amounts to a multiplication by Ii. while that on tP is simply a 
multiplication by 2,,". Thus, (2) becomes 

H - Ii.Jo r i2dr ( ) 
.- 2 J" (z2+ r2)3/2 3 

and integration gives 

Ii.Jo[ -r vI]aH. = -- + In(r + r2 + z2) (4)
2 vr2 + z2 "


which is the given result.


8.2.2 We use the Biot-Bavart law, 

H - i-f ds X lr'r (1) 
- 4,," Ir- r'12 

The field due to the turns within the width RdO, and length sin ORd,p which produce 
a differential current ids = Kosin2 OR2 dOd,p, is (Note: Ir'r = -I...) 

2 2 
dH, = Kosin OR dO d,p (2)

4,,"R2 

I. 

I, 

Fleure 58.2.2 

The field along the. axis adds as one integrates around one tum, the components 
normal to the axis cancel 

dH. = - sin 0 rll'dH, = KodO sin30 (3)Jo 2

The total field is obtained by adding over all the currents


H. = Ko (II' sin3 OdO = 2Ko (4) 
2 J,=o 3 
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8.2.3 

8.2.4 

8.2.5 

Solutions to Chapter 8 

We replace K o sin 9 by K o in Prob. 8.2.2. We can start with the integral in 
(4), where we drop one factor of sin 9. We get 

H., = K o r sin29d9 = 'lfKo 

2 18=0 4 

We can use the result of 8.2.3 for a single shell. The total current distribution 
can be thought of as produced by a concentric set of shells. Each shell produces the 
field ~JodR. Thus the net field at the center is 

la 
'If 'IfH., = -Jo dR = -JoR 
4 0 4 

No matter where the vertices of the loop, (8.2.22) can be used to determine 
the field. However, the algebra is simplified by recognizing that the triangle not 
only has sides of equal length, d, but that the z axis is at the center of the triangle. 
Thus, each leg makes the same contribution to the z component of the field along 
the z axis, and along that axis the z and 'Y components cancel. To see that the 
sides are of length equal to that of the one paralleling the z axis, note that the 
distance from the center of the leg to the vertex on the 'Y axis is V3f4d and that 
based on the base d/2 and this distance, either of the other leg lengths must be 

of length J(d/2)2 + (V3f4d)2 = d. Further, if the z axis is at the center of the 
triangle, then the distance from the origin to either of the legs not parallel to the 
z axis must be the distance to the parallel leg, V3f4d/3. Thus, we should have 

2V3f4d/3 = J(d/2}2 + (v'3f4d/3}2, as indeed we do. 
For the leg parallel to the z axis, 

a = dix 

b= -~i _! ~di -zi 
2 x 3V"4 ~ • (1) 

e = -1d. - -l/fd'1 - ZI• -
2 

x 
3 4 ~ • 

Thus, 

e X a = -zdi~ + ~/fd2i. 
~ Ie x al = d( ..!-d2 + z2) 1/2 (2)12 

a.e= d2/2 lei = (~/3 + z2) 1/2 

a.b = -d2 /2 Ibl = lei 
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and the given result follows from (8.2.22), multiplied by 3 to reflect the contributions 
from the other two legs. This same result is obtained using either of the other legs. 
For example, using the back leg, 

(3) 

8.2.6 From (8.2.22) 
B i e x a (a. ea·b)

= 41r Ie x al2 ~-1bI 

we can find the H-field produced by a current stick! We look at one stick in the 
bottom layer of wires, extending from the position vector 

b ( ' ). d i I. = z - Z Ix - 2"Y " - 2"1. 

to the position vector 

with 
a:= e -b= U. 

Thus


e x a = l[(z' - z)i" + ~ixJ


Ie x al2 = 12[(z' - z)2 + (d/2)2J 

Ibl = lei = \I'(z' - z)2 + (d/2)2 + (1/2)2 

r r 
a . e = - a .b = -­

2 2 

Therefore, B due to one stick, carrying the differential current Ni dz' is w 

B = Nidz'l [(z' - z)i" + gixl 12 

4'1rw 12 [(z' - z)2 + (d/2)2J \I'(z' - z) + (d/2)2 + (1/2)2 

Nidz' [(z' - z)i" + gixl 
~ 2'1rw (z' - z)2 + (d/2)2 
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in the limit when I is very long compared with d and w. This very same result
could have been obtained from Ampere's law and symmetry considerations for an
infinitely long wire (see Fig. 88.2.6)

H = _Nidx' _1_ i = Nidx (x' - x)l7' + ~ix
W 211'r tP 211'W (x' - x)2 + (d/2)2

17

a a 9 e 9 9 9 9 9 9 e 9 9 9 9 e 8 9 9 e 8 e

x Ix x'
r

I ...... I
I I

., ., •• ., ••••• II ••• ., ., .,. ,,= -d/2

Figure S8.~.8

The total field is obtained by adding the contribution from a symmetrically located
set of wires at the top, which cancels the y-component and doubles the x-component,
and by integrating over the length of the coil

f VJ/2 Nidx' d
H - -- -:---~--:-...,.....,-

:J: - -VJ/2 211"w (x' - x)2 + (d/2)2

Ni 1[2(w)] 1[2(W)]= - tan- - - - x + tan- - - + X
1I"W d 2 d 2

since

f dx 2 -l( /)
x2 + (d/2)2 = d tan 2x d

We may test this result by having W -+ 00. Then

H
_ Ni

:J:-
W

QED as is correct for sheets of an infinite set.

8.2.1 From (8.1.8) integrated over the cross-section of the stick,

1-'0 I J(r')dtl' I-'o.,e· a de (1)
A = 411" Ir - r'! = 411"' 1h y;i"j Ir - r'l

where a/lal is a unit vector in the direction of the stick and hence [a/lalJde is a
differential length along the stick. Using the expression for Ir-r'l following (8.2.17),
(1) is converted to an expression ready for integration.

A ""0. a,e· de
= 411"~ lh ";e + r~ (2)
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Integration gives 

(3) 

Finally, substitution from (8.2.21) makes this expression the given result. 

8.3 THE SCALAR MAGNETIC POTENTIAL 

8.3.1	 From the Biot-Savart law 

B = i-. f ds' X ir'p 

4", Ir-r'12 

we find the axial field H!II


2

i 1... Rd4l . 6 i 211" . 3 6H =- sm =--sm 

11 411" 0 R2/sin2 6 411" R 

i Jt3 =- 3
2RJKJ +32 

For large %, 

. R2 
H -2~ 

11 ­ 411"z3 

which is consistent with the axial field of a dipole (see Fig. S8.3.1). 

Flpre 81.S.1 
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8.3.2 The potential of one wire carrying the current i in the +z direction is

~

1/J=--tP
211"

The superposition gives (Fig. 88.3.2)

The lines W = const are described by

8-9

(1)

(2)

tan tPl - tan tP2
tan(tPl - tP2) = const = A- A-

1+ tan'f'l tan'f'2

Therefore

-lI.- _ -lI.­
x-a x+a

1 .....1i!.-+ x 2 -a2

2ya = const[x2 - a2 + y2]

This is the equation of circles that go through the points x = ±a, y = o.

,pI
a

TZ
Iy
I
I

.--- ix

RsinfJ

z

Figure 88.3.2 Figure 88.3.3

8.3.3 Assume that the coil extends from z = -l/2 to z = +l/2. The potential of a
loop is

~

W(r) =-0
411"

r'\ 1() 211"RsinBRdB ( B) ( (z - z') )
u = = 211" 1 - cos = 211" 1 - ---;:======~=

o R2 yI(z - z')2 + R2

The individual differential loops of length dz' carry currents lfi dz'. Therefore the
total potential is

W(x) - _Ni r'=1/2 dz' (1 _------r.~(=z=-:==:z':f::)===-=)
- 21 }%1=-1/2 yI(z - z')2 + R2

= ~li [l + V(~ -Z)2 + R2 - V(~ + z)2 + R2]
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We can check the result for a long coil, I -+ 00. Then

Solutions to Chapter 8

VI I v( 2Z)2 (2R)2 I ( 2z)(- =f z)2 + R2 = - 1 =f - + - ~ - 1 =f -
2 2 I I 2 I

and we find
Hi

\Ii(z) = -[1- 2z]
21

giving a field
_ a\Ii _ H _ Hi

az - % - I

which is correct.

8.4 MAGNETOQUASISTATIC FIELDS IN THE PRESENCE
OF PERFECT CONDUCTORS

,.j'
8.4.1 From (8.3.13),

'T'( ) riR2 cos (J'!I!'r-+O -+----
411' r2

and at r = 6

a\Ii I - 0
ar r=b

To meet these conditions, take the solutions to Laplace's equation

riR2 cos(J
\Ii = -- --2- + Ar cos (J

411' r

(1)

(2)

(3)

where the first automatically satisfies (1) and the coefficient A of the second is
determined by requiring (2). Thus,

i1l'R2 ( 1 2r)
\Ii=-- -+- cos(J

411' r2 63

The negative gradient of this magnetic potential is the given field intensity.

8.4.2 The magnetic field of the dipole is given by (8.1.21)

H id ( . -I.. -I.. )= --2 - sm 'PII' + cos 'PI",
21l'r

This corresponds to a scalar potential of

(4)
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The conductor acts like a perfect conductor cancelling the normal component of 
H, Hr. Thus we must have the total scalar potential 

id . (a	 r)W=--sml/> -+­
2,ra r a 

with the field 

8.4.3	 (a) Far from the half-cylinder, the magnetic potential must become that of a 
uniform magnetic field in the -z direction. 

(1) 

Thus, to satisfy the condition that there be no normal component of the field 
intensity at the surface of the half-cylinder, a second solution is added to this 
one having the same azimuthal dependence. 

cos I/>
W= Horcos I/> + A-­	(2) 

r 

Adjusting A so that 
8w
-(r = R) =	 0 (3)
8r


results in the given potential.


(b)	 As suggested, the field intensity shown in Fig. 8.4.2 satisfies the requirement 
of being tangential to the perfectly conducting surfaces. Note that the surface 
current density has the polarity required to exclude the magnetic field from 
the perfectly conducting regions, in accordance with (3). 

8.4.4	 The potential W of the uniform field is 

The sphere causes H to be tangential. The normal component H r must be cancelled: 

We obtain for the H field 
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8.4.5	 (a) An image current is used to satisfy the condition that there be no normal 
component of the field intensity in the plane y = O. Thus, the solution in 
region y < 0 is composed of a particular part due to the line current at 
z = 0, y = -h and a homogeneous part equivalent to the field of a line 
current at z = 0, y = h flowing in the opposite direction. To write these fields, 
first note that for a line current on the z axis, 

(1) 

Translation of this field to represent first the actual and then in addition the 
image line current then results in the given field intensity. 

(b)	 The surface current density that must exist at y = 0 if the region above 
sustains no field intensity is 

K = n x H => K. = Hz(y = 0)	 (2) 

This is the given function. 

8.4.6 (a)	 The scalar potential produced by one segment of length dz' is 

d,T. Kod:l:' -1 ( Y ) Kodz' -1 (:1:'- z)... =---tan -- =--cot -- (1)
211' z - Z, 211' Y 

The integral over the strip is 

l
z '=a	 K { a-z

'If = d'lf = ---.£ (a - z) cot-1 (--) 
~=b 211' Y 

1(b - z) y [ a - z 2]- (b - z) cot- -- + -log 1 + (--) (2) 
y 2 y 

_ ~ log [1 + (b ~ z)2
] } 

where the integral is taken from: B. O. Pearce, R. M. Foster, A Short Table 
of Integrals, 4th Ed., Ginn and Co. (1956). To this potential must be added 
an image potential that causes a'lf / az = 0 at z = O. This is achieved by 
adding to (2) a potential with the replacements 

Ko--Ko	 a--a, b--b 
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(b)	 The field H = -V'If and thus from (2) 

K o [ 1 (a - x) 1 (b - x)H x = -- - cot- -- + cot- - ­
2~ y y 

+	 (a - x)jy _ (b - x)jy 
1 + (a;x)2 1 + (b;X)2 

_ (a - x)jy + (b - x)jy ] 
1 + (a;x)2 1 + (b;X)2 

K o [ l(a-x)	 l(b-X)]= -- -cot- --	+cot- - ­
2~ y y 

= K o [tan- 1 (-y-) _ tan- 1 (-y-)]
2~ a - x b - x 

To this field we add 

H x = K o [tan- 1 (-y-) -	 tan- 1 (-y-)]
2~ x + a b + x 

8.5 PIECE-WISE MAGNETIC FIELDS 

(a) The surface current density is 

N	 .. cP'K = -tsm 1	 (1)2R z 

so that the continuity conditions at the cylinder surface where r = Rare 

a H b Ni. 
H</>- </>=2RsmcP	 (2) 

(3) 

Looking forward to satisfying (2), the cP dependence of the scalar potential is 
taken to be cos cP. Thus, the appropriate solutions to Laplace's equation are 

(4) 

'lfb = Cr cos cP (5) 

so that the field intensities are 

H a 
-
_ A ( cos

2 
cP 

lr
• + sin

2 
cP. 

I</> 
) (6) 

r r 
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H b = -C(cos ¢i r - sin ¢i<f»	 (7) 

Substitution of these fields into (2) and (3) then gives 

~ _ C = Ni	 (8)
R2 2R 

A 
R2	 + C = 0 (9) 

from which it follows that 

A= RNi. C=_Ni (10)
4 ' 4R 

Substitution of these coefficients into (4)-(7) results in the given expressions 
for the magnetic scalar potential and field intensity. 

(b)	 Because the flux density is uniform over the interior of the cylinder, the flux 
linked by a turn in the plane x = x' = R cos ¢' is 

n.. HR· A-.'	 Ni R . A-.' (11)'I!',). = /-Lo .,2 sm,+, = /-Lo 4R 2 sm '+' 

Thus, the total flux is 

\	 0111" /-LoN • A-.'( N) • A-.'RdA-.';'\ =~ --sm,+, - sm,+, '+' 
o	 2 2R 

N21r 
= ~0/-Lo--

N2 111" . 2 '+'A-.'d-l.' [/-Lo---	
(12) 

SIn '+' = ]
~ 

0 

4 0 8 

and thus the inductance is identified as that given. 

8.5.2 (a) At r = b, there is a jump in tangential H: 

(1) 

with region (a) outside, (b) inside the cylinder carrying the windings. Thus 
n = i r and at r = b 

(2) 

Further the normal component of W must be continous at r = b. 

aW(a) aW(b)
---+--=0	 (3)ar ar 

At r = a, the normal component of H has to vanish: 

aWl = 0	 (4)
ar r=a 
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(b)	 We have a "square-wave" for the current distribution. Therefore, we need an 
infinite sum of terms for q;: 

q;(b) = E
co 

A,.(r/b)" cos n(<p - <Po); 0 < r < b 
n=l 

q;(a) = E
co 

B,.(a/r)" cos n(<p - <Po); b< r < a (5) 
n=l 

+ L
co 

0,. (r/a)n cosn(<p - <Po) 
,.=0 

We picked the normalization of the coefficients so that the boundary condi­
tions are most simply stated. From (4) we have 

and thus 
(6) 

From (3) we have 

(7) 

and using (6) 
(8) 

From (2) we obtaiR: 

The expansion of the square wave K.(<p) is 

K.(<p)=Ko L ~sinn(<p-<po)	 (10) 
"	 n1l" 

ft.-odd 

Thus, using (6), (8) and (10) in (9) we obtain, for n odd: 

and 0,. = 0 for n even. Thus 

(11)
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and 

A" = ~b Ko[(b/ar~" - 1] (12)
n1r 

for n odd, zero for n even. We should check a few limits right away. When 
a -+ 00, we get (for n odd) 

2b 
A" = --2-Ko

n1r 
and 

2b 
Web) = - L -2-Ko(r/b)" cos n(1/> - 1/>0) 

,,-odd n 1r 

2b 
W(a) = L -2-Ko(b/r)" cos n(1/> - 1/>0) 

,,-odd n 1r 

which gives the field due to the cylinder alone. For a -+ b, we get A" = 0 

"" 4b~ L,.., -2-Kocosn(1/> - 1/>0) 
,,-odd n 1r 

There is a I/> directed field in the region between the coil and the shield of 
magnitude 

1 aW "" 4Ko • ( )
H~ ~ --- ~ L,.., -- sm n I/> - 1/>0 

a al/> ,,-odd n1r 

which is approximately square-wave-like. These checks confirm the correctness 
of the solution. 

(c)	 The inductance of the rotor coil is computed from the flux linkage of an 
individual wire-loop, 

1 -~'+1I' I co A 1-~'+1I'~.A = l 1I0Hrbdl/> = L -lilo n b" cos n(1/> - I/>o)bdl/> 
~=-~' r=b ,,_1 ~=-~' 

odd 

(b)2"].- "')= ~ L.." l110--4Kob [1 - smn'f'("" - 'f'o
,,_1 n1r a 
odd 

where l is the length of the system. The flux linkage is obtained by taking the 
number of wires per unit circumference N/1rb, multiplying them by ~.A and 
integrating from 1/>' = 1/>0 to 1/>' = 1/>0 + 1r 

>. = f N bdl/>'~.A = IN f: 110 4Kob [1 - (!)2"] f dl/>' sin n(¢" - 1/>0)
1rb 1r "=1 n1r a 

odd 

8N'2 . (~ 1 [ ( b)2"])= l--lIo'& L.." - 2 1- ­
2:11" ,,=1 n a 

odd 
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where we use the fact that 
K	 _ Ni 
0-	 2b 

The inductance is 

L = ~ = 8~2 Jl-ol f :2 [1 _ (~) 2n] 
n.=l 

"'-odd 

The inductance is, of course, <Po independent because the field is "tied" to the 
rotor and moves with <Po. 

8.6	 VECTOR POTENTIAL AND THE BOUNDARY VALUE 
POINT OF VIEW 

8.6.1	 (a) For the two-dimensional situation under consideration, the magnetic field in­
tensity is found from the vector potential using (8.1.17) 

H = ~(~ 8Az i - 8Azi,p) (1) 
Jl-o r 8<p 

r 
8r 

Thus, if the vector potential were discontinuous at r R, the azimuthal 
magnetic field intensity would be infinite there. 

(b)	 Integration of (1) using the fields given by (1.4.7) gives 

!	 {R3/9R+ h; r 

R 
<
< 

R 
r Az =	 -Jl-o H,pdr + f(<p) = -Jl-oJo ~2 In(r/ R) + 12; (2) 

A -	 {gl (r); r < R 
z -	 g2(r); R < r (3) 

Because the integrations are performed holding rand <p-constant, respectively, 
the integration "constants" are actually functions of the "other" independent 
variable, as indicated. From (3) it is clear, however, that there is no depen­
dence of hand 12 on <p. Given that the vector potential is zero at r = 0 
and that A z is continuous at r = R, h = 0 and h = R2 /9. Thus, the vector 
potential is as given. 

(c)	 In terms of the vector potential, the flux is given by (8.4.12). Because there 
are no contributions on the radial legs and because Az (r = 0) has been defined 
as zero, 

.A = fA. ds = I[Az(O) - Az(a)] = -IAz(a) 
0' (4) 

. =	 Jl- 0 1R 
2 
Jo [In(ar/ R) + ~] 

3 3 

This illustrates how the use of A to represent the field makes it possible to 
evaluate the flux linkage without carrying out an integration. 
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8.6.2 A must be z-directed and must obey Poisson's equation 

(1) 

Now 

"\72 = ~ i. (ri.)
r dr dr 

in the special symmetry of the problem. Thus 

(2) 

and 

r < b (3) 

Outside this region b < r < a, A z obeys Laplace's equation 

A", ex Cln(r/b) + const 

At r = b we must have continuous A", and dAz/dr (continuous Hq,). Thus, 

b2 

const = -l-'oJz4 
and 

Thus 

~- " X direction 
./' offield 

/

/

/

\ 
\ 
~ 

............. --­
 positive direction 
of loop 

Figure 88.6.2 
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The flux is, according to (8.6.5) [see Fig. 88.6.2] 

>. = l(A~ - A~) 

and thus

>. = -lA~


because 
A~ = 0 

For c < b 

For c > b 
b2 

>. = lJLo Jz "4[1 + 2ln(cjb)] 

Note that A z ¥= 0 for r > O. This should be remedied by adding a constant to Az • 

It does not affect the flux linkage. 

8.6.3 (a) In cylindrical coordinates where there is no <p dependence, the vector potential 
has only a () component 

A = A/;/(r, z)i/;/ (1) 

and the flux density is found from 

JLoH = V x A * JLoH = ir ( - aaA/;/) +iz[~aa (rA/;/)] (2)
z r r 

For reasons that are apparent in part (b), it is convenient to write A as 

A = Ac(r, t)	 (3) 
r 

in which case, (2) becomes 

H _ ~ [_ aAc • aAc .]
JLo - a lr + a lz	 (4) 

r z r 

(b)	 For any surface S enclosed by the contour C, the net flux can be found from 
the vector potential by 

>. = £A . ds	 (5) 

In particular, consider a surface enclosed by a contour C having as the first 
of four segments a contour spanning 0 < <p < 211" at the radius, a, from the z 
axis. The second segment connects that circular contour with a second at the 
radius b by a segment connecting the two in a plane of constant <p. The contour 
is closed by a second contour in an adjacent <p = constant plane joining these 
circular segments. Integration of (5) gives contributions only from the circular 
contours. The segments joining the circular contours are perpendicular to the 
direction of A, and in any case make compensating contributions because they 
are in essentially the same <p = constant planes. Thus, the flux through the 
surface having outer and inner radii, a and b respectively, is as given. 
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8.6.4	 (a) The vector potential, A., BatisfieB Laplace'B equation. The first three condi­
tionB of (8.6.18) are met by the solution 

· hR'I" • R'I"A• = ARBm	 -yBm-z (1)
a a 

The last condition is met by BuperimpoBing these solutions 

00 

~A' hR'I" . R'I"A• = LJ I' BIn -yBm-z	 (2) 
1'=1 a a 

and evaluating the coefficientB by requiring that this function satisfy the fourth 
boundary condition of (8.6.18). 

00 

~ A • h R'I"b . R'I"A=LJ RBm - sm-z (3) 
1'=1 a a 

Multiplication by Bin(m'l"zja) and integration giveB 

Aa m'l"] a Ama. m'l" 
--COB-Z = --Bmh-b	 (4)

m'l" a	 0 2 a 

which therefore giveB the coefficients as 

(5) 

so that (2) becomes the given solution. 

(b) The total current in the lower plate is 

i = 1
a

K.dz = - 1a Hs(Y = O)dz = - 1a 
-1 8A I dz (6)_. 

o	 0 0 Jjo 8y 1/=0 

Evaluation using the given vector potential gives 

. ~ 8A ~ IBinwt 
, = - ~ IL R'I"sinh (RtI'b) = - LJ 2RBinh (RtI'b) (7) 

.._1 ,..0 a 1'=1 a 
odd 

(c) In the limit where bja::> I, 

. h (Rd)	 1 RtI'blasm - --e	 (8)
a 2 
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and (7) becomes 

00 

i --. - E !-e-n/rrbIG sinwt --. _Ie-wbIG sinwt (9)
,,_1 n 
odd 

Taking In of the magnitude of this expression gives 

In( I~I) == -7I"(b/a)	 (10) 

which is the straight line portion of the plotted function. 

(d) In the limit b/a <: 1, (7) becomes 

i --. _-!.- SA ~ E -!.- - --!.-A~	 (11)
Po r b n2 - Po b 

This is the same as what is obtained if it is assumed that the field is uniform 
and simply Hz --. A/bpo so that 

K. --. -Hz => i --. K.a --. -aA/bpo	 (12) 

8.6.5	 The perfectly conducting electrodes force H to be tangential to the electrodes. 
Thus 8A",/8z == -Po H lI vanishes at y == 0, y == d except for the gap at z == 0 and 
8A",/8y == PoHz vanishes at z == ±a. The magnetic vector potential jumps by A as 
one goes from z == 0_ to z == 0+, at y == 0 and y == d. Thus A. is constant around 
the c shaped contour as well as the :J shaped one. Denoting by the superscripts 
(a) and (b) these two regions respectively, we have for Laplacian solutions of A", 

A~b) == E
00 

Bn sinh n; (z - a) sin n; y + Bo(z - a) 
n=l 

At z == 0, the constants Ao and Bo account for the jump of A"" Bo == -A/2 == Ao • 
The vector potential and its curl must be continuous for 0 < y < d at z == O. We 
thus have An == - Bn for all n except n == O. The sinusoidal series has to cancel 
that jump for 0 < y < d. We must have 

" A	 . h n7l" • n7l" " 4Ao • n7l"L.J	 n sm -a sm -y == - L.J -- sm -y 
n d d n-odd n7l" d 

and similarly for the series in region b. We obtain 

A (G) _	 " 2A sinh 7(z + a) . ml' A( )
• - L.J . hRtr sln-y-- z+a 

n-odd n7l" sm da d 2 
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(b) _ " 2A sinh !!f(z - a) . mr _!.( _ )
A.	 - L..J • h mr sm d y 2 z a 

n-odd n1l' sm (f"a 

(b) See Fig. S8.6.5. 

Ftsure 58.6.& 

8.6.6	 (a) We must satisfy Poisson's equation for the vector potential everywhere inside 
the perfectly conducting boundaries 

(1) 

and make the normal flux density and hence A. zero on the boundaries. 

A. = 0 at	 z = ±a,y = 0, y = b (2) 

A particular solution to (1) follows by looking for one that depends only on 
z. 

(3) 

Then the homogeneous solution must satisfy Laplace's equation and the con­
ditions 

A.h = 0 at	 z = ±a; (4a) 
2 . a • 1I'Z 

A.h = I-'o'ln0"2sm - at Y = O,b	 (4b)
11'	 a 

The first ofthese conditions, can be met by making the z dependence sin(1I'Z/ a). 
Then, the y dependence must be comprised of a linear combination of exp(+ky) 
and exp(-ky). IT the y coordinate were at y = b/2, the second of the condi­
tions of (4) would be even in y. So, make the linear combination cosh k(y- k)] 
and for convenience adjust the coefficient so that the second of conditions f4) 
are met, divide this function by its value at y = b/2. This makes it clear that 
the coefficient is the value given on the boundary from (4). Thus, the desired 
solution, the sum of the particular and homogeneous parts, is 

A = A + A - I-'oinoa 
2 [COSh Hy - ~) - 1] . (~) (5) 

• !liP .h - 2 h (ft'b)" sm
11' cos 20 a 
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(b) The flux linked by one turn is

.~ = -l[A.(z,y) - A.(-z,y)!

= _ 2poiRoa
2

l [COSh i(y -l) _ 1] sin!!
,,"2 cosh (;:) a

and the total flux of all of the windings in series is

8-23

(6)

(7)

+

8.6.7

@@
Figure 98.8.8

(C) A sketch of the lines of constant vector potential and thus B for the particular,
homogeneous and total solution (the sum of these) is shown in Fig. 88.6.6.
It is perhaps easiest to envision the sum by picturing the addition of contour
maps of the two parts, the axes out of the paper being the height A. of the
respective surfaces.

(a) This is a problem involving a particular and a homogeneous solution of the
vector Poisson equation. The particular solution is due to uniform current
density Jo = Roi

Z2 - a2

A p = -PoRoi 2 i.

Alternatively, we may find the homogeneous solution by comparison with
Prob. 8.6.6. In that problem the wire density Was sinusoidal. Now it is uniform.
A. Was antisymmetric, now it is symmetric. We can expand the symmetric
wire distribution as a square wave.

() . '" 4noi n7rJ. 3:,y = R o' = L..J --cos-Z
.. RlI" 2a

..-odd
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The particular solution of the vector potential is thus

. "" 4 2a)2 (n1r)A p = -i.JLono~ L...J -(- cos-x
.. n1r n1r 2a

",-odd

The complete solution is

• ."" 4 2a 2 n1r [COSh ~: (y - ~)
A = 1.JLono~ L...J -(-) cos (-x) h mfb

.. n1r n1r 2a cos 4a
odd

(b) The flux linkage of a wire at x, y is

and thus

- 1]

8.6.8 (a) Here we have a solution very much like that of Prob. 8.6.6, except that the
particular solution

has to be replaced by an infinite sum whose l'econd derivative reproduces the
square wave of magnitude ino. Thus

A • . "" 4 ( a )2 . (n1rx)b = -l.J.'otno L...J - - sm--
n1r n1r a

n-odd

x=o
-a

Figure S8.6.8

The complete solution is (compare Prob. 8.6.6)

a

A _. . "" ~(~)2 . (n1rx) [cosh(n1r/a)(y - ~) _ ]
- 1.JLo~no L...J sm (b) 1n1r n1r a cosh n

2
11"

n-odd a
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(b) The inductance is computed from 

where 21Az is the Hux linkage of one turn nod:z;' dy' is the wire density. Thus 
integrating one typical term: 

r d:z;' sin (mr:z;') r [COSh 7 (y - £) _1] dy' = 2( ~)[2~ tanh mrb - b]
10 a 10 cosh mrb n7l" n7l" 2ao 0 2a 

and the inductance is 

- 21 ~ 16( a )4[n7l"b h(n7l"b)]L -p.on LJ - - --tan ­
o d n7l" n7l" 2a 2a

,.-od 
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9.1	 MAGNETIZATION DENSITY 

9.2	 LAWS AND CONTINmTY CONDITIONS WITH 
MAGNETIZATION 

9.2.1 

M = Mo cos p:z:(ix + i)') 

The volume charge density 

and thus there is positive surface charge density on top 

y=d 

and a charge density of opposite sign at the bottom, y = -d. 

9.2.2	 (a) The magnetization is uniform, with the orientation shown in Fig. P9.2.1. Thus, 
it is solenoidal and the right hand side of (9.2.2) is zero and therefore equal 
to the left hand side, which is zero because B = o. Certainly a zero H field 
is irrotational, so Ampere's law is also satisfied. Associated with M inside 
is a magnetic surface charge density. However, this is cancelled by a surface 
charge density of opposite sign induced in the infinitely permeable wall so as 
to prevent there being an B outside the cylinder. 

(b)	 In view of the direction defined as positive for the wire, the Hux linked by the 
coil is 

(1) 

Thus, with the terminus of the right wire defined as the + terminal and 
1 = Ot, the voltage is 

(2) 

1 
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9.2.3 (a) From Ampere's law 

£ l JH . ds = . da 

we find


f H·ds=O


because there is no J present. This means that H = - V "\If and "\If is a scalar 
potential that satisfies Laplace's equations, since H is divergence-free. The 
only possible solution to this problem, subject to "\If = const at y = 0 and 
y = a, is "\If = constj and hence H = O. 

(b)	 Since 
B = JLo(H + M) (1) 

we have 
B = iyJLoMo cos (3(x - Ut) (2) 

The flux linked by the turn is 

>. = JLol i:~: Mocos(3(x - Ut)dx 

= ldM {sin((3d - (3Ut) sin((3d + (3Ut) }
JLo (3d + (3d0 

= ldM {sin(3dCOS(3Ut - cos (3dsin (3Ut
JLo (3d0 

sin (3d cos (3Ut + cos (3d sin (3Ut } 
+ (3d 

sin (3d
= 2JLoldM0--rid cos (3Ut 

The voltage is 
d>' sin (3d . 

v = dt	 = -2(3UJLoldM0--rid sm(3Ut 

9.3 PERMANENT MAGNETIZATION 

9.3.1	 The given answer is the result of using (4.5.24) twice. First, the result IS 

written with the identification of variables 

ao JLoMo 
- -+ --j Xl = a, x2 = -a, Y -+ Y - b (1) 
Eo JLo 
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representing the upper magnetic surface charge. Second, representing the potential 
of the lower magnetic surface charge, 

-
Uo 

---+ - M o ; Xl = a, x2 = -a, Y ---+ Y + b (2)
J1.o 

The sum of these two results is the given answer. 

9.3.2	 In the upper half-space, where there is the given magnetization density, the 
magnetic charge density is 

Pm = -V· J1.oM = J1.oMoa. cos fJxe- ay	 (1) 

while at the interface there is the surface magnetic charge density 

U m = -J1.oM z (Y = 0) = -J1.oMocosfJx	 (2) 

In the upper region, a particular solution is needed to balance the source term, (1) 
introduced into the magnetic potential Poisson's equation 

(3) 

given the constant coefficient nature of the Laplacian on the left, it is natural to 
look for a product solution having the same x and y dependence as what is on the 
right. Thus, if 

(4) 
then (3) requires that 

F[_fJ2 + a.2] = -Moa. ~ F = Moa.f(fJ2 - a.2) (5) 

Thus, to satisfy the boundary conditions at y = 0 

aWG aWb 

-J1.o ay + J1.o ay = -J1.oMo cos fJx (6) 

we take the solution in the upper region to be a superposition of (5) and a suitable 
solution to Laplace's equation that goes to zero at y ---+ 00 and has the same x 
dependence. 

Gw = [Ae-,8y + Moa. e-ay ] cos fJx 
(fJ2 - a.2)	

(7) 

Similarly, in the lower region where there is no source, 

Wb = Ce,8y cos fJx	 (8) 

Substitution of these solutions into the two boundary conditions of (6) gives 

A= M o 
(9)

2(a.- fJ) 

C=-
2(a. 

M
+ 

o 

fJ)	
(10) 

and hence the given solution. 
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9.3.3 We have 

This is Poisson's equation for W with the particular solution: 

f3Mo 
wp = 2 2 cos f3x exp ay

a - (3 

The homogeneous solution has to take care of the fact that at y = 0 the magnetic 
charge density stops. We have the following solutions of Laplace's equation 

Wh = {	 A cos f3xe- 13v y > 0 
B cos f3xe 13v 11 < 0 

There is no magnetic surface charge density. At the boundary, wand awlay must 
be continuous 

and

exf3Mo + f3B = -f3A


ex2 - (32


Solving, we find


M o 
( ex)B = - 2(ex _ (3) 1 + 73


and


9.3.4	 The magnetic volume charge density is 

1 a 1 a 
Pm	 = -'\1. 1-£0M = -1-£0;: ar (rMr) - 1-£0;: at/! M.p 

= -1-£0 Mop(rlR)p-l cos p(t/! - ')') + 1-£0 Mop(rlR)P-l cos p(t/! - ')') 
r r 

=0 

There is no magnetic volume charge density. All the charge density is on the surface 

am = 1-£0Mrlr=R = 1-£0Mocosp(t/! - ')') 

This magnetic surface charge density produces 1-£0H just like a. produces foE 

(EQS). We set 

r> R 
r < R 
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Because there is no current present, 9 is continuous at r = R and thus 

A=B 

On the surface 
a9 a'iJ! 

-~Oa;lr=R+	 + ~Oa;lr=R_ = am = ~oMocosp(~ -1) 

We find 
A	 R

A=-Mo2PR =Mo 2p 

(b) The radial field at r = d + R is 

~oHr(r = d+ R) = ~o ~o cosp(~ -1) (R~ d) pH 

The flux linkage is 

2 ~oN2Mo ( R )P+l (11' )
A= ~oN Hral = 2 al R + d cos P '2 - Ot 

The voltage is 

dA _ pO~oN2Moal(-.!!:-)p+l 0 
dt - 2 R + d cos P t 

(c) If p is high, then 

unless d is made very small 

9.4 MAGNETIZATION CONSTITUTIVE LAWS 

9.4.1	 (a) With the understanding that Band H are collinear, the magnitude of B is 
related to that of H by the constitutive law 

B = ~olH + Mo tanh(aH)] (1) 
For small argument, the tanh function is approximately its argument. Thus, 
like the saturation law of Fig. 9.4.4, in the neighborhood of the origin, for 
aH <: 1, the curve is a straight line with slope ~o(1 + aMo). In the range of 
aH Il:$ 1 the curve makes a transition to a lesser slope ~O. 

(b) It follows from (9.4.1) and (1) that 

B = ~o [~l~ + Mo tanh (~:~)]	 (2) 

and in turn from (9.4.2) that 

A = 1I'w2N2~O [Nli M. h(QNli)]
2 4 211'R + otan 211'R	 (3) 

Thus, the voltage is v = dA2/dt, the given expression. 
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9.4.2 The flux linkage is according to (9.4.2) 

(1) 

The field intensity is according to (9.4.1) 

Therefore

dA2 _ 1rW

2 N dB

dt - -4- 2di"


where we need the dispersion diagram to relate H. (i.e. i) to B (see Fig. 89.4.2). 

tB(t)B 
dB
di ex v(t) 

Figure 99.4.2 

9.5	 FIELDS IN THE PRESENCE OF MAGNETICALLY 
LINEAR INSULATING MATERIALS 

9.5.1	 The postulated uniform H field satisfies (9.5.1) and (9.5.2) everywhere inside 
the regions of uniform permeability. It also satisfies the continuity conditions, (9.5.3) 
and (9.5.4). Finally, with no H outside the conductors, (9.5.3) is satisfied. The only 
way in which the permeable materials can alter the uniform field that exists in 
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their absence is by having a component collinear with the permeability gradient. 
As shown by (9.5.21), only then is there induced the magnetic charge necessary 
to altering the distribution of H. Here, such a component would be perpendicular 
to the interface between permeable materials, where it would produce a surface 
magnetic charge in accordance with (9.5.22). Because H is simply i/w throughout, 
the total flux linking the one turn circuit is simply 

and hence, because A = Li, the inductance is as given. 

9.5.2	 From Ampere's law applied to a circular contour around the inner cylinder, 
anywhere within the region b < r < a, one finds 

t 
H<f>=­

21rr 

where i<f> points in the clock-wise direction, and z along the axis of the cylinder. 
The flux densities are 

B _ IJ-at 
and

<f> - 21rr 

in the two media. The flux linkage is 

A = l{	 {R IJ-bi dr + r IJ-ai dr}Jb 21rr JR 21rr 

= 2l1r[IJ-bln(R/b) + IJ-aln(a/R)]i 

The inductance is 

9.5.3	 For the reasons given in the solution to Prob. 9.5.1, the H field is simply 
(i/w)i•. Thus, the magnetic flux density is 

(1) 

and the total flux linked by the one turn is 

A = ( Bzdydx = djD (-IJ-m X ) 3:..dx = IJ-:;ld i (2)Js -I l w _w 

By definition, A= Li, so it follows that L is as given. 
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9.5.4 The magnetic field does not change from that of Prob. 9.5.2. The flux linkage 
is 

i (a-b)i
a 

>. = l b I-'m(r/b) 21lT dr = I-'m l -b- i 

The inductance is 
a-b 

L =	 I-'ml-­
b 

9.5.5	 (a) The postulated fields have the r dependence of the H produced by a line 
current i on the z axis, as can be seen using Ampere's integral law (Fig. 1.4.4). 
Direct substitution into (9.5.1) and (9.5.2) written in polar coordinates also 
shows that fields in this form satisfy Ampere's law and the continuity condition 
everywhere in the regions of uniform permeability. 

(b) Using the postulated fields, (9.5.4) requires that 

l-'a A = I-'bC ~ C = I-'a A (1) 
r r I-'b 

(c)	 For a contour that encloses the interior conductor, which carries the total 
current i, Ampere's integral law requires that (fJ == 2'11" - a) 

1 H4>rdr = i	 = ar~ + fJr C = aA + fJC (2)
J'a	 r r 

Thus, from (1), 

(3) 

(d)	 The inductance follows by integrating the flux density over the gap. Note 
that the same answer must be obtained from integrating over the gap region 
occupied by either of the permeable materials. Integration over a surface in 
region a gives 

>. = 'ia 
l-'a A dr = ll-'aAln(a/b) = ll-'aln(a/b)i (4)

b r a+(2'11"-a)(l-'a/l-'b) 

Because>' = Li, it follows that the inductance of the shorted coaxial section 
is as given. 

(e)	 Since the field inside the volume ofthe inner conductor is zero, it follows from 
Ampere's continuity condition, (9.5.3), that 

A/b = i/b[a + fJ~]j region (a) 
K. =H ~K. = b	 (5)

4> { C/b = i(l-'a/l-'b)/b(a+ fJ~)i region (b) 
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Note that these surface current densities are not equal, but are consistent with 
having the total current in the inner conductor equal to i. 

(6) 

9.5.6	 The H-field changes as one proceeds from medium J.'G to the medium J.'fI. For 
the contour shown, Ampere's law gives (see Fig. 89.5.6): 

z=-w 

Figure S9.5.8 

The flux continuity gives 

Therefore 

and the flux linkage is 

and the inductance is 
A dl 

L=i=...!!...+!!!..=.!! 
"'.. "'~ 

9.6	 FIELDS IN PIECE·WISE UNIFORM MAGNETICALLY 
LINEAR MATERIALS 
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9.6.1	 (a) At the interface, Ampere's law and flux continuity require the boundary con­
ditions 

(1) 

(2) 

The z dependence of the surface current density in (1) suggests that the 
magnetic potential be taken as the solutions to Laplace's equation 

w_ {Ae-Ifll sinpz 
- Celfll sin pz (3) 

Substitution of these relations into (1) and (2) gives 

[-13 13] [A] _[Ko ] (4)P.oP p.p C - 0 

and hence 
A __ l!- Ko • 

- P.o 13[1 + ::]' (5) 

Thus, the magnetic potential is as given. 

(b)	 In the limit where the lower region is infinitely permeable, the boundary 
condjt:;on at y = 0 for the upper region becomes 

awG 

H:(y = 0) = - az (y = 0) = Ko cos pz (6) 

This suggests a solution in the form of (3a). Substitution gives 

(7) 

which is the same as the limit p./P.o -+ 00 of (5a). 

(c)	 Given the solution in the upper region, flux continuity determines the field in 
the lower region. In the lower region, the condition at y = 0 is 

aW
b 

( ) P.o awG
( ) P.o . -- y=O = --- y=O = -Kosmpz (8)ay p. ay p. 

and it follows that 

PC sin pz = P.o Kosin pz ~ C = P.o Ko/p (9) 
p.	 p. 

which agrees with (5) in the limit where p./P.o > 1. 
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9.6.2	 (a) The H-field is the gradient of a Laplacian potential to the left and right of 
the current sheet. Because D x D = 0 at y = ±d,qI = const. 

(b)	 At the sheet 
D x (HG - Db) = K (1) 

and thus 
aqlG aqlb ~y 
--+ - = Kosin (-)	 (2)

ay ay 2d 

From flux density continuity we obtain 

aqlG aqlb 
~o as = ~o as (3) 

From (2) we see that qlG and qlb oc cos(~y/2d) and thus 

qlG = A cos (~1I)e-JI'Z/2d	 (4a)
2d 

qlb = Bcos (""1I)eJl'Z/2d (4b)
2d 

This satisfies qI = const at 11 = ±d. We have from (3) 

~ ~ 

--A=-B 
2d 2d 

and from (2) 
~ ~ 

2d A - 2dB =Ko 

giving 
K oA=-B=-­

(~/d) 

Therefore 
qI: = ± K o cos (~Y)e'FJI'Z/2d 

(~/d) 2d 

9.6.3 (a)	 Boundary conditions at r = R are 

G b 1 aqlG 1 aqlb	 Ni. 
H. - H. = - R a4J + R a4J = 2R sm 4J (1) 

aqlG aqlb
BG_Bb =-~- +~o- =0 (2)

r r ar ar 
To satisfy these, it is appropriate to choose as solutions to Laplace's equation 
outside and inside the winding 

qI = { (Air) cos 4Jj R < r 
Crcos4Jj r < R (3) 
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Substitution of these relations in (1) and (2) shows that the coefficients are 

NiR 1£ AA= ; 0=--­	(4)
211 + (1£/1£0)1 , 1£0 R2 

and substitution of these into (3) results in the given expressions for the 
magnetic potential. 

(b)	 The magnetic field intensity inside is uniform and ~ directed. Thus, the in­
tegration over the area of the loop amounts to a multiplication by the area. 
The component normal to the loop is Hz cos a, Hz = -0. Therefore, 

~ =nl£oHz cos a(2al) = -nl£oO cos a(2al) (5) 

With no current in the rotating loop, the flux linkage-current relation reduces 
to ~ = Lmi, so the desired mutual inductance multiplies i in (5). 

9.6.4.	 (a) It is best to find the H-field first, then determine the vector potential. The 
vector potential can then be used to find the flux according to 8.6.5. Look at 
stator field first (r = a). The scalar potential of the stator that vanishes at 
r=bis 

(1) 

On surface of stator 
nxH· =K (2) 

where n = -il .. 

K = i.i1N. sin ~ (3) 

where the stator wire density N. is 

N _ N1 

• -	 2a 

with N1 the total number of turns. Since 

H • 1 a'iJI I. 1 A. .I. (a b) .n X = - - _ I. = - - sin 'I' - - - I. 
r a~ r-a a b a 

We find 
A = -'- N 1i1 ab (5)

2 a2 - b2 

The H field due to stator windings is: 

(6) 

The rotor potential is 

'iJlr = Bcos(~ - 6) (:. - ~)	 (7)
a	 r 
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We find similarly, 

(8) 

The H -field is 

N . b 2	 2 

B r	 = ~Z2 a2 _ b2 [(1 + :2) cos(~ - O)i r - (1- :2) sin(~ - O)i<f>J (9) 

Fluxes linking the windings can be obtained by evaluating Is B . da or by use 
of the vector potential Az • Here we use Az • The vector potential is z-directed 
and is related to the B field by 

"V X A = B = 1-'0B = ! aAz i _ aAz i<f> (10) 
r a~ 

r ar 
From the r-components of B we find by inspection 

N1i1 ab (r b).
A z = 1-'0-- 2 b2 -b + - sm cP

2 a - r (11)
N2i2 ba ( r a).+ 1-'0--

a2 b2 - + - sm(cP - 0)
2 - a r 

Of course, the cP component gives the same result. 

(b)	 The inductances follow from evaluation of the flux linkages. The flux of one 
stator turn, extending from cP = -cPo to cP = 1r - cPo is 

(12) 

The inductance is obtained by computing the flux linkage 

(13) 

The inductance is 

(14) 

In a similar way we find 

(15) 

The mutual inductance is evaluated from ~>.., the flux due to the field pro­
duced by the stator, passing a turn of the rotor extending from -~o + 0 to 
1r - cPo + 0 

~>.. = l[A:(1r - cPo + 0) - A:(-~o + O)]r=b 
(16)

= l-'olN1i1 22abb2 sin (cPo - 0) 
a ­



9-14 Solutions to Chapter 9

The mutual flux linkage is

A21 = 1'" Nb2~';.·bd<P. = ~o1NIN2il 22abb2 coso (17)
4>0=0 2 a -

A similar analysis gives L 12 which is found equal to L21 . From energy argu­
ments presented in Chap. 11, it can be proven that L 12 = L21 is a necessity.
Note that

9.6.5 (a) The vector potential of the wire carrying a current 1 is

where

(1)

and a is a reference radius. IT we mount an image of magnitude ib at the
position z = 0,1/ = -h, we have

(2)

where
r2 = V(y + h)2 + z2

The field in the ~material is represented by the vector potential

y>O

where i a is to be determined. We find for the B = ~H field

H V A
• 8Aa • 8Aa

~o = X = Ix 8y - 1~ 8z

__ ~o {. (1 Y - h + . Y+ h )
- 271" Ix V(y _ h)2 + z2

3
'b V(y + h)2 + z2

3

.(1 z . z )
-l~ S + 'b S i

V(y - h)2 + z2 V(y + h)2 + z2

(3)

(4a)

H ~oia 1 {. ( h) • }
~ = - -2- 3 Ix Y- - I~Z i

71" V(1/ - h)2 + z2
1/<0 (4b)
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At Y= 0 we match Hz and p.HII obtaining 

(5) 

(6) 

By adding the two equations we obtain: 

(7) 

and thus 

(8) 

(b)	 When p. ~ p'o, then H tan ~ 0 on the interface. We need an image that cancels 
the tangential magnetic field, i.e. 

(c)	 We have a normal flux as found in (4a) for i b = I 

This normal flux must be continuous. It can be produced by a fictitious source 
at y = h of magnitude ia = 21. The field is (compare (4b)) 

(d)	 When p. ~ p'o, we find from (2) and (8) 

in concordance with the above! 
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9.6.6	 The field in the upper region can be taken as the sum of the field due to 
the wire, a particular solution, and the field of an image current at the position 
y = -h, z = 0, a homogeneous solution. The polarity of this latter current is 
determined by which of the two physical situations is of interest. 

(a)	 IT the material is perfectly conducting, there is no flux density normal to its 
surface in the upper region. In this case, the image current must be in the -z 
direction so that its y directed field is in the opposite direction to that of the 
actual current in the plane y = O. The field at y = h, z = 0 due to this image 
current is 

J.&oH =	 (2~(~h) i x (1) 

and therefore the force per unit length is as given. The wire is repelled by a 
perfectly conducting wall. 

(b)	 In this case, there is no tangential magnetic field intensity at the interface, so 
the image current is in the same direction as the actual current. As a result, 
the field intensity of the image current, evaluated at the position of the actual 
current, is the negative of that given by (1). The resulting force is also the 
negative of that for the perfect conductor, as given. The wire is attracted by 
a permeable wall. 

9.6.'1 (a)	 In this version of an "inside-outside" problem, the "inside" region is the highly 
permeable one. The field intensity must be H~. in that region and have no 
tangential component in the plane z = O. The latter condition is satisfied by 
taking the configuration as being that of a spherical cavity centered at the 
origin with the surrounding highly permeable material extending to infinity 
in the ±z directions. At the surface where r = a, the normal flux density in 
the highly permeable material tends to be zero. Thus, the approximate field 
takes the form 

cos(Jwa = -Horcos(J + A-­	 (1)2r 
where the coefficient A is adjusted to make


8wa


n . Blr=a = 0 =* a;:-(r = a) = 0	 (2) 

Substitution of (1) into (2) gives A = _a3 Ho/2 and hence the given magnetic 
potential. 

(b)	 Because there is no surface current density at r = A, the magnetic potential 
(the tangential field intensity) is continuous there. Thus, for the field inside 

Wb(r = a) = Wa(r = a) = -3Hoa/2	 (3) 

To satisfy this condition, the interior magnetic scalar potential is taken to 
have the form 

Wb=Crcos(J=Cz	 (4) 

Substitution of this expression into (3) to evaluate C = -3Ho/2 results in the 
given expression. 
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9.6.8	 The perfectly permeable walls force the boundary condition ff = 0 on the 
surfaces. The bottom magnetic surface charge density is neutralized by the im­
age charges in the wall (see Fig. 89.6.8). The top magnetic surface charge density 
produces a magnetic potential ff that is 

ff = A sinh ,8(y - a) cos,8z y > d/2 (1a) 
and 

ff = Bsinh,8(y+~) cos,8z y < d/2	 (16) 

At the interface at y = d/2, ff is continuous 

Asinh,8(~ - a) = Bsinh,8d	 (2) 

and thus 
B _ _ sinh,8(a - ~) 

- A sinh,8d (3) 

The magnetic surface charge density at y = d/2 is 

O'm = p.oMo cos,8z (4) 
It forces a jump of off/oy at y = d/2: 

--off I + -off I = Mocos,8x (5) 
oy y=d/2+ oy y=d/2_ 

and we find 

-Acosh,8(~ - a) + Bcosh,8d = Mo (6)
2 ,8 

Using (3) we obtain 

A = _ Mo sinh,8d 
,8 cosh,8(~ - a) sinh,8d - cosh,8dsinh,8(~ - a) 
~ ~~ m 

= -T sinh,8(~ + a) 
The vertical component of B, By, above the tape, for y > d/2, is 

off sinh,8d ,
By = -P.o-;- = p.oMo . (d ,) cosh,8(y - a) cos,8x (8)

uy smh,8 2" + a 

Note that in the limit a --+ d/2, the flux is simply p.oMo as expected. IT the tape 
moves, cos,8z has to be expressed as cos,8(z' - Ut). The flux is 

sinh,8d d j'll'},
A=wNp.oMo . (d ) cosh,8(h+- -a) X ' cos,8(x'-Ut)dz' (9)

smh,8 2" + a 2 -1/2


The integral evalues to


~ [sin ,8(~ - Ut) + sin,8(~ + Ut)] = ~ sin,8~ cos ,BUt (10) 

and from here on one proceeds as in the Example 9.3.2.

dA


"0 = dt
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9.6.9 In terms of the magnetic scalar potential, boundary conditions are 

w(x, b) = OJ w(x, 0) = 0	 (1) 

a'll	 1rY a'll 1rY
H y = --a (0, y) = -Ko cos -j -a (b, y) = K o cos - (2)

yay	 a 

To satisfy the first pair of these while matching the y dependence of the second 
pair, the potential is taken as having the y dependence sin(1ry/a). In terms of'll, 
the conditions at the surfaces x = 0 and x = b are even with respect to x = b/2. 
Thus, the combination of exp(±1rx/a) chosen to complete the solution to Laplace's 
equation is even with respect to x = b/2. 

'11 = A cosh [~(x - ~)] sin (1rY)	 (3)
a 2 a 

Thus, both of the relations (2) are satisfied by making the coefficient A equal to 

A= aKo (4)
1rcosh(1rb/2a) 

9.6.10	 The solution can be divided into a particular part due to the current density 
in the wire and a homogeneous part associated with the field that is uniformly 
applied at infinity. Because of the axial symmetry in the absence of the applied 
field, the particular part can be found using Ampere's integral law. Thus, from an 
integration at a constant radius r, it follows that 

H",p21rr = 1rr2 Jo ; r < R 

H",p21rr=1rR2 Jo; R<r	
(1) 

so that the particular field intensity is 

r< R (2)R < r 

in polar coordinates 

H = .! (.! aAz i aAz i",)_ 

p. r atP r ar	 (3) 

and it follows from (2), integrated in accordance with (3), that 

r < R (4)R< r 

In view of the applied field, the homogeneous solution is assumed to take the form 

A _{Dr sin tPj . r< R 
zh - -P.aHor sin tP + CS1~ 1> j R<r	 (5) 
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The coefficients C and D are adjusted to satisfy the boundary conditions at r = R, 

(6) 

1 8Aa 1 8Ab 
--_% + -_% = 0	 (7)

J1.a 8r J1.b 8r 

The first of these guarantees that the flux density normal to the surface is continuous 
at r = R while the second requires continuity of the tangential magnetic field 
intensity. Substitution of (5) into these relations gives a pair of equations that can 
be solved for the coefficients C and D. 

(8) 

The coefficients which follow are substituted into (5) and those expressions respec­
tively added to (4) provide the given expressions. 

J 
9.6.11	 (a) Given the magnetization, the associated H is found by first finding the distri­

bution of magnetic charge. There is none in the volume, where M is uniform. 
The surface magnetization charge density at the surface, say at r = R, is 

(1) 

Thus, boundary conditions to be satisfied at r = R by the scalar magnetic 
potential are 

(2) 

(3) 

From the () dependence in (3), it is reasonable to assume that the fields outside 
and inside the sphere take the form 

- H	 r cos () + A co. 9 
~ = { a 

-Hrcos() 
r2	 (4) 

Substitution of these expressions into (2) and (3) gives 

1 
H = Ha - 3M ~ M = 3(Ha - H)	 (5) 

Thus, it follows that 

B == J1.a(H + M) = J1.a(-2H + 3Ha)	 (6) 

(b)	 This relation between Band H is linear and therefore a straight line in the 
B - H plane. Where B = 0 in (6), H = 3Ha/2 and where H = 0, B = 3J1.aHa' 
Thus, the load line is as shown in Fig. S9.6.11. 

http:S9.6.11
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Figure 99.8.11

(c) The values of Band H within the sphere are given by the intersection of the
load line with the saturation curve representing the constitutive law for the
magnetization of the sphere.

(d) For the specific values given, the load line is as shown in Fig. 89.6.11. The
values of Band H deduced from the intersection are also indicated in the
figure.

9.6.12 We assume that the field is uniform inside the cylinder and then confirm the
correctness of the assumption. The scalar potentials inside and outside the cylinder
are

'Ii - {-HoRcos4J(r/R) + A cos 4J(R/r) r> R
- Ccos4J(r/R) r < R

Because 'Ii is continuous at r = R

IT there is an internal uniform magnetization M = Mix, then

n·M=Mcos4J

The boundary condition for the normal component of #LoB at r = R gives

Therefore, from (2) and (4)
C M
-=-H +-R 0 2

(1)

(2)

(3)

(4)

(5)
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and the internal (r < R)H field is (we use no subscripts to denote the field internal
to cylinder):

(6)

The magnetization causes a "demagnetization" field of magnitude M/2. We can
construct "load line" to find internal B graphically. 8ince

B = 11-0(H + M)

we find from (6) for the magnitude of the internal H field

H = (H _ M + H + H) = H _ ~ + H
o 2 2 0 211-0 2

or
B

H= 2Ho--
11-0

The two intersection points are (see Fig. 89.6.12)

H=2Ho for B=O

and
B = 211-0Ho for H = 0

We read off the graph: B = 0.67 tesla, H = 2.5 X 105 amps/m.

(7)

(8)

(9)

I
B

(Ieslol

0.5

2 4 6 8
~

H(units of 10 omps/ml-

Figure 59.6.12

I
B

(tesla)

h!!i
R

Ni/2R

/

2 4 6 8
H(units of ,domps/m)-

Figure 59.6.13

9.6.13 The relation between the current in the winding and Hand M in the sphere
are given by (9.6.15).

Ni
M= 3(- - H)

3R
From this, the load line follows as

Ni
B == 11-0(H + M) = 11-0 ( Ii" - 2H)

(1)

(2)

The intercepts that can be used to plot this straight line al<; shown in Fig. 89.6.13.
The line shown is for the given specific numbers. Thus, within the sphere, B ~ 0.54
and H ~ 1.8.
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9.7 MAGNETIC CIRCUITS


9.1.1	 (a) Because of the high core permeability, the fields are approximated by taking 
an "inside-outside" approach. First, the field inside the core is approximately 
subject to the condition that 

n ' B = 0 at r = a and r = b (1) 

which is satisfied because the given field distribution has no radial component. 
Further, Ampere's integral law requires that 

2ft' 12ft' Ni 
H",rd~ = Ni = -rd~ = Ni (2)1o	 0 21/"r 

In terms of the magnetic scalar potential, with the integration constant ad­
justed to define the potential as zero at ~ = 1/", 

18'if! Ni Ni 
--- = - => 'if! = --~+const 

r 8~ 21/"r 21/" (3) 
Ni ~ 

= 2(1-;J 
This pot.ential satisfies Laplace's equation, has no radial derivative on the 
inside and outside walls, suffers a discontinuity at ~ = 0 that is Ni and has a 
continuous derivative normal to the plane of the wires at ~ = 0 (as required. 
by flux continuity). Thus, the proposed solution meets the required conditions 
and is uniquely specified. 

(b)	 In the interior region, the potential given by (3), evaluated at r = b, provides 
a boundary condition on the field. This potential (and actually any other 
potential condition at r = b) can be represented by a Fourier series, so we 
represent the solution for r < b by solutions to Laplace's equation taking the 
form 

00 

'if! = L ,pm sin m~ (~) m	 (4) 
m=l 

Because the region includes the origin, solutions r- m are omitted. Thus, at 
the boundary, we require that 

N' ~ 00 

-'(1- -) = '" ,pm sin m~	 (5)2 1/"	 L-
m=l


Multiplication by sin n~ and integration gives


2ft' N' ~ 12ft' 001 -;(1-;) sin(n~)d~ = L ,pmsinm~sinn~d~ 
o 0 m=l (6) 

= ,pn1/"


Thus,


N'1 2 
ft'	 ~ N',pm =-' (1 - -) sin m~d~ =-' (7)

21/" 0 1/" m1/" 
Substitution of this coefficient into (4) results in the given solution. 
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9.7.2 The approximate magnetic potential on the outer surface is 

00 

W= L -'N" 
sinmfji	 (1)

m1l" 
m=1 

according to (b) of Prob. 9.7.1. The outside potential is a solution to Laplace's 
equation that must match (1) and decays to zero as r ~ 00. This is clearly 

00 

W= L -'N" 
(a/r)m sin mfji'	 (2) 

m=1 m1l" 

9.7.3	 Using contours C1 and C2 respectively, as defined in Fig. S9.7.3, Ampere's 
integral law gives 

Haa = Ni => Ha = Ni/a	 (1) 

(2) 

~~-------~ 
w 

r/ 

Figure S9.1.3 

From the integral form of flux continuity, for a closed surface S that intersects the 
middle leg and passes through the gaps to right and left, we know that the flux 
through the middle leg is equal to the sum of those through the gaps. This flux is 
linked N times, so 

(3) 

Substitution of (1) and (2) into this expression gives 

(4) 

where the coefficient of i is the given inductance. 
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9.'1.4 The field in the gap due to the coil of N turns is approximately uniform
because the hemisphere is small. From Ampere's law

Hh=Ni (1)

where H directed downward is defined positive. This field is distorted by the sphere.
The scalar magnetic potential around the sphere is

Ni
q; = R h cos 6[(r/ R) - (R/r)2]

where 6 is the angle measured from the vertical axis. The field is

H = - ~i {II' cos 6[1 + 2(R/r)2]- i 9 sin 6[1 - (R/r)2]}

(2)

(3)

(4)

(5)

Figure 89.7'.4

The flux linked by one tum at angle a is (see Fig. 89.7.4)

~A = 1a

lJoHr 21rR2 sin6d6

N" fa
= -3IJoT21rR2 10 sin6cos6d6

3IJo Ni 2(=---1rR 1-cos2a)
2 h

But 1 - cos 2a = 2sin2 a which will be used below. The flux linkage is '>'21 where 1
stands for the coil on the 1r/2 leg of the "circuit", 2 for the hemispherical coil

r/2 n
'>'21 = 1

0
~A R sinaRda

3 Nn r/2

= -"4lJoTi1rR2 1
0

sin3 ada

Nn R2 '
= - 1J0 2h: 1r ,

The mutual inductance is

(6)
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9.1.5	 In terms of the air-gap magnetic field intensities defined in Fig. S9.7.5, Ampere's 
integral law for a contour passing around the magnetic circuit through the two 
windings and across the two air-gaps, requires that 

(1) 

Figure S9.1.5 

In terms of these same field intensities, flux continuity for a surface S that encloses 
the movable member requires that 

(2) 

From these relations, it follows that 

(3) 

The flux linking the first winding is that through either of the gaps, say the upper 
one, multiplied by N 1 

(4) 

The second equation has been written using (3). Similarly, the flux linking the 
second coil is that crossing the upper gap multiplied by N2 • 

(5) 

Identification of the coefficients of the respective currents in these two relations 
results in the given self and mutual inductances. 
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(1)

9.1.6 Denoting the H field in the gap of width z by Hs and that in the gap g by
Hg , Ampere's integral law gives

f H . ds = zHs + gHg = Ni

where flux continuity requires

(2)

Thus

(3)

The flux is

The inductance is
L = N ~A = -=,IJ_o_N_2-;;-­

s +-'-, tra3 2trad

9.1.1 We pick two contours (Fig. 89.7.7) to find the H field which is indicated in the
three gaps as Ha, Hb and Hc. The fields are defined positive if they point radially
outward. From contour 0 1:

(1)

/"

I /
II I I

C2

I"" • • • ITI'"

I IH.. H, H.

-~- I- f--d- I-e-d

Figure 89.7'.7'

From contour O2

(-Ha+ Hc)g = N1i 1 + N2 i 2

The flux must be continuous so that

(2)

(3)
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We find from these three equations 

(4) 

d - eN1i1 e N 2i.
Hb=--------	 (5)

2d g 2d g 

He = d- eN1i1 + 2d- eN2 i2 (6)
2d g 2d g 

The flux linkage of coil (1) is: 

The flux linkage of coil (2) is: 

The inductance matrix is, by inspection 

9.1.8	 (a) 1J! must be constant over the surfaces of the central leg at x = Tl/2 where 
we have perfectly permeable surfaces. In solving for the field internal to the 
central leg we assume that a1J!/an = 0 on the interfaces with fJ-o. 

(b)	 If we assume an essentially uniform field HI-' in the central leg, Ampere's 
integral law applied to a contour following the central leg and closing around 
the upper part of the magnetic circuit gives 

(1) 

Therefore 

(2)
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'1'(x = 1/2) = N1i1 + 
2 

N2i 2	 (3) 

(c)	 In region a, at y = 0, '1' must decrease linearly from the value (2) to the value 
(1) 

(4) 

At 
y= a, '1'=0 (5) 

At x = ±1/2,0 < Y< a, '1' must change linearly from (2) and (3) respectively, 
to zero 

'1'(x = _~, y) = N1i1 ;	 (6)N2 i 2 (a: y) 

'1'( 
x= 2'y') 

= -
N1i1 + 

2 
N2 i2 (a -

a 
y) (7) 

(d)	 '1' must obey Laplace's equation and match boundary conditions that vary 
linearly with x and y. An obvious solution is 

'1' = Axy + Bx + Cy


We have, at y = 0


and thus

B = _ N1i1 + N2 i2


l 
In a similar way we find at y = a


Aax + Bx + Ca = 0


and thus 
C=O, Aa=-B 

which gives 

9.7.9 From Ampere's integral law we find for the H fields 

(1) 

where K is the ("surface-") current in the thin sheet. This surface current is driven 
by the electric field induced by Faraday's law 

2~ (3a + w) = f E . ds = _!!. f J.'oD . daua	 dt (2)
dH1=-J.'aw-­
dt 
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Finally, the flux is continuous so that

J1-H13aw = J1-H2aw (3)
and

H2 = 3H1
When we introduce complex notation and use (4) in (1) we find

Ht{l1 + 3l2) = Nio + Kh

(4)

(5)
and

K = - JWJ1-aw a6.H1
2(3a + w)

Introducing (6) into (5) yields

~ Nio 1
H 1 = -;-:---=--:--:- -----,--­

(i1 + 3l2 ) 1 + jWTm

(6)

(7)

awh
Tm =J1-a6.( )( )h + 312 6a+ 2w

where

9.7.10 The cross-sectional areas of the legs to either side are half of that through
the center leg. Thus, the flux density, B, tends to be the same over the cross­
sections of all parts of the magnetic circuit. For this reason, we can expect that
each point within the core will tend to be at the same operating point on the given
magnetization characteristic. Thus, with H g defined as the air-gap field intensity
and H defined as the field intensity at each point in the core, Ampere's integral law
requires that

2Ni = (l1 + l2)H + dHg (1)
In the gap, the flux density is J1- o Hg and that must be equal to the flux density just
inside the adjacent pole faces.

J1-o Hg = B (2)
The given load-line is obtained by combining these relations. Evaluation of the
intercepts of this line gives the line shown in Fig. 89.7.10. Thus, in the core, B ~ 0.75
Tesla and H ~ 0.3 X 104 A/m.

f
B

(tesla)-- --

0.5xI04

H (omps/m)-

E
........
III
a.
E
o

\Da
2 0.5 61 1.5

Hb(units of 10 omps/m)

Figure S9.7.10 Figure S9.7.11
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9.1.11 (a) From Ampere's integral law we obtain for the field Hb in the J.L material and 
H a in the air gap: 

bHb + aHa = Ni (1) 

Further, from flux continuity 

(2) 

and thus 

(3) 

Now Bb = J.Lo(Hb + M) and thus 

(4) 

or 
Ni b

H b = -- - --M (5)
a+b a+b 

This is the load line. 

(b) The intercepts are at M = 0 

Ni Ni 6
H b = -- = - = 0.25 X 10 

a+ b 2a 

and at H b = 0 

M = b
Ni 

= 0.5 X 106 

We find 
M = 0.22 X 106 Aim 

Hb = 0.13 X 106 Aim 

The B field is 

J.Lo(Hb + M) = 411" X 10-7 (0.13 + 0.22) x 106 = 0.44tesla 
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10.0 INTRODUCTION

10.0.1 (a) The line integral of the electric field along 0 1 is from Faraday's law:

because no flux is linked (see Fig. S10.0.la). Therefore

-t/+iR =a

because the voltage drop across the resistor is iR. Hence

t/ = iR

R

v

(1)

(2)

+
v

The line integral along O2 is

which leads to

F1sure BIO.O.la,h

4iR = d.A
dt

c

(3)

(4)

1
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Therefore, we find for the voltage across the voltmeter 

1 dw.\ 
v=---	 (5)

4 dt 

(b) With the voltmeter connected to 2, (1) becomes 

v = 2iR 

Using (2), 

and similarly for the other modes 

. [1 dW.\]v(3) = 3[IR] = 3 - ­
4 dt 

v(4) = 4iR = 4[! dW.\] = dw.\ 
4 dt dt 

For a transformer with a one turn secondary (see Fig. S10.0.lb), 

v = 1 E· dl = !.... ! B . da = !!.w.\
fa at dt 

10.0.2	 Given the following one-turn inductor (Figs. S10.0.2a and S10.0.2b), we want 
to find (a) tI2 and (b) VI. The current per unit length (surface current) flowing 
along the sheet is K = i/d. The tangential component of the magnetic field has to 
have the discontinuity K. A magnetic field (the gradient of a Laplacian potential) 

HIlS = di inside (1) 
= 0 outside 

has the proper discontinuity. This is the field in a single turn "coil" of infinite width 
d and finite K = i / d. It serves here as an approximation. 

(a) tI2 can be found by applying Faraday's law to the contour O2 , 

Using (I), and the constitutive relation B = PoD, 

l (B) l(A) d 1 i(t)
E·ds+ E·ds=-- Po-dxdy (2) 

(A)a2 (B)a2 dt 82 d 
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Since the inductor waDs are perfectly conducting, E = 0 for the second integral
on the left in (2). Therefore,

or,
slJjo diet)

~U2=---­

d dt

--
I

surface current, K,
flows through.
inductor walls

8

P,o~

I'"-----......'--+:z: ---of"

one-turn ~

inductor d ~;""------'--.----"?I

/;/-- -

flows
through
this surface

K = i(t)/d __ y __

- - -~:::.=;.=--------_ ..~ ..
Flsure 810.0.3

(b) Now, tl1 can be found by a similar method. Writing Faraday's law on 0 1,

(3)

Since 0 1 does not link any flux, (3) can be written

d
-til =--(0) =0

dt
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10.1	 MAGNETOQUASISTATIC ELECTRIC FIELDS IN 
SYSTEMS OF PERFECT CONDUCTORS 

10.1.1	 The magnetic field intensity from Problem 8.4.1 is 

B i1fR2 [ 1I( 1 1). . 1I( 1 2 ). ]
= 4;- 2cos 11 ,.s - b3 I r + sm 11 ,.s + b3 16 

The E-field induced by Faraday's law has lines that link the dipole field and uniform 
field. By symmetry they are tP-directed. Using the integral law of Faraday's law using 
a spherical cap bounded by the contour r = constant, 9 = constant, we have 

.	 6f E· ds = 21frsin9E~ = - :t 1J.'o B r 21frsin9rd9 

di 1fR216	 1 1=-J.'o-- 21f~2sin9cos9d9(---)
dt 41f 0	 ,.s b3 

di 1fR2 2 ( 1 1). 2 
= -J.'	 ---1fr- - - - 2sm 9 

o dt 4,.. ,.s b3 

Thus: 

10.1.2	 (a) The H-field is similar to that of Prob. 10.0.2 with K specified. It is z-directed 
and uniform 

H. = {K inside	 (1)o	 outside 

Indeed, it is the gradient of a Laplacian potential and has the proper discon­
tinuity at the sheet. 

(b)	 The particular solution does not need to satisfy all the boundary conditions. 
Suppose we look for one that satisfies the boundary conditions at 11 = 0, Z = 0, 
and 11 = a. IT we set 

(2) 

with Ezp(O, t) = 0 we have satisfied all three boundary conditions. Now, from 
Faraday's law, 

(3) 

Integration gives 

(4) 
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x=o x=a x=o x=a 

(a) (b) 

Figure SlO.l.~a,b 

The total field has to satisfy the boundary condition at y = -l. There, the field 
has to vanish for almost all 0 ~ x ~ a, except for the short gap at the center of the 
interval. Thus the E",-field must consist of a large field : E",p, over the gap 9, and 
zero field elsewhere. The homogeneous solution must have an E",-field that looks 
as shown in Fig. SlO.1.2a, or a potential that looks as shown in Fig. SlO.1.2b. The 
homogeneous solution is derivable from a Laplacian potential cI>h 

(5) 

which obeys all the boundary conditions, except at y = -l. Denote the potential 
cI>h at y = -l by 

cI>h(y = -l) = aE",pf(x) (6) 

so that the jump of /(x) at x = a/2 is normalized to unity. Using the orthogonality 
properties of the sine function, we have 

- sinh ( m1l" l) ~ Am = aE",p fa / (x) sin (m1l" x) dx (7) 
a 2 }",=o a 

It is clear that all odd orders integrate to zero, only even order terms remain. For 
an even order, except m = 0, 

a 2

l m1l" l a
/ x m1l"/(x) sin (-x) = 2 - sin (-x)dx 

",=0 a ",=0 a a

l mfr 2 
2a /= -()2 usinudu 

mll' u=o (8) 
2 

= (~;)2 [ - ucosul;;'fr/2 +l mfr
/ COSUdU] 

= ~(_l)-'f+l 
mll' 

Therefore 
m-even 

(9) 
m-odd 

http:SlO.1.2a
http:SlO.1.2b
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The total field is 

dK {[ ~ / sinh!M y m1l"]E = lJo- ix Y-I L.J 2(-1)m 2 . h'::''/I' I cos (-z)
dt m sma a 

(10) 
• ~ m/2cosh ~'/I'y • (m1l" )]}

-1)'1 L.J 2(-1) . h !Ml sm -z 
m sIn 2 a 

~ ... ~n 

10.1.3 (a) The magnetic field is uniform and z-directed 

B = i.K(t) 
(b)	 The electric field is best analyzed in terms of a particular solution that satisfies 

the boundary conditions at tP = 0 and tP = a, and a homogeneous solution 
that obeys the last boundary condition at r = a,. The particular solution is tP­
directed and is identical with the field encircling an axially symmetric uniform 
H-field 

(1) 

and thus 
r dK 

E~ = -"2IJ0dt (2) 

The homogeneous solution is composed of the gradients of solutions to Laplace's 
equation 

(3) 

At r = a, these solutions must cancel the field along the boundary, except at 
and around tP = a/2. Because 8 < a, we approximate the field E</>h at r = a 
as composed of a unit impulse function at tP = a/2 of content 

a dK 
aE</>p = -"2alJ0dt	 (4) 

and a constant field 
a	 dK 

E</>h = "21J0dt 

over the rest of the interval as shown in Fig. S10.1.3. Feom (3) 

1 aCbh 1 L n1l"tPE</>h I _ = --- = -- (n1l"/a) An cos (-) (5)
r_G a atP a	 a 

n 

l_ 
T-E~p 

Figure SI0.1.8 
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Here we take an alternative approach to that of 10.1.2. We do not have to worry 
about the part of the field over 0 < ~ < a, excluding the unit impulse function, 
because the line integral of E~ from ~ = 0 to ~ = a is assured to be zero (conser­
vative field). Thus we need solely to expand the unit impulse at ~ = a/2 in a series 
of cos (~tr ~). By integrating 

1 a
--(m7f/a)Am - = cos(m7f/2)aE<flp	 (6) 

a	 2 

where the right hand side is the integral through the unit impulse function. Thus, 

(7) 

Therefore 

(8) 

and 

E = - ~o d: i{~ + f: 2(_1)m/2(r/a)~-1 
m_3 

m-eYeD.	 (9) 

10.1.4.	 (a) The coil current produces an equivalent surface current K = Ni/d and hence, 
because the coil is long 

(1) 

(b)	 The (semi-) conductor is cylindrical and uniform. Thus E must be axisym­
metric and, by symmet~, ~-directed. From Faraday's law applied to a circular 
contour of radius r inside the coil 

dB. 2
27frE~ = - --7fr

dt 

and 
r Ndi 

E~ = -2~od dt 

(c)	 The induced H-field is due to the circulating current density: 

where we have set 
i(t) = I coswt 
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The H field will be axial, z- and ~independent, by symmetry. (The z- "inde­
pendence" follows from the fact that d::> b.) From Ampere's law 

10-8 

VxH=J 

we have 
dHz--=J.,
dr 

and thus 
r 2 N 

Hz induced = -wC1'4IL0"dlsinwt 

For Hz induced <: Hz imposed for r ~ b 

10.1.5 (a) From Faraday's law 
a

VxEp=--Bat (1) 

and thus 
aElIP N di 
--=-IL - ­az ° ddt 

(2) 

Therefore, 

(3) 

(b)	 We must maintain E·n = 0 inside the material. Thus, adding the homogeneous 
solution, a gradient of a scalar potential., we must leave E z = 0 at z = 0 
and z = b. Further, we must eliminate ElI at y = 0 and y = a. We need an 
infinite series .h =L An cos (~'Ir z) sinh (nb'lr y)	 (4) 

n 

with the electric field 

At y = ±a/2 

(6)
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f(x) = x - ~

-b/2

(a)

10-9

E"
y Eta E

(7)

Set - P.~ ~ = p<lIIitive number

(b)

Flpre S10.1.1

We must expand the function shown in Fig. S10.1.5a into a cosine series. Thus,
multiplying (6) by cos ":,tI' z and integrating from z = 0 to z = b, we obtain

m1l" b (m1l" ) N di l b
( b) m,..---A cosh -·-a = I/o -- z - - cos -zdz

b 2 m 2b 0 d dt 0 2 b

{
N IJi ( b )2= -1/007 dt 2 m;r m - odd

Om-even
Solving for Am

m - even
m- odd

(8)

The E-field is

E - _ N di {(z _~)i _ ~ 4bj(m'll")2
- 1/00 d dt 2 '11 LJ cosh(m'll"aj2b)

n-odd

[sin (~,..z) sinh (~'Il"y)lx

_ cos (n;z) cosh (~'Il" Y)ly]}
(c) See Fig. SlO.1.5b.

(9)
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10.2	 NATURE OF FIELDS INDUCED IN FINITE 
CONDUCTORS 

10.2.1 The approximate resistance of the disk is 

R= !211"a~ 
(J 2 at. 

where we have taken half of the circumference as the length. The fiux through the 
disk is [compare (10.2.15)1 

A= J.'oi2a 
2 

This is caused by the current i 2 so the inductance of the disk L22 is (using N = 1): 

The time constant is 

This is roughly the same as (10.2.17). 

10.2.2	 Live bone is fairly "wet" and hence conducting like the surrounding fiesh. 
Current lines have to close on themselves. Thus, if one mounts a coil with its axis 
perpendicular to the arm and centered with the arm as shown in Fig. 810.2.2, circu­
lating currents are set up. IT perfect symmetry prevailed and the bone were precisely 
at center, then no current would fiow along its axis. However, such symmetry does 
not exist and thus longitudinal currents are set up with the bone off center. 

Flsure 810.2.2 
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10.2.3 The field of coil (1) is, according to (10.2.8) 

(1) 

The net field is 

with Hind = K~ where K~ is the ¢J directed current in the shell. The E-field is 
from Faraday's law, using symmetry 

(2) 

But 

(3) 

and thus, for r = a 

2Hind d d--+ -Hind = --Ho	 (4)
/Aou!i.a dt dt 

In the sinusoidal steady state, using complex notation 

(5) 

and 

(6) 

where 
/Aou!i.a

1"m= -­
2 

At small values of W1"m 

(7) 

10.3	 DIFFUSION OF AXIAL MAGNETIC FIELDS THROUGH 
THIN CONDUCTORS 
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'J 
10.3.1 The circulating current K(t) produces an approximately uniform axial field 

H. = K(t) (1) 

As the field varies with time, there is an induced E-field obeying Faraday's law 

1 E.ds=-~ r#LoB . da (2)10 dt 18 

The E-field drives the surface current 

K= AuE (3) 

that must be constant along the circumference. Hence E must be constant. From 
(1), (2), and (3) 

K d 24aE = 4a- = -_IL Ka (4)
Au dt""o 

and thus 
d 4
-K+--K=O (5)
dt lJoUAa 

Thus 
(6) 

with 
p-ouAa 

1"m= -4- (7) 

10.3.2 (a) This problem is completely analogous to 10.3.1. One has 

and, because K 
be constant 

Therefore 

or 

with 

H. = K(t) (1) 

= AuE must be constant along the surface, so that E must 

d d2 
(2d + V2d)E = --d#LoK(t)- (2)

t 2 

~ K d d
(2 + v2)- = --(lJoK)- (3)

Au dt 2 

dK K
-+-=0 (4)
dt 1"m 

#LouAd 
1"m = 2(2 + V2) (5) 
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The solution for J = K/ li. is

10-13

(6)

(b) Since

1 E.ds=O
10 1

and the line integral along the surface is V2dE, we have

(c) Again from Faraday's law

(7)

(8)

(9)

(10)

10.3.3 (a) We set up the boundary conditions for the three uniform axial fields, in the
regions r < b, b < r < a, r > a (see Fig. S10.3.3).

Ho(t) - H1 (t) = -Kout(t) = -Joutli. = -uEoutli. (1)

H 1(t) - H2 (t) = -KID(t) = -JIDli. = -uEiDli. (2)

1

positive
direction ~

of K

Fleure SI0.S.S
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From the integral form of Faraday's law: 

21l"aEout = -11-0 dt
d 

[H1(t))1l"(a2 - b2) + H2(t)d2] (3) 

21l"bEin = -11-0 :t [H2(t)d2] (4) 

We can solve for E out and E in and substitute into (1) and (2) 

(1/:1 [a2 - b2 dHdt) b2 dH2(t)]Ho ()t - H1(t) -
_ 

11-0""2 a dt + -;----;;u- (5) 

_ (1/:1b dH2 (t)
H 1()t - H2 (t) - 1I-0-

2
-----;;u- (6) 

We obtain from (6) 

(7) 

where 
lI-o(1/:1b 

Tm ==-­
2 

From (5), after some rearrangement, we obtain: 

=> ~ ~ dH2 + ~ (~-~) dHdt) + H1(t) = H (t) (8)
m a dt mba dt 0 

(b)	 We introduce complex notation 

Ho = Hm coswt = Re {Hme;wt} (9) 

Similarly H1 and H2 are replaced by H1,2 = Re IH1,2e;wtj. We obtain two 
equations for the two unknowns III and II2 : 

-Ill + (1 + iWTm)II2 = 0 

1 + 1.WTm(ab b)] A b . A

[ - ~ H1+ ~1WTmH2 = Hm 

They can be solved in the usual way 

1+iwTm I 
fI = IH0 

m ~iWTm = _ (1 + iWTm)Hm
1 LJet	 lJet 

mII2= 11 + WT,:t~ -~) J I= _H m 

LJet LJet

where LJet is the determinant.


LJet == -{ [1 + iWTm(i - ~)](l + iWTm) + iWTm~} 
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10.3.4 (a) To the left of the sheet (see Fig. 810.3.4),

B = Koi-.

To the right of the sheet
B=Ki.

Along the contour Gl , use Faraday's law

1 E. ds = _!!. rB· da
10 1 dt Js

10-15

(1)

(2)

(3)

II K-KoIt,
I /

!J,. 1;1
I

(To
(T = ----..:----,=

1+ a cos !'f

Figure SI0.a.4

Along the three perfectly conducting sides of the conductor E = O. In the sheet the
current K - Ko is constant so that

V·J=O~V·(uE)=O

i l b (K - Ko) dKE· ds = Ii. dy = -I-'oab-
d01 1/=0 00 t

K - Ko r ( 1fY) dK
li.uo JI/=o 1 + a cos b dy = -I-'oab""dt

The integral yields b and thus

(4)

(5)

(6)

(7)

(8)

From (7) we can find K as a function of time for a given Ko(t).

(b) The y-component of the electric field at :t: = -a has a uniform part and a
y-dependent part according to (5). The y-dependent part integrates to sero
and hence is part of a conservative field. The uniform part is

K-Ko dK
Ewb = - Ii. b = I-'oab-

d000 t
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This is the particular solution of Faraday's law

with the integral
dK

Eyp = -I-'ozdi"

and indeed, at z = -a, we obtain (8). There remains

K - Ko ('lrY)
Ellh = - !:iu

o
acos b

(9)

(10)

(11)

It is clear that this field can be found from the gradient of the Laplacian
potential

~ = A sin <'7) sinh (~z) (12)

that satisfies the boundary conditions on the perfect conductors. At z = -a

and thus

8~ I 'Ir 'lrY. <'Ira K - Ko 'lry-- = -Acos-smh -) =- acos-8y :1:=-4 b b b !:iuo b (13)

(14)

10.4 DIFFUSION OF TRANSVERSE MAGNETIC FIELDS
THROUGH TmN CONDUCTORS

10.4.1 (a) Let us consider an expanded view of the conductor (Fig. 810.4.1). At y = !:i,
the boundary condition on the normal component of B gives

(1)

11

(a)

(e) ~ (IT,lL)

(b)

F1sure 910.4.1
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Therefore 
(2) 

At y= 0 
(3) 

Since the thickness, 11, of the sheet is very small, we can assume that B is uniform 
across the sheet so that, 

(4) 

Using (3) and (4) in (2), 
BG-Bb=O (5)11 11 

From the continuity condition associated with Ampere's law 

Since 
K =K.I., n =I,., 

_HG+Hb = K (6)III III • 

The current density J in the sheet is 

J _ K. (7)
• - 11 

And so, from Ohm's law 
E _ K. (8)

• - l1a 

Finally from Faraday's law 
BD

VxE=-­ (9)Bt 
Since only B II matters (only time rate of change of flux normal to the sheet will 
induce circulating E-fields) and E only has a z-component, 

BE. BBII 
- Bz =-lit 

From (8) therefore, 

and finally, from (6), 

(10) 

(b) At t = 0 we are given K = I.Kosinpz. Everywhere except within the current 
sheet, we have J = 0


=> B = -V\If
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So from V . ,",oH = 0, we have 

Boundary conditions are given by (5) and (10) and by the requirement that the 
potential mut decay as y -+ ±oo. Since Hz will match the sinfJz dependence 
of the current, pick solutions with cos fJz dependence 

w(a) = A(t) cos fJze- fJ1I (l1a) 

web) = O(t) cos fJzefJ1I (l1b) 

H(a) = fJA(t) sin fJze- fJ1I i x + fJA(t) cos fJze- fJ1I i y (12a) 

H(b) = fJO(t) sin fJzefJ1I i x - fJO(t) cos fJzefJ1Iiy (12b) 

From (5), 

Therefore, 
A(t) = -O(t) (13) 

From (10), 

:z [fJA(t) sin fJze-1J1I11I=0 - fJO(t) sin fJze{J1I1 1I=0] 

dA(t)
= -dO',",ofJ cos fJze- fJ1I 1 =0 dt"

11

Using (13) 
dA(t)

2fJ2 A(t) cos fJz = -dO',",ofJ cos fJzdt" 

The cosines cancel and 

dA(t) + ~A(t) = 0 (14)
dt dO',",o 

The solution is 

A(t) = A(O)e- t / r (15) 

So the surface current, proportional to Hz according to (6), decays simila.rly 
as 
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10.4.2 (a) IT the sheet acts like a perfect conductor (see Fig. S10.4.2), the component of
B perpendicular to the sheet must be sero.

y

y=d

)--~-c~~-{i()------z

IL --+ 00 K(t) = i.K(t) cos{jz

Figure SlO.4.~

At y = 0 the magnetic field experiences a jump of the tangential component

with n II i)' and B 2 = 0,
Hz = -K(t)cospz

The field in the space 0 < y < d is the gradient of a Laplacian potential

'ilf = A sin pz cosh P(y - d)

The cosh is chosen so that HIJ is sero at y = d:

(1)

(2)

(3)

B = -AP[cospzcoshP(y - d)ix + sin pz sinh P(y - d)i)'] (4)

Satisfying the boundary. condition at y = 0

-ApcospzcoshPd = -K(t) cospz

Therefore
A = K(t)

pcoshPd

'ilf = K(t) sinpzcoshP(y - d)
pcoshPd

(5)

(6)

(7)

(b) For K(t) slowly varying, the magnetic field diffuses straight through 80 the
sheet acts as if it were not there. The field "sees- IJ - 00 material and,
therefore, has no tangential H

'ilf = A sin pz sinh f3(y - d) (8)
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which satisfies the condition Hz = 0 at y = d. Indeed, 

B = -AP[cosp:r:sinhp(y - d)ix + sinpzcoshP(y - d)l~1 

Matching the boundary condition at y = 0, we obtain 

A = _ K(t) (9)
P sinh Pd 

q; = _ K(t) sin pzsinh Ply - d) (10)
P sinh Pd 

(c)	 Now solving for the general time dependence, we can use the previous results 
as a clue. Initially, the sheet acts like a perfect conductor and the solution 
(7)	 must apply. As t - 00, the sheet does not conduct, and the solution 
(10) must apply. In between, we must have a transition between these two 
solutions. Thus, postulate that the current 1.K, (t) cos pz is flowing in the top 
sheet. We have . 

K,(t)cospz = ut::..E.	 (11) 

Postulate the potential 

.q; = O(t) sin pz cosh P(y - d) _ D(t) sinp:r:sinh P(y - d) (12) 
pcoshPd psinhpd 

The boundary condition at y = 0 is 

8q; 
- 8z 11/=0 = Hz 11/=0 = -K(t)cospz (13) 

= -O(t) cos pz - D(t) cos pz 

Therefore 
O+D=K (14) 

At y= d 

8q; 1 I	 cospz 
- 8z lI=d = Hz lI=d = K, (t) cos pz = -O(t) cosh Pd (15) 

The current in the sheet is driven by the E-field induced by Faraday's law 
and is z-directed by symmetry 

8E. __ !... H _ cospzcoshP(y - d) dO 
8y - 8t IJo z - lJo cosh Pd dt 

(16)
cos p:r:sinh Ply - d) dD 

- lJo sinh Pd dt 

Therefore, 

E _ lJo cos p:r:sinhp(y - d) dO cos pz cosh P(y - d) dD 
• - pcoshPd dt -lJo psinhPd dt (17) 
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At y= d 
1 dD K. cos [3x 

E z = -1-'0 [3 sinh [3d cos [3xdI = u!J. (18) 

Hence, combining (14), (15), and (18) 

I-'ou!:::&	 dD 
cosh [3dK. = -C(t) = -K + D = --[3- coth[3ddI (19) 

resulting in the differential equation 

I-'ou!:::& h Rd dD D K--cot l'	 -+ = (20)
[3 dt 

With K a step function 

(21) 

where 
I-'ou!:::& 

1"m = -- coth [3d	 (22)
[3 

and 
C = Koe-tlrm 

At t = 0, D = 0 and at t = 00, C = O. This checks with the previously 
obtained solutions. 

10.4.3	 (a) If the shell (Fig. 810.4.3) is thin enough it acts as a surface of discontinuity 
at which the usual boundary conditions are obeyed. From the continuity of 
the normal component of B, 

B r 
a - B r 

b = 0	 (1) 

1Ifo tH o 

(T 

~ (a) 

(b) 

Figure 810.4.3 
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the continuity condition associated with Ampere's law 

(2) 

use of Ohm's law 
J K

E=-=-	 (3) 
U !1u 

results in 
H: - Hg = Kif> = !1uEIf> (4) 

The electric field obeys Faraday's law 

aB
VxE=-­	 (5)at 

Only flux normal to the shell induces E in the sheet. By symmetry, E is <p-directed 

1 a ( .) aBr(v x E)r = -'-0 ao Elf> Sin 0 = --a	 (6)
rSIn	 t 

And thus, at the boundary 

1 a [. O[HG H b ] A aHr 
RsinO ao Sin 9 -	 9 = -J.&ouu---;jt (7) 

(b)	 Set 
Ho(t) = Re {Hoeiwt}[cosOi.. - sinOi9 ] (8) 

The H-field outside and inside the shell must be the gradient of a scalar 
potential 

.9. Acos 0 
Wa = -HorcosO + -2­	 (9) 

r 

Wb = GrcosO	 (10) 

iio= -HosinO + ~ sinO	 (11) 
r 

iig = GsinO (12) 

2A
ii: = HocosO + 3'" cosO	 (13) 

r 

ii~ = -GcosO (14) 

From (1) 

a b 2A '" 
Br = Br ~ Ho + R3 = -0	 (15) 

Introducing (11), (12), and (13) into (7) we find 

1 a { . 2 ( 1 "')} . { 21 cos 0 }RsinO ao Sin 0 -Ho+ R3 -0 = -JWJ.&o!1u HocosO+ R3 (16) 
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from which we find A, using (15) to eliminate O. 

.A = _ iWIJot::..uR4 H o (17)
2(iwIJot::..uR + 3) 

.A provides the dipole term 

m =.A = -iwIJot::..uR4Ho 
411" 2(iwIJot::..uR + 3) 

(18) 

and thus 

(19) 

with 
IJout::..R

1'= :.....:...._­
3 

(c) In the limit WT -+ 00, we find 

as in Example 8.4.4. 

10.4.4	 (a) The field is that of a dipole of dipole moment m = ia 

ia
W= --cosO	 (1)

411"r2 

(b) The normal component has to vanish on the shell. We add a uniform field 

sa
W= Ar cos 0 + --2 cosO	 (2)

411"r 

The normal component of Hat r = R is 

aWl (ia )-- =0= - A-2-- cosO 
ar r=R 411"R3 

and thus 

(3) 

and 

(see Fig. SI0.4.4). 
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Flpre 810.4.4 

(c) There is now also an outside field. For r < R 

ia 
qr = 411T2 cos 8 + A(t)r cos 8 (5) 

For r > R, 
qr = O(t) cos 8 

(6) 
r 2


The 8-components of B are


H(J = 4~:S sin(J + A sin (Jj r < R (7a) 

and 
H(J = 0 sin (Jj r > R (7b),.s


The normal component at r = R is


2ia )Hr = (-Rs - A cos(J (8a)
41f 

and 
20 

H r = RS cosO (8b) 

With the boundary condition (7) of Prob. 10.4.3, we have 

1 a [ . 2 (0 ia )] 2p.ol1u dO 
RsinO ao Sin 0 RS - 41fRs - A = ---w-cos 0d; (9) 

From the continuity of the normal component of B, we find 

(10)
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The equation for 0 becomes 

1 a [ . 2 e(o _ ia 20 _ 2ia)] = _ 2po li.u edO 
R4 sine ae sm 411" + 411" R3 cos dt (11) 

or 
dO ia 

T: -+0=-	 (12) 
m dt 411" 

with 'Tm = PouIi.R/3. IT we consider the steady state, then 

0= Re [Cei"'tj	 (13) 

C= 1 ia (14)
(1 + iw'Tm ) 411" 

A= 2ia _ 20 = 2ia iW'Tm (15)
411"R3 R3 411"R3 1 + ;W'Tm 

Jointly with (5) and (6), this determines \li. 

(d) When W'Tm -+ 00, we have C-+ 0, no outside field and A= 2ia/411"R3 which 
checks with (3). When W'Tm -+ 0, we have no shield and A -+ O. The shell 
behaves as if it were infinitely conducting in the limit W'Tm -+ 00. 

10.4.5	 (a) IT the current density varies so rapidly that the sheet is a perfect conductor, 
then it imposes the boundary condition (see Fig. 810.4.5), 

D'PoB=O	 at r=b 

., : . " .... . .: .": -.. . .. . 
.", . . ..... 

... :,'· ..· "	 0.··.. 
·' .... 

K = K(t) sin 2,pi• .--:-.-'"7',-.~ ' .. " 
• 0" : 

0••• 

':" .. 
... .." 

. .: 
• .' .' .~ " .' ~.' : I 

'0' • ' .. 

: ",: "'- ' : " ' :." ";. p. -+ 00 
- .• f.' 

Figure 810.4.5 
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Inside the high Il. material H = 0 to keep B finite. So at r = a, 

nxH=K 

Therefore 
-i.H~ = K(t) sin 24>i. 

Thus, the potential has to obey the boundary conditions 

8'iJ1 
-=0 at r=b	 (1)
8r 

_!8'iJ1 =-K(t)sin24> at r=a	 (2) 
r 84> 

In order to satisfy (2), we must pick a cos 24> dependence for 'iJI. To satisfy (1), one 
picks a [(r/b)2 + (b/r)2] cos 24> type solution. Guess 

Indeed, 
2

8'iJ1 [2r 2b ]a;: = A b2 - -;:3 cos 24> = 0 at r = b 

~: = -A[(r/b)2 + (b/r)2J2sin24> 

From (2), 

~[(a/b)2 + (b/a)2J2sin 24> = -K(t) sin 24> 
a 

Therefore, 
'iJI _ K(t)a [(r/b)2 + (b/r)2J 24> (3)- --2- [(a/b)2 + (b/a)2] cos 

(b)	 Now the current induced in the sheet is negligible, so all the field diffuses 
straight through. The sheet behaves as if it were not there at all. But at r = b 
we have J.' - co material, so H = 0 inside. Also, since now there is no K at 
r = b, we must have 

H~ = 0 at r = b 

It is dear that the following potential obeys the boundary condition at r = b 

'iJI = A[(r/b)2 - (b/r)2J cos 24> 

H~ = _! 8'iJ1 = ~[(r/b)2 - (b/r)2]2sin24> = 0 at r = b 
r 84> r


Again, applying (2)


A [(a/b)2 _ (b/a)2J2 sin 24> = -K(t) sin 24> 
a 
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Thus, 
\11 K(t)a l(r/b)2 - (b/r)2] 2~ (4)= --2-I(a/b)2 - (b/a)2] cos 

(c) At the sheet, the normal B is continuous assuming that l::.. is small Also, from 
Faraday's law I


dB

VxE=-­ (5)

dt 
Since only a time varying field normal to the sheet will induce currents, we 
are only interested in (V X E)r 

By symmetry there is only a z-component of E 

1 a E _ aBr 

-;a~ • --at: (6) 

One should note, however, that there are some subtleties involve in the deter­
mination of the E-field. We do not attempt to match the boundary conditions 
on the coil surface. Such matching would require the addition of the gradient 
of a solution of Laplace's equation to Ep = i.E•. Such a field would induce 
surface charges in the conducting sheet, but otherwise not affect its current 
distribution. Remember that in MQS Eo BE is ignored which means that the 
charging currents responsible for the bUfCI-up of charge are negligible com­
pared to the MQS currents flowing in the systems. 

Feom Ohm's law, J = uE. But, J = K/l::... 

1 a K. aBr

-; a~ l::..u =-at (7)


Applying the boundary conditions from Ampere's law, 

n X IHgaplr=b - H,.._oo] = K.i. 

So at r = b 

(8) 

Now guess a solution for \11 in the gap. Since we have two current sources (the 
windings at r = a and the sheet at r = b) and we do not necessarily know 
that they are in phase, we need to use superposition. This involves setting up 
the field due to each of the two sources individually 
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Here, A represents the field due to the current at r = b, and G is produced 
by the current at r = a. Apply the boundary condition (2), at r = a. We find 
from the tangential H-field 

2G(t) [(a/b)2 _ (b/a)2] = -K(t) 
a


Thus,

-aK(t) 

G(t) = 2[(a/b)2 - (b/a)2] (10) 

The normal and tangential components of H at r = b are 

2b 2a2 4 
Hr = -{A(t)[a2 + 63] + G(t),)COS2¢ (11) 

H", = {A~t) [(b/a)2 - (a/b)2]}2sin2¢ (12) 

From (8) 

lSo~Ub :¢ [A~t) [(b/a)2-(a/b)2]2sin 2¢] = {(:: + 2;2) a~~t) +~ ~~} cos2¢ 

Using (10), 

dA(t) A 2 [«(1/6)2 - (6/a)21 
---;j,t + (t) lSobAu [(a/b)2 + (b/a)2] 

a dK(t)
= [(a/b)2 + (b/a)2][(a/b)2 - (b/a)2] dt 

Simplifying, 
aA(t) + A(t) = DdK(t) (13)

at r at 

lJobAu [(a/b)2 + (b/a)2] 
r = -2- [(a/b)2 _ (b/a)2] (14) 

a 

D = [(a/b)2 + (b/a)211(a/b)2 _ (b/a)2] 
(15) 

dK/dt is a unit impulse function in time. The homogeneous solution for A is 

A(t) ex e- t / r (16) 

and the solution that has the proper discontinuity at t = 0 is 

A=DKo (17) 
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'If _ -aKa [(r/b)2 + (b/r)2] 2 . 
- 2 (a/b)2 + (b/a)2 cos ~ 

It is the same as if the surface currents spontaneously arose to buck out the 
field. At t -+ 00, e- t /.,. -+ 0 

-aKa [(r/b)2 - (b/r)2] 
'If = -2- (a/b)2 _ (b/a)2 cos 2~ 

This is when the field has enough time to diffuse through the shell 80 it is as 
if no surface currents were present. 

10.4.6 (a) When w is very high, the sheet behaves as a perfect conductor, and (see Fig. 
810.4.6) 

,T. _ bK[(r/a) + (a/r)J A. (1) 
'.I!' - [b a] cos."

ii+;; 

Then, indeed, a'If/ ar = 0 at r = a, and - t~ accounts for the surface current 
K. 

K{t) = KD{t) sin 41 

i " . 
" , 

'.p-+oo 
' .• I... . . . 

, ' . 

., : ' . ... " 
.. '. : .' . 

0.. • : '. :' .~ .: : • :.:: 0_ 
',.. 

Figure 810.4.6 



10-30 Solutions to Chapter 10 

(b) When w is very low, then a'JI/at/J = 0 at r = a and 

,T. _ bK!(rla) - (aIr)] A. (2)
'J!'- [~_~} cos¥' 

(c)	 As before in Prob. 10.4.5, we superimpose the field caused by the two current 
distributions 

'JI = {A(t)[ ~ - ~} + O(t)[!: - ~J} cos ~ (3)
arb r


The r- and ~-components of the field are:


Hr	 = -{A(t)[~ + ~] + O(t)[~ + :2]} cos~ (4) 

H4> = {A(t) [!: _~] + O(t) [!: _ ~]}sin~ (5)
r a r r b r


At r = b,

(6) 

and thus 

A(t) = ~o(t~ (7) 
ii-b 

At r = a, 
-H<t>lr=a = K. 

where K. is the current in the sheet. From (7) of the preceding problem 
solution, we have at r = a 

1 a H", aHr 
----- = -}Jo-	 (8) 

a a~ Au at

Thus, using (4) and (5) in (8):


O(t) [~ _ !} = -}JoAua{ ~ dA(t) + dOlt) [! + ~)} (9) 
a b a a dt dt b a2


Replacing A through (7) we obtain


dO + [~- ~}O(t) = 2b dKo(t) 
(10)

dt l-'oAua[~ +~] (a/b)2 - (6/a)2 dt 

Thus 

(11) 

with 

(12) 
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D= 2b 
(alb)2 - (bla)2 

The solution for a step of Ko(t) is 

C = DKoe-t/f' (13) 

DK -t/f' _ 2bKo -t/f'C(t)
-
- oe - (alb)2 _ (bla)2 e 

Combining all the expressions gives the final answer: 

'Ii = ;C0b {[!: -~] -2 [! - ~] e-t/f'}cos tP 
- - a- a r [- +-]a b b a 

For very short times tiT <: 1, one has 

which is the same as (1). For very long times exp -tiT = 0 and one obtains 
(2). 

10.5 MAGNETIC DIFFUSION LAWS 

10.5.1 (a) We first list the five equations (10.5.1)-(10.5.5) 

VxB=J	 (10.5.1) 

J =O'E (10.5.2) 

a v x E = - atp.B (10.5.3) 

V·p.B=O (10.5.4) 

V·J=O (10.5.5) 

Take the curl of (10.5.3) and use the identity 

(1) 

also note that 
v .J = V . O'E = o'V . E = 0	 (2) 

because 0' is uniform. Therefore,


2 a
-V E=--Vxp.B	 (3)
at 



Solutions to Chapter 10 10-32 

or 

-V2 (Jju) = -IJ~J (4)
at 

(b) Since J = i.J., equation (b) follows immediately from (4). We now use 
(10.5.S) 

a v x (Jju) = - atlJH 

But 

v x (J ju) = ! v x (i.J.(z, y)) = ! (ix a
8 J. - i,. a

8 J.)
u	 u y z 

and thus 
aH a (J.). 8 (J.).at = - 8y UIJ Ix + 8z UIJ I,. 

10.6 MAGNETIC DIFFUSION TRANSIENT RESPONSE 

10.6.1	 The expressions for H. and JfJ obey the diffusion equation, no matter what 
signs are assigned to the coefficients. The summations cancel the field -K"zjb and 
current density K"jb respectively, at t = a and eventually decay. IT one turns off a 
drive from a steady state, the current density is initially uniform, equal to K"jb and 
the field is equal to -K"zjb and then decays. But, the symmations with reversed 
signs have precisely that behavior. 

10.6.2 (a) The magnetic field is 
H=i.H. = K"	 (1) 

and there is no E-field, nor J within the block. 

(b)	 When the current-source is suddenly turned off, the H-field cannot disappear 
instantaneously; the current returns through the conducting block, but still 
circulates in the perfect conductor around the block. For this boundary value 
problem we must change the eigenfunctions. At z = 0, the field remains finite, 
because there is a circulation current terminating it. Thus we have, instead 
of (10.6.15), 

00 

H.= I: OnCOS(~:z)e-t/T"	 (2) 
n-odd 

with the decay times 
4IJub2 

Tn = (ml")2	 (S) 

Initially, H. is uniform, and thus, using orthogonality 

10 m1l" 2b • m1l" b
H. cos -zdz = K,,- sm - = -Om (4)

-b 2b m1l" 2 2 
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and thus

m-I( 4: )
C". = (-1)"- -

m", 
K p ; mood	 (5) 

..-I 4:	 (R"') tlH. = L: (-1)-'---K cos -:r; e- r ..R'" 26p
n-odd 

The current density is 

aHa 2 ~ . (R"') tlJ1I =--- = -1::(-1) , Kpsm -:r; e- r .. a:r; b	 2b 

H we pick a new origin at :r;' = :r; + b, then 

. (R"') . (R"', R"') R'" , . (R"')sm -:r; = sm -:r; - - = - cos -:r; sm ­
2b 2b 2 2b 2 

~ (R"')= -(-1) :I cos -:r;' for R odd 
2b 

Interestingly, we find 

At t = 0 this is the expansion of a unit impulse function at :r:' = 0 of content 
-2Kp • All the current now :Hows through a thin sheet at the end of the block. 
The factor of 2 comes in because the problem has been solved as a SYMmetric 
problem at :r:' = 0, and thus half of the current ":Hows· in the "imagined· 
other half. 

10.1 SKIN EFFECT 

10.1.1	 (a) In order to find the impedance, we need to know the voltage tI, the complex 
current being k •. The voltage is (see Fig. 10.7.2) . 

(1) 

and, from Faraday's law 

(2) 

From (2) and (10.7.10) 

(3) 
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and thus the impedance is at :t = -b 

(4) 

But the factor in front is 

iawp.o _ a(l + i) (5)d(1 + j) - duo 

(b)	 When b <: 0, we can expand the exponentials and obtain 

Z = a(1 + i) 1 + (1 + iH + 1 - (1 + iH 
duo 1+ (1 + iH - 1+ (1 + iH (6)

a(1 + i) 1 a 
= duo (1 + iH = dub 

(c)	 When b ,. 0, then we need retain only the exponential exp[(1 + i)b/ol with 
the result: 

z = a(l + j) (7)
duo 

so that 
Re(Z) =­

a 
duo


This looks like (6) with b replaced by o.


10.7'.2 (a) When the block is shorted, we have to add the two solutions exp±(1 + i)f 
so that they add at the termination. Indeed, if we set 

(1) 

then the E-:6.eld is, from 

(2) 

and thus through integration 

(3) 

and is indeed zero at z = o. In order to obtain Hz = k. at z = -b we adjust 
A so that 

(4) 
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(b) The high frequency distribution is governed by the exp -(1 + i) i(:I: < 0) and 
thus 

II "'" k e-(1+" f = k -(1+i) £j! (5) 
II - • e(l+i) k .e 

6 

This is the same expression as the one obtained from (10.7.10) by neglecting 
exp -(1 +i)i and exp(1 + i)b/o. 

(c) The impedance is obtained from (3) and (4) 

aE a(1 + i) e(1+i)b/6 - e-(1+i)b/6 
11 I - -'-:-~. ~~-;:------;-::~=

dK. z=-b - duo e(1+i)b/6 + e-(1+i)b/6 
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11.0 INTRODUCTION


11.0.1	 The Kirchhoff voltage law gives 

di 
v=v	 + L-+ R'~ (1)

c dt 

where 

i = C 
dvc (2)
dt 

Multiplying (1) by i we get the power flowing into circuit 

vi = vi + ~(~Li2) + Ri2	 (3)
c dt 2 

But 

(4) 

and thus we have shown 
. d '2Rtn = -w+~	 (5)

dt 

where 

(6) 

Since w is under a total time derivative it integrates to zero, when the excitation i 
starts from zero and ends at zero. This indicates storage, since the energy supplied 
by the excitation is extracted after deexcitation. The term i 2 R is positive definite 
and indicates power consumption. 

11.1	 INTEGRAL AND DIFFERENTIAL CONSERVATION 
STATEMENTS 

11.1.1	 (a) IT S = S",ix , then there is no power flow through surfaces with normals per­
pendicular to x. The surface integral 

t S·da 

1 
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because Ss is independent of y and z.

(b) Because Wand Pd, are also independent of y and z, the integrations transverse
to the x-axis are simply multiplications by A~ Hence from (11.1.1)

ass aw
--=-+Pd,ax at

We have to use partial time derivatives, because W is also a function of x.

(c) The time rate of change of energy and the power dissipated must be equal to
the net power flow, which is equal to the difference of the power flowing in
and the power flowing out.

11.2 POYNTING'S THEOREM

11.2.1 (a) The power flow is

y ==-b

The EQS field is

Ex B = -EsH.l~

Figure Sll.Z.!

E
_ Vd,

s-
a

aHa aEs--=e--ay at

(1)

(2)

(3)
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and thus 
8Es

H. = 7Jf0/it (4) 

since H. = 0 at 7J = O. From (I), (2), and (4) 

• Vet d (Vet) 7Jfo dYet
Ex H = -l)"Yfo -; dt -; = -i)"~Vet dt	 (5) 

(b)	 The power input is:


- / ExH·da


over the cross-section at 11 = -b where da = -i)" and therefore,


bfo dYet d (1 2)
- Ex H . da = -awVet - = - -CVet (6)
/ a2 dt dt 2 

with 
C= fobw 

a 

(c) The time rate of change of the electric energy is 

(7) 

(d) The magnetic energy is 

(8) 

Now 
d Vet
-Vet .... ­
dt 1" 

where 1" is the time of interest. Therefore, 

if 
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11.2.2 (a)

From Faraday's law

Solutions to Chapter 11

(1)

(2)

and therefore

(3)

,.------------oo-~. iy

Fleur. 811.3.3

(b) The input power is - f S·da, integrated over the crosB-section at 'J = -b with
da " -1,.. The result is

-f S· da = Pobaw!!!~ = !!!L~
ufJ dt 2 dt 2

with
L = poab

w

(c) The magnetic energy is

with the same L as defined above. Thus the magnetic energy by itseH balances
the conservation equation.

(d) The electric energy storage is



Solutions to Chapter 11	 11-S 

where dld/dt ~ Id/r, with r equal to the characteristic time over which Id 
changes appreciably. Thus, 

as long as 

11.3	 OHMIC CONDUCTORS WITH LINEAR POLARIZATION 
AND MAGNETIZATION 

11.3.1 (a) The electric field of a dipole current source is 

E =	 ipd_ [2 cosfJi r + sin Oi9 ] (1)
411'0'r

q 

The H-field is given by Ampere's law 

v x H=J =O'E (2) 

Now, by symmetry it appears that H must be t/J directed 

(3) 

and thus 
1 a . 1 a v x H	 = i r -.-0 aO(H~smO) - i9-- (rH~) (4)rsm r ar 

By inspection of the O-component of (4), with the aid of (1) and (2), one finds 

ipd.	 0H.; = --sm	 (5)
411'r2 

The same result is obtained by comparing r components. Therefore, 

(6) 

The density of dissipated power is 

Pd =E· J = O'E2 = (ipd)2_1_[4cos2 0+ sin2 0]
411' ur6 

(7)
i p d)2 1 2= ( - --[1 + 3cos 0]
411' O'r6 
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(c) Poynting's theorem requires 

(8) 

Now V . S in spherical coordinate is 

1 a(2) 1 a( . )V· S = 2"-a r Sr + -.-0 ao SfJ smO 
r r rsm 

Now 

V· (E x H) = (ip d)2 ~1-3 sin2 0 - 4cos2 0 + 2sin2 OJ 
4'1t' ar (9) 

= ( i d)2 1 2 OJ_..£- -11 + 3 cos 
4'1t' ar6 

Thus, (8) is indeed satisfied according to (7) and (9). 

(d) 

V· (~J) = (ip d)2V . ~ 12cos2 Oi.. + sin 0cos OifJJ
4'1t' a.,­

( i d)2 1 2 2. 2 = _..£- -616cos 0 - 2 cos 0 + sm OJ
41f ar 

=_(ip d)2_1_ 11 + 3cos2 OJ = v· (E x H)
4'1t' ar6 

(e)	 We need not form the cross-product to obtain flow density. The power flow 
density is the current density weighted by local potential ~. 

11.3.2 (a) The potential is a solution of Laplace's equation 

t) 

~ = --,l! In(r/a)	 (1)
n b 

E= t) i ..	 (2)
In(a/b) r 

at) I.. 
VxH= J =aE = In(a/b) r (3) 

from Ampere's law. By symmetry 

(4) 

and 
aH. at) 1 

- az = In(a/b) r (5) 
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and thus 
H _ _ av ~ (6)

'" - In(a/b) r 

+ 
v( t) 

z =-l 

Figure 511.3.2. 

(b) The Poynting vector is 

av 2 z 
S = E X H = -illln2 (a/b) r2 (7) 

(c) The Poynting flux is 

f S . da = - (r=a Sz21rrdr\ 
Jr=b z=-I (8)
21rav2 l 21ral 2 

= -ln2 (a/b)ln(a/b) = -In(a/b)V 

(d) The dissipated power is 

! ! lr=a av2 21rr 

(9) 

2
dvPd = dvaE = /0 

1 2( /b) 2 drdz
z=-I r=b n a r 

21ral 2 
v 

In(a/b) 

(e) The alternate form for the power flow density is 

(10) 

f S· da = -[Sr(r = b) - Sr(r = a)]21rbl 
(11)

21rC1l 2 =- v 
In(a/b) 

This is indeed equal to the negative of (9). 
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- --
- --

(f) See Fig. SU.3.2b.

(g) At z = -I,

Thus

Flpre 811.3.tb

f 21fO'lv.
B . ds = In(a/b) = I (12)

11.S.S (a) The electric field is

From Ampere's law:

. 21fO'I 2

VI = In(a/b) v Q.E.D. (13)

(1)

z

z=dI
I

V I V
r

I- Z=O

+ +
Figure 811.3.3

(2)
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2'11"rH _ {'II",-2 [~ + Etc (tl/d)] for r < b ( 
• - 'Il"b2[0'~ + Etc (tl/d)] + 'II"(r2 - 62)Eott (tI/d) for b < r < a 3) 

and thus 
. 

forr<6 
(4)

for 6 < r < a 

The Poynting flux density 

Ex H = i. X i.EIIH. 

-iI'HO'~ + Etc(tI/d»~ for r < 6 (5) 
= { -il'ir { ~ [Eb2 + Eo(~ - 62)] ~ (tI) + ~~3 tI} ~ for 6 < r < a 

(b) 

(6)
r<6 

6<r<a 

For r < 6, 

For 6 < r < a: 

Q.E.D. 

(76) 
(e) 

(8) 
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The potential ~ is given by 

tI 
~= --(z- d)

d 

and 

(9) 

Therefore, 
s = {-i.(a; + ~~~)(z - d)~ forr<b (10)

-i !A.U(z - d)!!. forb<r<a 
• d dt d 

(d) The integral is 

r-f S . da =l 211"rdr[S,.(z = 0) - S,.(z = d)] (11) 

For r < b: 
O'U E dU) U _2 O'U E dU)=l

r 

211"rdrd(-+-- -=11""--(-+-- tI (12a)
o d ddt d d ddt 

For a < r < b: 

Equations (12) agree with (6). 

(e) The power input at r = a is from (12b) 

2(O'tI Edtl) (2 2)EO dtl .1I"b - + -- tI + 11" a - b --tI = til (13)
d ddt ddt 

where 
. [O'tI d] 2 d, = d 

2 d + Edt (tI/d) + 1I"(a2 
- b )Eo dt (tI/d) 

which is the sum of the displacement current and convection current between 
the two plates. 

11.3.4 (a) From the potentials (7.5.4) and (7.5.5) we find the E-field 

E =- V~ = i rEoCOSf(1 + (R)20'b - O'a) 
r eTb + eTa 

- i4>Eo sin f (1- (R) 2eT
b - O'a) r < R 

(la) 

r eTb + eTa 
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and 
2ua E (. -1."-1.)o II' cos Y' - I", sIn Y' 

Ub + Ua 
r< R (1b) 

Figure Sl1.3.4 

The H-field is z-directed by symmetry and can be found from Ampere's law using 
a contour in a z - x plane, symmetrically located around the x-axis and of unit 
width in z-direction. If the contour is picked as shown in Fig. 811.3.4, then 

£H . ds = 1J . da = 2Hz = 21'" Jrrd4J 

2ru E sin-l.(1+ (!1.)2 CTb - CTfl ) for r > R 
(2) 

== a 0 'f' r O"b+O'a. 

{ 2rUbEo 2+CT4 sin 4J for r < R 
O'b (T a. 

The Poynting vector is 

Ex H = E",Hzir _ ErHzi", = -irruaE; sin2 1jJ [1 _ (R)4 (Ub - Ua ) 2] 
r Ub + Ua 

_ iq,ruaE; sin IjJ cos IjJ [1 + (R)2 (Ub - Ua )] 2 r> R 
r Ub + Ua 

• E 2 ' 2 -I. ( 2ua ) 2= -lrrUb 0 SIn Y' 
Ua + Ub 

_ i",rubE; sin IjJ cos IjJ ( 2ua ) 2 r< R 
Ua + Ub 

(b) The alternate power flow vector S = <I>J follows from (7.5.4)-(7.5.5) and (1) 

<I>J = -iruaE;rcos2 1jJ [1- (!!)4 (Ub - ua)2]
4 Ub + Ua 

+ i",uaE;r sin IjJ cos IjJ [1 _ (R)2 Ub - Ua ]2 r> R 
r Ub + Ua (4) 

• 2 2 ( 2ua ) 2= -lrUbEo r cos IjJ 
Ub + Ua


+i4>UbE;rsin4JcosljJ( 2ua )2 r < R

Ub + Ua 
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(e) The power dissipation density Pet is 

Pet = O'E2 = O'oE~ eos2 ~ [1 + (R)20'b - 0'0]2 
r O'b + 0'0 (Sa) 

+ O'o~ sin2 ~ [1 _ (R)2 O'b - 0'0]2 r> R 
r O'b + 0'0 

r.12 ( 20'0 ) 2 = O'bb= r<R (5b) 
o 0'0 + O'b 

(d) We must now evaluate V· (E XB) and V· ~J and show that they yield -Pd. 

(6a) 

for r > R, 

V. S = -20'bE~ sin2 ~( 20'0 )2
0'0 + O'b 

-(eos2~-Sin2~)O'bE~( 20'0 )2 (6b)
0'0 + O'b 

= -O'b~ ( 20'0 ) 2 
0'0 + O'b 

for r < R. Comparison of (5) and (6) shows that the Poynting theorem is 
obeyed. Now take the other form of power flow. The analysis is simplified if 
we note that V . J = O. Thus 

V· ~J =J. V~ = Jr!.-~ +J.!~~ = -O'E2 
ar ra~ 

= -O'oE~ eos2 ~ [1 + (R)2 O'b - 0'0)] 2 (7a) 
r O'b + 0'0 

_ O'aE~ sin2 ~ [1- (R) (O'b - O'a)]2 r> R 
r O'b + O'a 

and 

r<R (7b) 

Q.E.D. 
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11.4 ENERGY STORAGE 

v' 
11.4.1	 From (8.5.14)-(8.5.15) we find the H-fields. Integrating the energy density we 

find 

where we have used 

171" sinOdO(4cos2 0+sin2 0) = -171" d(cos 0)(3 cos2 0 + 1) 

= /1 dx(3x2 + 1) = (x3 + x)I~1 = 4 
-1 

Because 

we find that 

Q.E.D. 

11.4.2 The scalar potential of P9.6.3 is 

r> R 
r< R 

The field is 

H _ .!!- i cos ~ {(ir cos ~ + i", sin ~)(R/r)2; r> R 
- 2R 1 + J!. J!. (i r cos ~ - i", sin ~); r < R 

1-'0 1-'0 
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The energy is 

11.4.3 The vector potential is from (8.6.32) 

r<a 

,",oB=VxA 

= -i. x VA.. = Ni i. x {[2(r j a) - 1] sin cPi.. + (.!: ­
3a a 

= - ,",oNi [(~ _ 1) cos cPlp ­ (2~ - 1) sin cPi",]
3a a a 

The energy is 

1) cos cPi",} 

(1) 

Therefore, 

11.4.4 The energy differential is 

The coenergy is 

dw'm = d(i1.\d + d(i2.\2) - dWm = .\ldi1 + .\2di2 

= (Llli1 + L 12i2)di1 + (~lil + L22i2)di2 

(1) 

(2) 
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with

-

11-15

(3)

Figure SI1.4.4

If we integrate this expression along a conveniently chosen path in the i 1 - i 2 plane
as shown in Fig 811.4.4, we get

!:~o Llli1di1 + 1':2=0 (L21i 1 + L22i2 )di2

'2=0 ,} =contt

1L '2 L .. 1L '2
= 2 ll~l + 21~1~2 + 2 22~2 (4)

1 (L '2 L .. L" L '2)= 2 ll~l + 12~1~2 + 21~2~1 + 22~2

1L (N2 '2 2N No .. N 2 '2 )=2 0 l~l+ 1 2~1~2+ 2~2

when the last expression is written symmetrically, using (3).

11.4.5 If the gap is small (a - b) <: a, the field is radial and can be evaluated using
Ampere's law with the contour shown in Fig. 811.4.5. It is simplest to evaluate the
field of stator and rotor separately and then to add. The field vanishes at ¢J = 1f/2
and thus £H· dB = -(a - b)Hr(¢J)

r/J
__ length I along

z contour

o ®

Figure SI1.4.5

(1)
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For the stator field, the integral of the current density is 

1 l rt/2 Nlil . N1i1J . da =- -- sm tPadtP =- -- cos tP (2) 
s ~ 2a 2 

where N1 is the total number of terms of the stator winding. Therefore, the stator 
field is given by 

(3) 

The rotor coil gives the field 

(4) 

where N2 is the total number of turns of the rotor winding. In a linear system, 
coenergy is equal to energy, only the independent variables have to be chosen prop­
erly, i.e. the energy expressed in terms of the currents, is coenergy. When expressed 
in terms of fluxes, it is energy. The coenergy density is 

(5) 

The coenergy is 

(6) 

We find 

(7) 

and 

11.4.6 
al )D = 

( v1 +a2E2 
+Eo E 

The coenergy density in the nonlinear medium is [note E· dE = d(iE21 

w; = lE D . dE = I i (V1 :~2E2 + EO) dFfJ 

= al V1 + a2E2 + -21Eo~ 
a2 
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In the linear material
I 1 2

W = -€ E
e 2 0

Integrating the densities over the respective volumes one finds (E2 = tJ2/a2)

[
a V tJ2 1 tJ2] 1 tJ2

w' = -!. 1 + a2- + -€o- eca + -€o-(b - e)ca
e a2 a2 2 a2 2 a2

Q.E.D.

11.4.1 (a) H = i.i/w in both regions. Therefore,

B = i.P,oi/w

11-17

in region (a)

in region (a)

in region (b)

11.5 ELECTROMAGNETIC DISSIPATION

11.5.1 From (7.9.16) we find an equation for the complex amplitude Ea :

E _ ,"WEb + O'b A

a - (jW€a + O'a)b + (jW€b + O'b)a tJ
(1)

and since

we find

(2)

E - J'W€a + O'a A ( )

b - (jW€a + O'a)b + (jW€b + O'b)a tJ 3

(Another way of finding Eb from (1) is to note that Ea and Eb are related to each
other by an interchange of a and b and of the subspcripts.) The time average power
dissipation is

1 E 2 1 E 2(Pd) = "2O'al al aA + "2 O'bI bl bA

= ~ aO'a(w2€~ + O'~) + bO'b(w2€~ + O'~) 1°12
2 (bO'a + aO'b)2 + w2(b€a + a€b)2
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11.5.2	 (a) The electric field follows from (7.9.36) 

.. .. (... ) O'a. + jWfa.
Eb=-V4>=3EpcosOlr-smOI6 . (2 )i r < R (lb)

2O'a. + O'b + JW	 fa. + fb 

Therefore 

( ) 21O'b I" Eb
12 29,

Ep12 O'~ + W
2 
f~ (2b)Pd =	 = O'b (2O'a. + O'b)2 +W2(2fa. + fb)2 j r < R 

The electric field in region (a) is 

IT we denote by 
A= O'a. - O'b + jW(fa. - fb) 

- (2O'a. + O'b) + jw(2fa. + fb) 

we obtain 

2(Pd ) =iO'a.IP;a.12 = IEp I { cos2 0[1- 4(R/r)3Re A+ 4(R/r)6IAI2J 

+ sin2 6[1 + 2(R/r)3Re A+ (R/r)6IAI2j} 

(b) The power dissipated is 
4'1l"R3 

(Pd) = -3- (Pd) (3) 

where (Pd) is taken from (2b). 

11.5.3	 (a) The magnetic field is z-directed and equal to the surface current in the sheet. 
In region (b) 

(1) 

in region (a) it is 
H=i.K (2) 

The field at the sheet is, from Faraday's integral law 

(3) 

The field at the source is 

(4)
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The power dissipated in the sheet is, using (3) 

dHb 2 
Pd = ! (1E;dV = (1LlWdb2J-l~( ----;It) (5) 

The stored energy is 

r W dv = !J-lO(Ha )2 adw + !J-lo(Hb )2bdw
lv 2 2 (6) 

= !J-lodw[b(H b )2 + aK2]
2 

(b) The integral of the Poynting vector gives 

dK dHb

f Ex H· da = -EyHzwd = -(aJ-l0 dt + bJ-l0----;It )Kwd (7) 

Now 
dHb

Hb = K - E y(1Ll = K - bJ-lo----;It(1Ll (8) 

When we introduce this into (7) we get 

f 1 dK2 1 dHb2
Ex H· da = - {-all wd- + -bll wd--}2 r-O dt 2 r-o dt 

(9)
dHb 

2 
- (1b2

wdJ-l~ ( ----;It) (1Ll 

But the last term is Pd; and the term in wavy brackets is the time rate of 
change of the magnetic energy. 

11.5.4 Solving (10.4.13) for ..4, under sinusoidal, steady state conditions, gives 

1 [ 1-&]A • I-' 2
A = ( . ) - JWTm + ---Tm a H o 

JWTm + 1 J-loLl(1a 
(1) 

1 [. J-l- J-lo] 2= . -JWTm + --- a H o 
(JWTm + 1) J-l + J-lo 

From (10.4.11), we obtain 6 
A ~ 

6=_J-lO(Ho+~)= 1-'+1-'0 H (2)
J-l a2 1 + iWTm 0 

The discontinuity of the tangential magnetic field gives the current flowing in the 
cylinder. From (10.4.10) 

A ( A..4)LlH", = - Ho - a2 sin¢> - Csin¢> 

· . J-l- J-lo 2J-lo] Hosin¢>= - [1 + JWTm + JWTm - --- - --- . (3)
J-l + J-lo J-l + j:.,; 1 + JWTm 

JWTm . A = -2 . sm¢>Ho = K z
1 + JWTm 
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Note the dependence of the current upon w: when WTm ::> 1, then the current is 
just large enough (-2Hosin<p) to cancel the field internal to the cylinder. When 
WTm -+ 0, of course, the current goes to zero. The jump of H", is equal to K. The 
power dissipated is, per unit axial length:

2 

Pd. = -1/ ulEI2dv = 1-ul:1a1". It.. 12d<p (4)
2 2 0


But

(5) 

and thus 

(6) 

11.5.5 (a) The applied field is in the direction normal to the paper, and is equal to 

Hocoswt = Niocoswt/d (1) 
The internal field is H o + K where K is the current Howing in the cylinder. 
From Faraday's law in complex form

f E· ds = -iwp.(Ho + K)b2 (2) 

Because K must be a constant, E tangential to the surface of the cylindrical 
shell must be constant. The path length is 4b. We have 

K = ul:1t = _iwp.ul:1b (Ho + K) (3)
4 

and solving for K 
K = - jWTm Ho (4)

1 +jWTm 

where 
p.ul:1b 

Tm =-- (5)
4 

The surface current cancels H o in the high frequency limit WTm -+ 00. In the 
low frequency limit, it approaches zero as WTm approaches zero. Thus 

Pd. = ~ / ulEI2dv = ~ 4bl:1du IKI2 = ~N2i2 w2T~ (6)
2 2 u21:12 uAd 01 + w2T~ 

(b) The time average Poynting Hux is 

-Re f E x :A: . da = -Re i4bdtb* 

= -Re {2bdH;(-jWTm)(Ho + K)} 
* ,. (7) 

= Re 2bdjWTmHoK 

= 2bd w2T~ IH l2 = ~ w2T~ N 2i2 
o

uAl+w2T~ uAdl+w2T~ 0 

which is the same as above. 
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11.5.6 (a) When the volume current density is zero, then Ampere's law in the MQS limit 
becomes 

VxB=O (1) 

and Faraday's law is 

(2) 

IT we introduce complex notation to describe the sinusoidal steady state E = 
Re t(r)ejWT etc., then we get from the above 

VxB=O (3) 

v X E= -jw~o(B + M) (4) 

IT tf is linearly related to Ii we may write 

(5) 

where Xm is, 'in general, a function of w, we may define 

(6) 

and write for (4) 
v x t = -jwfJ (7) 

with 
B == P.B (8) 

Because V· ~o(B + M) = 0, we have 

(9) 

(b) The magnetic dipole moment is, according to (20) of the solution to PI0.4.3. 

A nSlI jwrm = -21('4- 0 • (10)
1 + 3wr 

with r = ~oO't::..R/3. As wrm -+ 00, this reduces to the result (9.5.16). The 
susceptibility is found from (5): 

A 2 (R/)3 jwrXm = - 1(' 8 1+'
3wr 

where 1/s3 is the density of the dipoles. 

(c) The magnetic field at z = -l is 

(14) 
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The electric field follows from Faraday's law: applied to a contour along the 
perfect conductor and current generator 

11-22 

(15) 

and thus 

(16) 

The power dissipated is 

f A APd = - 21Re E X H* . da 

1 IA A= -Re EyH; lad (17)
2 x=­

= ~Re jwJi.lkl 2 adl 

Introducing (12) and (13) we find 

(18) 

11.5.7 From (10.7.15) we find 

A A (x+b)Hz = K. exp -(1 + j) -5- (1) 

so that Hz = K. at the surface at x = -b. The current density is 

A 
A .... H • aHz • (1 + j) K ( ') (x + b)J !::::!. v X = -1)' ax = 1)' --5- • exp - 1 + J -5- (2) 

The power dissipation density is 

(3) 

and thus the power dissipated per unit area is 

x

1=0 ,k.,21°O 2(x+b) Ik.12 
Pddx!::::!. -- exp- dx =-- wattsjm2 

x=-b a x=-b 5 2a5 
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11.5.8 (a) From (10.7.10) we find Hz everywhere. The current density is 

The density of dissipated power is: 

__1 I 12 cosh T2", + cos T2",	
(2) 

A 

- K.
a02 cosh ~ - cos 2b

6 6


The total dissipated power is


0 1 A 2 0 sinh 2c'" + sin 26'" 1° 
Pd = ad1 Pddx = ad-----c2IK.1 - 2b 2b 

",=-b au 2 cosh T - cos T -b 

IK 12 sinh ~ + sin ~ 
(3) 

= ad-'- 6 6 
2ao cosh ~ - cos ~ 

6 6 

(b) Take the limit 0 ~ b. Then sinh ¥ '::::! cosh ~b le2b/ 6 and the sines and2 
cosines are negligible. 

ad 2A 

1Pd = 2ao 1K•	 (4) 

which is consistent with P11.5.7. When 2b/o ~ 1, then 

2b 2b 1 2b 2 ( 1 2b 2) 2b 2
cosh ( -) -	 cos ( -) ~ 1 + - (-) - 1 - - ( - ) = (-) (5)o	 0 20 20 0 

. h (2b) . (2b) 4bsm - +sm - '::::!-	 (6)o 0 0 

and thus 

= ad-1-lk	12~ = adlk.12 (7)Pd 2ao' b 2ab 

The total current is 
(8) 

The resistance is 
a 

R= abd (9) 

and 

(10) 

Q.E.D.
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11.5.9 The constitutive law 
aM 
-='YH (1)at 

gives for complex vector amplitudes 

(2) 

and thus 
A 'Y
Xm=-. (3)

3W 

and 

(4) 

The flux is

A ( 'Y)A
B=AH=I-'o 1+-:- H (5)

3w 

The induced voltage is 

d>' • ~A 

1J = - => 1J = 3WA (6)
dt 

and 

(7) 

But 

(8) 

and thus 

N 2 2 
~ A 1 W ~ 
A=I-'--' (9)

8R 

and thus 

A • ~. N 1 
2 

W 
2 
~ 'Y

N2 
1 W 

2~ 
, (. L R)~ 

1J = 3WA = 3WI-'0""8il"' + 1-'0 8R = 3W + m' (10) 

Thus 

R - l-'o'YN1 
2

W 
2 

m- 8R (11) 
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11.5.10 (a) The peak H field is

(1)

Thus (see Fig. SU.5.10a).

H---

tBII
B

I --i
I I
I I

I I
I I

I

-2Hc

FJsure S11.I.I0a

(b) The terminal voltage is

d 1rW
2 dB,,= -N1--B ex-

dt 4 dt
(2)

The B field jumps suddenly, when H =He. This is shown in Fig. SU.5.10b.
The voltage is impulse like with content equal to the flux discontinuity:
N ~B2 1 of. ••

(c) The time average power input is f vidt integrated over one period. Contribu­
tions come only at impulses of voltage and are equal to

(3)

But

(4)

and thus

(5)
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IMPULSE

Solutions to Chapter 11

--H

IMPULSE
t = to f----""""'-f----H(t)

t ~

Flpre SIl.S.IOb

(d) The energy fed into the magnetizable material per unit volume within time
dt is a a

dtH· -p. (H +M) = dtH· -B =H . dBat 0 at
As one goes through a full cycle,

f H ·dB = area of hysteresis loop

This is 4HeB•. Thus the total energy fed into the material in one cycle is

f 1rW2
volume H· dB = (21rRT )4B. He

11.6 ELECTRICAL FORCES ON MACROSCOPIC MEDIA

The capacitance of the system is

0= Eo(b - e)d
IJ

The force is

(6)

(7)

(8)
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/
11.6.2 The capacitance per unit length is from (4.6.27) 

C = 1rfo (1)
In(-k + ..j(l/R)2 -1) 

where the distance between the two cylinders is 2l. Thus replacing l by e/2, we can 
find the force per unit length on one cylinder by the other from 

1 2 dC 1 2 d [ 1rfo ] 

Ie = 2"v de = 2"v de In[~ + ..j(e/2R)2 - 1] 
--L + ~ 1 (2)

1 2 1rfo 2R (2R)2 V(E/2Rj2-1
= --v 

2 ln2[(e/2R) + ..j(e/2R)2 - 1] ~ + ..j(e/2R)2 - 1 

This expression can be written in a form, in which it is more recognizable. Using 
the fact that >./ = Cv we may write 

f - _~ 1 + (e/2R)/..j(e/2R)2 - 1 (3) 
o - 41rfo R ~ + ..j(e/2R)2 - 1 

When e/2R ~ 1, and the cylinder radii are much smaller than their separation, 
the above becomes 

f--~ (4)
e - 21rf 2eo 

This is the force on a line charge >./ in the field >.,j(21rfo 2e). 
V 

11.6.3 The capacitance is made up of two capacitors connected in parallel. 

C = 21rfo (l- e) + 21rfe 
In(a/b) In(a/b) 

(a) The force is 
I - ~ 2 dC _ 2 1r(f-fo ) 

e - 2 v de - v In(a/b) 

(b) The electric circuit is shown in Fig. S11.6.3. Since R is very small, the output 
voltage is


V o = iR


l 

vo : RL3 v 

+ + 
- + 

V 

Figure 811.6.3 
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From Kirchoff's voltage law
iR+ V = tI

Now
q = Otl

. V dO
-,~ -

dt

and
. dq d dO dtl,= - = -(Otl) = -tl+O-

dt dt dt dt

If R is small, then tI is still almost equal to V and dtl/dt is much smaller than
(tldO/dt)/O. Then

and

tlo =Ri = -211'RV(E - Eo) ~; /In(a/b)

11.6.4 The capacitance is determined by the region containing the electric field

0= 211'Eo(l- e)
In(a/b)

(a) The force is

D
A-6--------Q ---

c
-1I'Eo v2 e= I

In(a/b) 0

B

f t

-­v
c

AD

B

q

Figure 911.8.4

(b) See Fig. S11.6.4. When e= 0, then the value of capacitance is maximum.
Going from A to B in the f - eplane changes the force from 0 to a finite
negative value by application of a voltage. Travel from B to 0 maintains the
force while eis increasing. Thus eincreases at constant voltage. The motion
from 0 to D is done at constant eby decreasing to voltage from a finite
value to zero. Finally as one returns from D to A the inner cylinder is pushed
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back in. In the q - tJ plane, the point A is one of zero voltage and maximum 
capacitance. As the voltage is increased to Vo , the charge increases to 

21l"fo l 
q = avo = In(a/b) Vo 

The trajectory from B to a keeps the voltage fixed while increasing e, de­
creasing the capacitance. Thus the charge decreases. As one moves from a to 
D at constant edecreasing the voltage to zero, one moves back to the origin. 
Changing eto zero at zero voltage does not change the charge so that D and 
A coincide in the q - tJ plane. 

(c)	 The energy input is evaluated as the areas in the q - tJ plane and the e- f 
plane. The area in the e- f plane is 

1l"fo l V 2 

In(a/b) 0 

and the area in the tJ - q plane is 

~ 21l"fo l V 2 

2ln(a/b) 0 

which is the same. 

11.6.5 Using the coenergy value obtained in P11.4.6, we find the force is 

2aw' [a l V a tJ2 1 tJ2] 1 f tJ2Ie = _e I = -( 1+ -- -1) + -f - ca- __o_c ae v a2 a 2 2 o 
a 2 2 a 

11.7 MACROSCOPIC MAGNETIC FORCES 

11.7.1 The magnetic coenergy is 

I 1(L '2 2L .. L '2)
W m	 = 2 utI + I2t I t 2 + 22t 2 

The force is 

Since 

we have 
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11.7'.2 The inductance ofthe coil is, according to the solution to (9.7.6) 

1m = !i2dL = _!i2 l-'oN2 1 
2 dx 2 [II: + -lL...-]2 7I"a2 

;as 2J1'ad 

J 
11.7'.3 We first compute the inductance of the circuit. The two gaps are in series so 

that Ampere's law for the electric field gives 

1/(H1 + H 2 ) = ni (1) 

where HI is the field on the left, H 2 is the field on the right. Flux conservation 
gives 

(2) 
Thus n, x 

H1 =-­
1/ a 

The flux is 
... I-'oni (a - x) d"*">'=-- -- x 

1/ a 

The inductance is 
2

L = n~>. = l-'on xd(a - x) 
1/ a 

The force is 

f. =! '2(aL I aLI) =! '21-'0n
2
d{ (a - 2x) I _ x(a - x) I } 

m 2' a x + a:l 2' 1/ x 2:1
X 1/ a 1/ 

11.7'.4 Ampere's law applied to the fields Ho and H at the inner radius in the media 
1-'0 and 1-', respectively, gives 

b bHo l
a 

-dr = H l a 

-dr = Ni (1) 
b r b r 

and thus 
Ni 

Ho = H = bin!! (2) 
b 

The flux is composed of the two individual fluxes 

Ni 
~>. = 271" In!! 11-'0(1- e) + I-'el (3) 

b 

The inductance is 

L = N~>./i = ln~~b} N 2
{l-'e + 1-'0(1- en (4) 

The force is 

1( ' ~) = ! '2 dL = 71"(1-' - 1-'0) N2'2 (5)',,. 2' de In(a/b) , 
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11.7.5	 The H-field in the two gaps follows from Ampere's integral law 

2H6. = 2Ni	 (1) 

The flux is 
~A = l-'oHd(2a - O)R = l-'oNid(2a - O)R/6. (2) 

and the inductance 

(3) 

The torque is 

T = -,1·2 -dL = -11 dRN2 
,~ '2 / A (4)2 dO ,..0


\/

11.7.6	 The coenergy is 

w:n =f [Aadia + Abdib + Ardir] 

= 21L'.'a2 
+ 21L'.'b2 

+ 21 L
r'r

'2 (1) 

+ M cos Oiair + M sin Oirib 

where we have taken advantage of the fact that the integral is independent of path. 
We went from ia = ib = ir = 0 first to ia, then raised ib to its final value and then 
i r to its final value. 

(b)	 The torque is 

8w:" . ( M . 9' M lI')
T = ao = 'r	 - Sln 'a + cos uSb 

(c)	 The two coil currents i a and ib produce effective z-directed surface currents 
with the spatial distributions sin<p and sin(<p - ~) = -cos<p respectively. IT 
they are phased as indicated, the effective surface current is proportional to 

cos(wt) sin <p -	 sinwt cos <p = sin(<p - wt) 

Thus the rate of change of the maximum of the current density is d<p/dt = w. 

(d)	 The torque is 

T = /r[-M sin(Ot - '1)/coswt + M cos(Ot - 'Y)/sinwt] 

= /r/(-M sin(Ot - '1 - wt)


But if 0 = w, then
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11.8	 FORCES ON MACROSCOPIC ELECTRIC AND 
MAGNETIC DIPOLES 

11.8.1	 (a) The potential obeys Laplace's equation and must vanish for y --+ 00. Thus the 
solution is of the form e-~" cos pz. The voltage distribution of y = 0 picks the 
amplitude as Vo. The E field is 

E = PVo(sin pzix + cos pzi)')e-~" 

(b) The force on a dipole is 

f = p	 0 VE = 411'EoR3 (E 0 V)E 

It behooves us to compute (E . V)E. We first construct the operator 

Eo V = pVoe-~"(sinPz :z + cospz:y) 
Thus 

Eo VE = pVoe-~"{ sinpz :z [pVo(sinpzix + cospzi)')e-~"] 

+ cos pz:y [pVo(sinpzix + cos pzi)')e-~"] 

= p2 Vo
2p[(sin pz cos pzix - sin2 pzi)')e-~" 

- (cos,8zsin,8zix +cos2 ,8z1)')e-~"] 

= _p2Vo2pi)'e-~" 

and thus 

11.8.2	 Again we compute, as in PH.S.1, 

(Eo V)E


in spherical coordinates


(1) 

and the gradient operator is 

)2) 

Thus, 

(3)
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and 

(4) 

and the force is 

3 2Q2 2Q2R3 

f = p . VE = -41rfoR (41rf )2r5 - 41rf r 5 (5) 
o o 

Note that the computation was simple, because (a / ar)i r = O. In general, derivatives 
of the unit vectors in spherical coordinates are not zero. 

11.8.3	 The magnetic potential 'If is of the form 

'If = {ACOS{3xe-/lY y> 0 
A cos {3xe/lY y < 0 

At Y = 0, the potential has to be continuous and the normal component of ILoB 
has to be discontinuous to account for the magnetic surface charge density 

Pm = V . ILdM. :=)0 ILoMo cos {3x 

Thus


'If = -Mo cos {3xe- /l
Y


2{3


This is of the same form as ~ of PH.B.l with the correspondence


Vo +-+ M o /2{3 

The infinitely permeable particle must have H = 0 inside. Thus, in a uniform field 
Hoi., the potential around the particle is (We use, temporarily, the conventional 
orientation of the spherical coordinate, () = 0 axis as along z. Later we shall identify 
it with the orientation of the dipole moment.) 

'If = -HoR cos ()[ ~ - {R/r)2] 

The particle produces a dipole field 

3 
H oR (2 (). . ()' ) m ( ()' . (). )--3- cos I r + sm 10 = --3 2 cos I r + sm 10 

r	 41rr 

Thus the magnetic dipole is 

ILom = 41rILoHo~ 

This is analogous to the electric dipole with the correspondence 

ILo +-+ f o 

Since the force is 
f = ILom· VB 

we find perfect correspondence. 
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11.8.4 The field of a magnetic dipole I-'om II i. is 

H = I-'om,.s (2 cos (Jil' + sin (Ji8) 
41r1-'0 

The image dipole is at distance -Z below the plane and has the same orientation. 
According to P11.8.S, we must compute 

f = I-'om . VB = I-'om . V I-'om,.s (2 cos (Jil' + sin (Ji8 ) 
41r1-'0 

where we identify 
r=2Z 

after the differentiation. Now 

il' and i8 are independent of r and thus 

since (J = O. But 

and thus 

11.9 MACROSCOPIC FORCE DENSITIES 

11.9.1 Starting with (11.9.14) we note that J = 0 and thus 

f = IFdv = -I ~H2Vl-'dv (1) 

The gradient of I-' of the plunger is directed to the right, is singular (unit impulse­
like) and of content I-' -1-'0' The only contribution is from the flat end of the plunger 
(of radius a). We take advantage of the fact that I-'H is constant as it passes from 
the outside into the inside of the plunger. Denote the position just outside by z_, 
that just inside by z+. 

11 2 . 21Z

+- - H V I-'dv = -lx1ra 
2 z_ 

2 
~ -ix -1ra [ I-'H2 

2dl-'H -dz 
dz 

21 z + I d 2 ] 
(2) 

- I-'-H dz 
z_ dz 
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where we have integrated by parts. The integrand in the second term can be written 

d 2 dH
p.-H = 2p.H- (3)

dx dx 

and the integral is 

1"'-

"'+ dH 
p.H- = p.HHI"'+ = -p.o~1 (4)

dx "'- "'­

where we have taken into account that p.H is x-independent and that H(x+) = O. 
Combining (2), (3), and (4), we find 

. 
x 

'/fa
2 

2 H2 (5)f = -I -Jl 
,..0 

Using the H-field of Prob. 9.7.6, we find 

(6) 

This is the same as found in Prob. 11.7.2. 

11.9.2 (a) From (11.9.14) we have 

F=JxB (1) 

Now B varies from p.oHo to P.oHi in a linear way, whereas J is constant 

(2) 

where 

l
a+.o. 

a drJ =K (3) 

Now, both J and Hi are functions of time. We have from (10.3.11)-(10.3.12) 
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11.9.3	 (a) Here the first step is analogous to the first three equations of P11.9.2. Because 
J is constant and H varies linearly 

• T. K (Ho + Hi) (. .)
I r r = 1-'0 2 I. X 14>	 (1) 

(b)	 If we introduce the time dependence of A from (10.4.16), with I-' = 1-'0' 

A = -Hma2e-t/Tm (2) 

and of K z from (19) 

- H O rri - 2 A . A.. - 2H . A.. -tiT",K Z - 4> - fl4> - 2 sm 'I" - - m sm 'l"e	 (3) 
a 

Further note that H~ = 0 at t = O. Therefore from (3) and (2) 

H~ = -2Hm sin¢> at t = 0 (4) 

At t = 00 

H~=-Hmsin¢>	 (5) 
because the field has fully penetrated. Thus 

H~=-Hmsin¢>[1+e-t/Tml	 (6) 

From (6) and (3) we find 

H~=-Hmsin¢>[1-e-t/T",]	 (7) 

Thus we find from (1), (3), (6), and (7) 

irTr = -ir~0[(H4:)2 - (H~)2] 

= -ir~o H~ sin2 ¢>[(1 + e- t / T ",)2 - (1- e-t / T ",)2] 

= -ir21-'0H;' sin2 ¢>e-t/Tm 

-
-

Figure 811.9.2 

The force is inward, peaks at t = 0 and then decays. This shows that the cylinder 
will get crushed when a magnetic field is applied suddenly (Fig. 811.9.2). 
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12.1 ELECTRODYNAMIC FIELDS AND POTENTIALS 

12.1.1 The particular part of the E-field obeys 

Hwe set 

then 

or 

Because of (2), 

a 
v x Ep = -atB (1) 

v .EoEp = 0 (2) 

B=VxA (3) 

v x (Ep + aa~) = 0 (4) 

Ep = 
a 

- atA ­ V.p (5) 

a 2at v .A + V .p = 0 (6) 

But, because we use the Coulomb gauge, 

V·A=O (7) 

and thus 
V2 • p = 0 (8) 

There is no source for the scalar potential of the particular solution. Further 

(9) 

Conversely, 
(10) 

and 
v X E,. = 0 (11) 

Therefore, 
E,. = -V.,. (12) 

and from (10) 

(13) 

Thus (9) and (13) look like the inhomogeneous wave equation with a2 jat2 terms 
omitted. 

1 
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12.1.2 %t22 A is of order l/r2A, V2A is of order A/£2. Thus, J1.f.%t
2
2 A is of order '!f£2

compared with V 2A. It is negligible if J1.f.£2 /r2 = £2 /c2r2 ~ 1. The same approach
shows that J1.f.(a2/at2)cp can be neglected compared with V 2 CP if £2 /c2r2 ~ 1.

12.2 ELECTRODYNAMIC FIELDS OF SOURCE
SINGULARITIES

12.2.1 The time dependence of q(t) is the same as that of Fig. 12.2.5, except that it
now extends over one full period.

t = 1'/2

t T r
q( - - -)

-- 2 0 t .T r--, q(---)
-,- - / 2 0

~ , ­" ,
/' ......... "

-,
\
\

\ ,
" "

t = l'

,
" '

'---~ ql(T-~)
o

/ "l-(---"I'l"
_ ," I I 1\

---r

E-Iine.

~

/
/

/

'"

E-Iine.

Figure S12.2.1a

Plot of Electric Dipole Field. Any set of field lines that close upon themselves
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12-3 Solutions to Chapter 12 

may be considered to be lines of equal height of a potential. The potential does not 
necessarily reproduce the field intensity at every point. i.e. 

........-...

E = - (i<l> X V~). f(r,9) (1) 

The "underbrace" gives the pattern. The "overbrace" is the multiplier. It does not 
change the direction of the field. Take 

II [ r/ ]'I .. + + 2r/ sm ll'ul8E= -d{2 3"q + 2 [ _qq +""2q"]. } (2)cos u 
411"E r cr r cr c r 

where 
q = q(t - .!:.)

2 

IT one defines 

(3) 

Then 

V~ = (~) [2 sin 9( - !r-3/ 2 - q' !r-1/ 2 + !r/!r1/ 2 _ r/' r- 1/ 2)i.. 
411"E 2 c 2 C c2 

(4) 
+ ie2 cos 9(qr-3

/ 
2 + ~ r- 1

/ 
2

) ] 

One constructs a vector perpendicular to V~, i<l> X V~, by interchanging the 9 and 
r components and reversing the sign of one of them 

Thus if we choose f(r, 9) = r-3/ 2 , we reproduce the E-field ofthe dipole by expres­
sion (1). 

We can sketch the function ~ for 9 = 11"/2. 
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t=2T

(J

,.-- .....
'" ... -/ "."<"

" , '.... '.- "' ...

/P-t,
/( I I 1,

.... - -,' I I I
I I I
I I I
I I I
I I I

I

Figure SU.J.lb

T r
q'(---)

2 c

-r

12.2.2 Interchange E - H, H - -E and 1'0 - Eo. From (23)

di = iwqd - iwqmd = iWlJom
where qm is the magnetic charge. We obtain

Ok 0" -;1cr
E.. 1 1wIJom • lie

4> = - smu--
411" r

(l)

(2)
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and from (24) 

QED (3) 

12.2.3	 Because Io'om(t) = qmd - qd in the electric dipole case, the time dependence 
of q(t)d and Io'om(t) correspond to each other. With E - H and H - -E we must 
obtain mutually corresponding field patterns. 

12.2.4	 We can use the field sketch of Problem 12.2.1 with proper interchange of 
variables. 

12.3	 SUPERPOSITION INTEGRAL FOR ELECTRODYNAMIC 
FIELDS 

12.4:	 ANTENNAE RADIATION FIELDS IN THE SINUSOIDAL 
STEADY STATE 

12.4.1 From (4) 

tPo(O) = sin 
0 (' e-jlc.' ,:ilc.' cOIBdz' 

l 10 
= sin 0 1 {e-jlc(1-co8B)' _ I} (I) 

I jk(cos 0 - 1) 

= sinO 2 . [kl(l_ n)] -jlc(1-co8B)'/2 
l k(I-cosun) sm

2 
cos u e 

The radiation pattern is 

(2) 

With kl = 271" 
.T.(n) _ sin

2
0 (. 2 2 . 2 0)... u = Sln 7I"sm-	 (3)

471"2 sin4 (Oj2) 2 

The radiation pattern peaks near 0 = 60°. 
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1jJ(O) 

Figure 812.4.1 

12.4.2	 By analogy with (3) one replaces H<f> - E<f>, IJ +-+ f and i(z')dz' = jw(qz)dz' ­
J'w(qmd) dz' = J'wIJIJ(z')dz' where we interpret qd and qmd as assigned to unit 
length. Thus, from (2) of Prob. 12.2.2, with IJo - IJ, fo - f, 

2 jkr I¥! ., E<f> = -sinO--k e- - M(z')eJkr'lrdz'
4'11' r f 

2 jkr 
= k I . ~e- M ejOl.°f (0)

4'11' V~ 4 0 0 

where 

12.4.3 

tPo(O) = _sinO (' sin~(z' -I) ejkz'cos8dz'

I Jo sm {3I


= _ si~O {' ~{(ej~(z'-I) _ e-j~(z'-I))ejkzlcOs8d({3z') 
{3lsm{3I Jo 2J 

sinO 1 {ej (IJ+kCOS8)1 -1 _. I e-j (IJ-kcos8)1 -1 
e3IJ

. ,}
= - - e J~ ­

(3lsin{3I2j j(l+~cosO) -j(l-~cosO) 

sin 0 2 {{3I' . {3I k jk cos 81}
= {31' {3I k 2 cos + J sm -(3 cos 0 - e 

sm 1- "ji'i cos2 0 

12.4.4 (a) From (12), and with an = n~ix, 

tPa = L3 
ejka".lrei(OI.,,-OI.o) 

(1)n=O 

= 1 + ej(f cos <f> sin 8+01.1-01. 0 ) + ej (7I' cos <f>sin 8+01.2-01. 0 ) 
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(b)	 Since tPo = sin 0, and Qi = 0 

ItPolltPal = 11 + 2 cos (i cos e; sin 0) IsinO (2) 

(c) 
tPa	 = 1 + ejf(C08~8iD9+1) + ejll'(Co8~8in9+1) 

= ejf(Co8~8in9+1){e-jf(c08~8iD9+1) + 1+ ejf(C08~8iD9+1)} (3) 

= ejf(Co8~8in 9+1) [2 cos i(cos e; sin 0+ 1) + 1] 

12.4.5 (a) 

tPa(O) = L1 

ejlc....lrej(a .. -ao) = 1+ e j [lI'co8/1+al- a o] (1) 
n=O 

(b) 
(2) 

(c) 
G = 411"cos2 (~cosO) sin2 0 

I; dO 1:11' de; sin 0cos2 (~cos 0) sin2 0 
(3) 

Define 
cosO = u (4) 

r dO sin3 0cos2 (~cos 0) = j1 du(I- u2 ) cos2 (~u) (5)Jo 2 -1 2 

Now consider integral 

I d 2 2 1 ( 1. 2 ) 2 z3 2z 1 . 
zz	 cos "z = '2 z + '2 sm z z - 3" + "8 cos 2z - 8" sm 2% (6) 

The integral is 
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The gain is 
411'" cos2 (~ cos 0) sin2 0

G - ---7~-;:;''-;:--	 (8) 
- 211'"U + ;2} 

(d)	 We find for '11(0) of array 

'11(0) = {I1/10(0) I11/11(0)111/12(0)1}2 (9) 

with 
1/12(0) = 1- eikasinOcos'" (10) 

In order to get maximum superposition in the direction 4> = 0, one needs 
ka = 11'" or a = >../2. Thus 

11/12(0) I= 12 sin (~sin 0 cos 4» I 

12.5	 COMPLEX POYNTING'S THEOREM AND RADIATION 
RESISTANCE 

12.5.1 The radiation field Poynting vector of the antenna is from 12.4.2, 3.4.5 

~(EoH;) = ~ ((:~): filloI2(1/Io(0))2	 (1) 

where 1/10(0) is from 12.4.28 

_ 1 cos ( 3;) - cos (3; cos 0) 
1/10(0) - e1\') . e1\') . 0""2 sm ""2 sm (2) 

~ cos (~cosO) 
311'" sin 0


The radiated power is


2	 ~1 1\' 121\' 1 ~-110 1Rrad = dO sin 0 d4>-EoH;
2 10 0 2 

_ ! (311'")2. ~/ II 12(~)2 11\' cos
2
(~cosO) . (3)- 2 (4 )2 V J.Lo/ fa a 3 211'" . 2 sm OdO11'" 11'"	 0 sm 11 

= !II 12 VJ.Lo/fo( )l1\'dO' cos
2 e; cosO)

a 2 211'" smO 2 
2 411'" 0 sin 0


Therefore

VJ.LO/fO11\' . cos2(3; cos 0)

Rrad = 2 dO sm 0 . 2 
11'" 0 sm 0 

_ 1 11 cos2(321\' x)	 (4)- -VJ.Lo/fo dx	 2
211'" -1 1- x 

= 1040 
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12.5.2 The scalar potential of the spherical coil is (see Eq. 8.5.17) 

(1) 

This identifies 

(2) 

We have for the 0 component of the H-field 

(3) 

and thus the radiation field is 

k2 A 

A m
Ho ~ ---sinO 

411"r 
(4) 

The power radiated is 

(5) 

Therefore, 

Rrad = ~; VlLo/foN 2 (kR)4 (6) 

The inductance of the coil is from (8.5.20) 

(7) 

and therefore 

(8) 

12.6 PERIODIC SHEET-SOURCE FIELDS: UNIFORM AND 
NONUNIFORM PLANE WAVES 
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12.6.1 (a) From continuity: 

ak:c . A 0 az + 3wO'. =


Taking into account the z-dependence:


(2) 

and therefore 
(3) 

and 

(b)	 The boundary condition on the tangential B is: 

nil I)' 

Since 
B II i. (4) 

and thus 
b: - b: = k:c	 (5) 

H. is antisymmetric, of opposite sign on the two sides of current sheet. 

(6) 

and thus 

(7) 

From (12.6.6) and (12.6.7) 

E = Re[ix ( - f30'0) + i)'( ± 0'0 )]e'Fillllei(wt-k.,:c) (8) 
2Eok:c 2Eo 

(c)	 As in Problem 12.2.1, a plot of a divergence-free field can be done by defining 
a potential. and obtaining the field 

(9) 

Now, it is clear that the potential necessary to produce (8) is 
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Then 
• ~;o,. • 8q, • 8q, 

-I" X v 'li' = Ix 8y - I)' 8x 

and is found to be equal to (8) with f(x, y) equal to unity. By visualizing the 
potential, one may plot E lines. 

k y imaginary: H-lines E-lines 

lines of equal 
height of ~ 

Figure S12.6.1a


At wt = 0, the potential is


k y real:


E-line


../ H-line 

L 

Figure S12.6.1b 

x 
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At wt = 0, the potential is 

12.6.2 (a) The E-field will be z-directed, the H-field is in the z - y plane 

t. = Asin(kzz)e'fi1c1l1l (1) 

From (12.6.29) 

I'r 1 8E. 1 ( ·k)A· kn z = --.--- = --.- T' SIB zZ (2)
'WIJ 8y ,wIJ II 

The discontinuity of tangential H gives: 

D X (DB - Db) = K (3) 

in z - z plane. And thus, combining (2) and (3) 

(4) 

and therefore 
A=_wIJKo (5)

2lell 

From (2) and (5) 

(6) 

and from (12.6.30) 

II 
II 

= ,.le
k 
z K

2 
o cos(k

z 
z)e'fi1c1l1l (7) 

II 

(b) Again we can use a potential ~ to which the H lines are lines of equal height. 
IT we postulate 

Then 

~ = (~) Ko sink ze'fi1c1l1likll 2 z 

• VA;. • 8~ Ko kz k 
-I. X '* = Ix 8y T ik cos zZ 

ll 

• 8~ • K o • k • Ko kz 
-I)" 8z = TlxT SIB zZ -I)" T ik cos 

ll 

The potential hill at wt = 0 is 

Re[~J = T~o sin kzz sin klly 

(8) 

(9) 

k 
zZ 

(10) 
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wt = 0

o 0 0

o

o H-Iine

E-Iine

12-13

o
o

(c) We may write (1)

o 0 0

Figure Sn.6.2

and for (6) and (7)

:H: =i Ko { ± ix(eik.."'=fikYI/ _ e-ik.."'=fikyl/)
4

+ :'" ill (eik .."'=fikYI/ + e-ik.. "'=fikyl/)}
1/

(11)

(12)

12.6.3 (a) At first it is best to find the field E z due to a single current sheet at y = O.
We have

From (12.6.29)

(1)

(2)
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From the boundary condition 

(3) 

we get 

2LAe-:iksf/ll = _Ke-:iksf/ll 
WI-' 

and thus 
A = _ wI-'K (4)

2fJ 

Now we can add the fields due to each source 

(5) 

(b)	 When 

(6) 

Then 
K b = -Kae-j(ltl (7) 

there is cancellation at 11 < -d/2 
(c) 

(8) 

(d)	 In order to produce maximum radiation we want the endfire array situation 
of fJd = 'If/2. (Indeed, sin fJd = 1 in this case.) Because 

(9) 

we have

1 [ ] 1/2
w=-Viii ~_(~)2	 (10) 

f/Il 2d 

The direction is 
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12.6.4- (a) If we want cancellations, we again want (compare P12.6.3) 

Ub = -ua.e-;klld (1) 

(b) A single sheet at y = d/2 gives 

H. = ±Ae-;k..ze'F;k ll (lI- t)	 (2) 

Now,

akz .,.

--+JW(T=O	 (3)az 

gives 
k 

z = kW,.
(Ta. (4) 

z 

and 

2h;I II=0+ = ~ (Ta (5) 

Therefore 
A 

= 2k
W,.

(To. (6) 
z 

and the field of both sheets is 

H. = j~ua.e-;k"Ze-;kll(lI+t) sinkzd	 (7)
kz 

(c)	 klld = 11'/2. Therefore, as in P12.6.3,


W = _1_[k2 _ (.!.)2] 1/2

..;iiE	 z 2d 

(8) 

12.7	 ELECTRODYNAMIC FIELDS IN THE PRESENCE OF 
PERFECT CONDUCTORS 

12.7.1	 The field of the antenna is that of a current distribution Icoskzl. We may 
treat it in terms of an array factor of three antennae spaced >../2 apart along the 
z-axis. From 12.4.12 

3 

l,pa(O)1 = 1L:e'kt COB91 = 11+eiJrcoB9 +e2;JfCOB91 
,=0 (1) 

= le-;JfCOB9 + 1 + e;JfCoB91 

= 1+ 2cos (11' cos 0)


The function ,polO) follows from 12.4.8 with kl =11'


,polO) = ! cos (~cos 0)/ sin 0	 (2)
11' 2


Combining (1) and (2) we complete the proof.
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12.7.2	 The current distribution, with image, is proportional to Isin kz I. The point at 
which the current is fed into the antenna calls for sero current. Since the radiated 
power is finite, Rrad is infinite. In practice, because of the finite losses, it is not 
infinite but much larger than VIl-o/Eo. 

12.7.3 (a) We have a surface current k z 

akz ... 
az + 1WO'. = 0 (1) 

Therefore 
.. jw. (1l"Z)
Kz = -TO'o SID -	 (2)'II'" a a 

The H-field is z-directed and antisymmetric with respect to y. 

.. ('II'"z) '/I:HM = ±Asin -. e~' IIY	 (3)
a 

From the boundary condition 

n x (ila - ilb) = it. (4) 

with n II ir-
A . (z) jw .	 (z)2 SID	 - = --O'oSID - (5)

a	 'II'"/a a 

jw
A= ---0'	 (6)

2'11'"/a 0 

The E-field is from (12.6.6) 

t 1 all. 1 ( iw ) . . (z) '/I:z = -.--- = ±-,-	 - --0'0 (=f1k ) SID - e~' IIY 
1WEo ay 1WEo 2'11'"/a Y a 

jkyO'o . ('II'"z) ~j/l: y 
(7) 

= Sln-e	 II 
Eo(2'11'"/a) a 

and from 12.6.7 

E 1 all. ( 1)( iWO'o) 'II'" ('ll") '/I:y = --.--- = - -,- =f -- -cos -z e~' II" 
1WEo az 1WEo 2('II'"/a) a a (8) 
0'0 () '/I:=±-cos -z e~' II"

2100	 a 

(b)	 On the plate at z = -a/2


... t I jk"O'o ~'/I:

0'. = Eo	 z z=-a/2 = - 2'11'"/a e ' II" (9) 
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At z = a/2 it is of opposite sign. The surface current is

~ Ii I - iwuo Tile y
A y = - II 11.=-0./2 - ±-/-e 1/2'11" a

and is the negative of that at z = a/2.
(c)

k2 k2 2
II. + y = W /-&oEo

and thus

12-17

(10)

(11)

(12)ky = VW2 /-&oEo _ {~)2

Again we may identify a potential whose lines of equal height give E. Indeed,

(13)

gives

(14)

(d) For kg imaginary and wt = 0

wt =0 wt = rr/2

displacement
current density

Flsure 812.7'.3.
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For kv real, wt = 0 

Re[.J ==f sin cr:l:) cos kv!lto/)
Eo 211' a a 

wt = 0 wt = 71" /7. 

disphu:ement 

convection 
current 

displacement 
ftux \Ins 

Figure S12.f.lb 

12.1.4 (a) We now have a TE field with 

(1) 

From (12.6.29) 

18E16 1 (. (1I':I:)'F'/oIia: = --.--- = --.- =f1k )Acos - e IIV:J 
1w~ 8y 1w~ 11 a 

(2) 
= ± k1l A cos (11':1:) e'Fj/ollv 

w~ a 
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and the boundary condition

we obtain relation for A:

k" '11":& '11":&
-2-Acos - = Kocos-

wp a a

12-19

(3)

(4)

or

and thus

From (12.6.60)

A= _ wpKo

2k"
(5)

(6)

(7)

(b) Since the E-field is z-directed, it vanishes at the walls and there is no surface
charge density. On wall at :& = -a/2

and thus

Flsure SlJ.T.(a

k - .'II"/a K 'fi"~"
II - 3 2k oe

"
On the other wall, the current is opposite.

(8)

(9)

(c)
k" = JW2poEo - ('II"/a)2 (10)

since kill: = 'II"/a. Again we have a potential~, the lines of equal height of which
give B.

1 Ko ('11":&)",""
~ = --cos - e" ~"

jk" 2 a
(11)
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(d) For ky imaginary:

wt = 0

Solutions to Chapter 12

wt = 1r/2

,_--..-- H-lield

o ~---r- E-field

00G
x

000

o

Figure SU.f.4b

for ky real:
o

E
o 0 ~
000

o

00(;)
(;) 0 0

o

Figure SU.f.4.:

H

wt =0
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13.1 INTRODUCTION TO TEM WAVES 

13.1.1	 (a) From (13.1.3): 

aEz [ () (O)J aHaay = f3Re A cos f3y exp 3wt = Wat: 
(1) 

= f3IAI cosf3ycos(wt +~) 

where ~ is the phase angle of A. Integrating the above yields 

H. = LIAlcosf3ysin(wt +~) =	 -Re jLAcosf3ye;wt (2) 
w~·	 w~ 

Introducing (2) and the expression for E z into (13.1.2) gives 

- f32 IAI sin f3y sin(wt + ~) = -wflAI sin f3y sin(wt + ~) (3) 
w~ 

from which the dispersion relation follows f32 = W2~f. 

(b)	 From (13.1.13)


This gives, using (2),


(4) 

and thus 

A= _j w~/(o = -j/(o. ~_1_	 (5)
f3 cos f3b V-; cos f3b 

Using (2) we find 

-	 -R K'" cos f3y ;wtH• - e 0 cos",Qb e (6) 

and putting the value of A from (5) into the expression for Ez gives 

= -R oK f;~ sin f3y ;wtEz e 3 0 f cos", Qb e	 (7) 

1 
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13.1.2 (a) The standing wave 
H. = Re A sin {iyeiwt 

satisfies the boundary conditions of sero H. at y = O. From (13.1.2) 

aHa . t aE:I'-- ={iRe A cos {iye'W =E-- (1) 
ay at 

Integrating to find Ell' gives 

E:I' = -!!...Re jA cos {iyeiwt (2)
WE 

From (13.1.3) we find 

aE:I' = {i2 Re jAsin{iyeiwt = J.& aHa = wJ.&Re jA sin {iyeiwt (3) 
ay WE at 

and thus 
(i2 = W2 J.&E (4) 

(b) Turning to the boundary conditions, 

E:I'(-b, t) = Re ~deiwt /a (5) 

and thus from (2) 

-!!...Re jAcos{ibeiwt = Re ~deiwt /a (6)
WE 

and hence 
A- .WEVd _1__ . ~Vd_1_ (7)-3 (i a cos{ib -3yp. a cos{ib 

We find 

13.1.3 Using the identity 
(1) 

one finds from (13.1.17) 

l'liI
E:I' = "'!¥ 1 •-Rej.n.o -----;(e'''I- e-'''")e'Wiii 't 

Ecos{ib 23 
(2) 

= -Re !Ko ~[ei(wt-{JII) - e-i(wHfJlI)J/cos{ib
2 y; 

The exponentials in the brackets represent waves that retain constant amplitude 
when dy = ±idt exhibiting the (phase) velocities ±w/{i = ±1/..,fiii. 
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-L/ 
13.1.4	 (a) The EQS potential in a coax is a solution of Laplace's equation. The field 

with rotational symmetry is 

~= Aln­
r	

(I)
a 

satisfying ~ = 0 on outer conductor of radius a. The field is z-independent 
with a constant potential difference. The potential difference is 

Aln(b/a} =V	 (2) 

The field is 

E = -V~ =	 -i.. :rA1n(r/a} = -i.. ~ = i .. rln~/b} (3) 

(b)	 The field has cylindrical symmetry with field-lines parallel to ill>. The potential 
"\Ii' is 

(4) 

The H field is 

(5) 

Ampere's integral law gives 

!H.dS= f J·da=I	 (6) 

Since H is z independent, I = constant and at z = -I 

A 
--211"r = -211"A = I	 (7)

r 

Therefore 

(8) 

(c)	 The preceding analysis suggests that 

E=i.. V(z,t} (9a)
In(a/b}r 

and 

(9b) 

can be solutions of Maxwell's equations. To show this it is advantageous to 
separate the V operator into 

(10) 
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where 
T"7 • a 1. a 
vT = I r ­ + -1",­

ar r a</> 

is the transverse part of the operator. Then 

(ll) 

v X E = V T X E + i. X :zE (12) 

Now V T differentiates only rand </>. The EQS field, which is z independent, 
has VT X E = O. Hence we conclude that the same holds for the "Ansatz" 
(9). But i. X ir = i", and i. xi", = -ir . We obtain from Faraday's law 

1 !~V=_JL_l_a1 
In{a/b) r aa 21Tr at 

(13) 

The common r-dependence can be eliminated, and we find 

(14) 

where 
L = JLln{b/a) 

21T 
A similar reasoning applied to V X H and Ampere's law yields 

(15) 

• 1 a1. € av 
-Ir =Ir -

21Tr az In{b/a)r at 
-- (16) 

or 

with 

a1 = _cay 
az at 

c = 21T€ 
In{b/a) 

(17) 

(18) 

V 
13.1.5 (a) With the time dependence exp iwt, we get for the transmission line equations 

of (14) and (17) of Prob. 13.1.4 

dV 
dz 

= -iwLJ (I) 

where 

dJ A 

- = -iwCV
dz 

v = Re Veiwt 

(2) 
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and 
1 = Re ieiwt


Eliminating V from (1) and (2) one obtains


tPV . di 2- = -3wL- = -w LCV
A	 (3)

dz2 dz 

with the solutions 

(4) 

with 
fi =w";LC (5) 

We pick the solution 
v = Asinfiz (6) 

because the short forces V to be zero at z = O. From (1) we find 

i dV ifi
1

A =-- = -Acosfiz	 (7)
wL dz wL


and since 1 = Re 10 eiwt at z = -I,


wL

Acosfil = -i 1	 (8)

fi 0 

or 

A=-iVL/C~ (9)
cos PI 

where we used (5). We find for the current and voltage as functions of z and 
t: 

. t101(z, t) = Re -- cos pze'w	 (10)
cosfil 

V(z, t) = -Re iVL/C10 sin~z,eiwt (11) 
cOSfJ 

(b)	 At low frequencies cosfiz!::::! 1 for all -I < z < 0 and sinfiz !::::! fiz = w";LCz. 
Using (9) of the preceding problem, 

(12) 

For the E-field we find from the preceding problem and (11) above 

. R' L 1 iwt 
_. R . JJ 1 iwtz oeE -- -II' e3w In(a/b)r - -II' e 3w 211" z oe (13) 
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This gives the voltage at z = -I

Solutions to Chapter 13

(14)

The inductance is Ll because L, as defined here, is the inductance per unit
length. Thus we have shown that, in the limit oflow frequencies, the structure
behaves as a single-turn inductor.

(c) The H-field in the space between the conductors is the gradient of a potential
'Ii ex tP that is a solution of Laplace's equation. Thus,

10 • t
H=Re -i e'w

21fr .p

We obtain E from Faraday's law

V E paH R' 10 • iwt
X =--- = -p e:Jw-1.peat 21rr

(15)

(16)

c
I

f
--- -----.-_.-t--

z « 0) z=o

FllPlre SII.1.5

With the line integral along the contour C shown Fig. S13.1.5, we may find from
the integral form of Faraday's law

(17)

Integrals over the radial coordinate appear on both sides. Thus, comparing the
integrands we find

which is the same as (13).

E R jwp10 iwt
r=- e~ze (18)
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~ 
13.1.6	 (a) From the solutions (4) in Prob. 13.1.5 we pick the cospz dependence, because 

the magnetic field, proportional to 1, is zero at z = 0 according to (7) of the 
same problem. Indeed, if V = A cos pz, then 

j eW jP.
1

A 

= -- =	 --Asmpz (1)
wL dz wL 

Since 
Re[Acospzexpjwt]..=_1 = ReIVoexpjwt] (2) 

we find 

A=~ (3) 
cos Pi 

and 

1=-jyC/L V°/.llsinPz (4) 
cos~ 

Therefore, 

V(z, t) = Re [c:opl cospzexPjwt] (5) 

1(z, t) = -Re jyC/L V°/.l sin (3zeiwt (6) 
cos~l 

In(r/a) • V(z, t) 1 
E = V(z, t)VT In (a/b) = I"ln(a/b) r (7) 

where VT is the transverse gradient operator, 

• a . 1 a
V T	 = 1.. - +1",-­ar r a4J 

and we use the result of Prob. 13.1.4. In a similar vein 

(8) 

(b)	 At low frequencies, cos (3z !:::! I, sin (3z !:::! (3z and V(z, t) !:::! Re Vo exp jwt. Then, 
assuming Vo to be real, 

i.. 1	 ( ) 
E = In(a/b) r Vocoswt 

H = ;:r yC/L(3zVosinwt = i"'rln'(:/b)zVosinwt (10) 

(c)	 At low frequencies, using EQS directly 

i.. 1 
E = In(a/b) r Vocoswt (11) 

9 
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namely the gradient of a Laplacian potential ex In(r/a). The H-field follows 
from 

aE
VXH=f­	 (12)at 

with 
A 

H = 14>-z	 (13) 
r 

introduced into (12) 

• a H I A II" 1V. .V x H	 = -II" az 4> = - 1"-;:- = -WE In(a/b) r oSlnwt 

and therefore 

A = In(:/b) Vosinwt	 (14) 

which gives the same result as (10). 

13.2	 TWO-DIMENSIONAL MODES BETWEEN PARALLEL­
PLATES 

13.2.1 We can write 

mr	 1 ( .n", .n'll" )cos-:r; = - exp3-:r;+exP-3-:r;
a 2 a a 

and 
• n'll" 1 ( .n", .n'll" )

Sln-:C= --; exp3-:r;-exp-3-:r;
a 23 a a 

Introducing these expressions into (13.2.19)-(13.2.20) we find four terms of the form 

'Q .n'll" '(Q n'll" )exp =f3fJnyexp =f3 -:r; = exp =f3 fJnY ± -:r; = exp -jk . r 
a	 a 

where 
k n'll". Q • 

= ±-Ix ±fJnl~ 
a 

and

r = Ix:r;+I~y


This proves the assertion that the solution consists of four waves of the stated 
nature. These waves are phased so as to yield :r;-dependences of the form cos n: :r; 
and sin nat!' :c to satisfy the boundary conditions. 
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13.2.2	 We can start with the solutions (13.2.19) and (13.2.20) shifting z so that 
, a 

:1;=:1;-­
2


Considering TM modes first we note that


n", .(n",z' n",)
Hz ex cos-z = cos --+­

a a 2 
n"':I;' n", . n"':I;' . n",

=cos--cos- -sm--sm­
a 2 a 2 

= { (-1)~~ cos (m::) n even 
(-1)-~- sin (,,~S) n odd 

We see that the modes with even n are even with respect to the symmetry plane 
of the guide, the modes with n-odd are odd. 

Next studying the TE-modes, 

. n", . (n",z') n", (n",z') .	 n",Ezexsm-z=sm -- cos-+cos -- sm­
a a 2 a 2 

= {(-1):'~1 sin~, n even 
(-1)-~- cos "~s n odd 

We find that Ez is even for n odd, odd for n even. 

(a) When z, = ±a/2 and the modes are odd, Hz = (_1)(,,-1)/2 sin "2ft , Ez = 
(-1)"/2 sin "2ft ; in the first case n is odd and Hz is an extremum at z' = ±a/2, 
and in the second case n is even and Ez is zero at both boundaries. 

(b) When	 z, = ±a/2 and the modes are even then Hz = (-I)"/2cos(;ft) and 
Ez = (_1)("-1)/2 cos ;'11' we see that both boundary conditions are in both 
cases, because n is odd in the first case and Hz is an extrenum, n is even in 
the second case, and Ez is zero. 

13.3	 TE AND TM STANDING WAVES BETWEEN PARALLEL

PLATES


(1)


13.3.1 
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where we have integrated by parts. Because dh.n/dz = 0 at z = 0 and z = a, the 
integral of the integrand containing the total derivative vanishes. 

Next take the complex conjugate of (13.3.1) applied to h.m multiply by 'h.n 
and integrate. The result is 

13-10 

(2) 

Subtraction of (1) and (2) gives 

Thus 
(G A. '" 10 h.mh.ndz = 0 

when p~ -=I p~ and orthogonality is proven. The steps involving 2.n are identical. 
The only difference is that 

l
a 

d ~("* de.n )zd e.m do z z


vanishes because 2:m vanishes at z = 0 and z = a.


13.3.2 (a) The charge in the bottom plate is 

q = l UI 1(a+A)/2 
EElIdzdz	 (1) 

o (a-A)/2 

Using (13.3.15) 

""' 4mrE f) 1 ;wt] 2wa ( )!!=.!.. n",~ q= Re	 [ LJ -------e -- -1 sm-- (2)3 
..=1 a fJn a sinfJnb n", 2a 
044 

l
where we have used the fact that


UI j(a+A)/2 mr wa [ mr a + f1 mr a - b. ]

sin (-z)dzdz = -- cos (---) - cos (---) 

o	 (a-A)/2 a n", a 2 a 2 

wa . n", . n",f1 
= 2-sm-sm-­

n", 2 2a 
_ 2wa ( 1).!!;.l . mrb. ---	- ~ sm-­

nll" 2a 
(3) 

Va = -Re iwqejwtR 

( 1) !!=.!. • n!tA. ] (4)
= -Re	 iw8EWRv L - 3 s~ 2a ejwt

[ fJn a sm fJn b 
n 
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When P",b = 1r we have a resonance. Now

P", = JW2~E _ (n;)2

The resonance frequency of the n-th mode occurs at

p",!a = J4w2~Ea2 - (n1r)2 = 1r
a

or
w..jiii.a = J(n2 + 1)~

2

13-11

(5)

(6)

(7)

(b)

(b) For n = 1 this is at 1r. The next mode resonates at V5f41r. Thus, in this
range, two resonances occur for which the response goes to infinity. Of course,
in this limit, losses have to be taken into account which will maintain the
response finite. The low frequency limit is when·

1r
w..jiii. <: n­

a

Then
R • R b n1r. h n1r bf'''' Slnf'''' -+ -- sm -

a a
and

_ R [. R"~ (-1)!!jl sin~ jwt]
Va - e 3w81rEW V L..J M sinh Mb e

'" G G

(c) From (13.3.13), when only one mode predominates,

H R [
4iWEfJ cos p",y n1r] jwt

.!:::! e -R-- . R bCos- e
f'",a sm f'", a

where n = 1 at wy'iifa = 1r and n = 2 at wy'iifa = V5f41r. To get a
finite answer, we need v/ sin p",b to remain finite as the resonance frequency
is approached.

13.3.3 (a) H. at x = 0 and x = a gives the surface currents in the bottom and top
electrodes. Because the voltage sources push currents into the structure in
opposite directions, the surface currents, and H., have to vanish at the sym­
metry plane.

The x-component of the E field can be found directly from (13.3.14), replac­
ing the sinp",y/sinp",b by cosp",y/cosP",b to take into account the changed
symmetry of the field

E R [ ~ 4v cosp",y n1r] ,·wi
II: = e L..J -- cos -x e

,,_1 a cos P",b a
odd

Because 8H./8y = iWEEs we find

H - R [~ 4jWEfJ sin P",y n1r J jwt
• - e L..J R R b cos "'J e

,,=1 f'",a cos f'''' a
"odd
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13.3.4 (a) The flux linkage>. is 
(1) 

and the voltage is 
dH. 

Va = IJA--;It	 (2) 

(b)	 From (13.3.13) we find that liI.1 is a maximum for :& = 0 and :& = a. 

(c)	 From the detailed expression (13.3.13), using (2) 

_ -R [~4W2IJEUA_1_ n1r X ] iwt 
Va - e	 L.J Q • Q bcos e 

"=1 IJn a sIn IJn a 
"odd 

(d)	 The loop should lie in the 11 - z plane. Then it links Hz that is tangential to 
the bottom plate. 

13.3.5	 The Ez field is derivable from a potential that is a square wave as shown in 
Fig. S13.3.5. We have 

(1) 

v 

-,,---:Or----'--­
x=o J \ x=a 

/I-II tl4-x=T X - 2 

FIKure SIS.S.1 

and using orthogonality, multiplication of both sides by sin n; :& and integration gies 

U4 
a • n1r av [ (n1r a + d n1r a - d)]12-An = V sIn -zdz =-- cos ---) - cos (-- ­
2 ~ a n1r a 2 a 2 

2 

av	 . (n1r) . (n1rd)= 2-SIn	 - SIn ­
n1r	 2 2a 

We find

4v. (n1r) . (n1rd)
An = -SIn - SIn ­
n1l' 2 2a 

We may adapt (13.3.13)-(13.3.15) for this case by replacing 4v/n1r by 

. (n1r)	 . n1rd
4v/ n1r SIn "2 sm 2a 
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~ 4jwdj • (n1r) . (n1r d) C08 fJnY n1r] iwtH• = Re [ L..J -- sm - sm - cos -z e 
.._1 fJn a 2 2a sin fJnb a 
odd 

~ 4v. (n1r) . (n1rd)sinfJnY n1r] iwtE :I: = Re L..J -- sm - sm -- cos -z e[ .._1	 a 2 2a sin fJnb a 
odd 

~ 4n1r . (n1r) . (n1rd) cos fJnY . n1r ] iwtE = Re L..J --sm - sm -- sm-z e 
y	 [ ..=1 a 2 2a sinfJnb a 

odd 

13.3.6	 In (13.3.5) we recognized that E. at Y = b must be the derivative of a po­
tential that is a square wave. This, of course, is equivalent to the statement that 
E. possesses two impulse functions. In a similar manner, H y can be considered the 
derivative of a flux function f: pHydz. Note the analogy between (13.3.19) and 
(13.3.14). We may, therefore, adapt the expansion of P13.3.5 to this problem, be­
cause the flux function of Example 13.3.2 is the same as the potential of example 
13.3.1. From (13.3.17)-(13.3.19): 

~ 4jAw. (n1r) . (n1rd) sinfJmY . m1r ] iwtE • = Re [ L..J ---sm - sm -- sm-z e 
m=l m1r 2 2a sin fJmb a 
odd 

~ 4fJm A . (n1r) . (n1rd)cos fJmY . m1r ] ,·wtH• = Re L..J -- sm - sm - sm -z e[ m=l pm1r 2 2a sin fJmb a 
odd 

~ 4A. (n1r) . (n1r d) sinfJmY m7l'] ,·wt1l = Re [ L..J --sm - sm - cos-z e 
y m=l pa 2 2a sinfJmb a 

odd 

13.4 RECTANGULAR WAVEGUIDE MODES 

13.4..1 The loop in the Y - z plane produces H-field lines along the z-direction. IT 
placed in the center of the waveguide, at z = a/2, these field lines have the same 
symmetry as those of the TEIO mode and thus excite this mode. The detection loop 
links these fields lines as well Of course, the position of tl.~ exciting loop must be 
displaced along Y by one quarter wavelength compared to the capacitive probe for 
maximum excitation. 
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13.4.2 The cutoff frequencies are given by 

The dominant mode has n = 0 and thus it has the (lowest) cutoff frequency 

:c Im=l,n=o = (;) 

The higher order modes have cutoff frequencies 

The cuttoff frequencies are in the ratio to that of the dominant mode: 

TEol 1.33 

TEll and TMll 1.66 

T~o 2.0 

T~l and TM~u 2.4 

13.4.3	 (a) TM-modes have all three E-field components. They approach the quasistatic 
fields of Ex. 5.10.1 which imposes the same boundary conditions as this exam­

ple. Hence the modes are TM. From (9) we find that ez oc -jle,/;: = ;;~~ 
.. ·Ie ~ ,,3al! S· ~ d ~ . h to;' tand e. oc -1 11 ". = "11 .' mce Gz an e. must van18 a y = ,e" mus 

behave as a cosine function of y, so that 2z and 2. are sine functions of y. 
Therefore, 

E = Re '""'(A+ e-:ilJm...1I + A- eilJm...") sin ~:z:sin ~ze·;wt" L.J L.J mn mn a w 
m n (1) 

= Re EE2A~ncosPmnysinm1r :z:sin~:z:sin~zeiwt 
a a w 

m n 

where 
(2) 

From (13.4.9): 

Ez = Re "'''' -jPmn(7) (A+ e-ilJm..." - A- eilJm...")L.J L.J W2uE _ .02 mn mn 
m n ,.. f'mn 

cos ~:z:sin ~zeiwt (3) 
a w 

_ R '"'" fJmn 7- 2A+ . R m1r. n1r iwt- e L.JL.J 2 R2 mnsmf'mnycos-:z:sm-ze 
m n W I"E - f'mn	 a w 
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and similarly,

R "" "" 13m",~ A+ . II • m7f n1l" jwtE.= eL..JL..J 2 112 2 m",smpm",ysm-zcos-ze
m '" W /Sf - Pm", a w

13-15

(4)

(b) At y = b, Es as a function of z must possess two equal and opposite unit
impulse functions of content v(t)/a to give the proper voltage drop at the
edges. The integral of Es , - f; Esdz must be a square wave function of
amplitude v. The same holds With regard to the integral of E. with respect
to z. In summary, Es and E. at y = b must be derivable from a potential
that is a two-dimensional square wave with the Fourier expansion (5.10.15)
(coIQ.pare 5.10.11):

00 00

4>(z,y) = Re L L
__ 1 ,,==1

modd ,,"odd

x=o

16v . m7f • n1l" ,·wt
--sm-zsm-ze
mn1l"2 a w

impulse
function

(5)

impulse
function

Thus, at y = b

­X

F1cure 913.4.3

x=a

Comparison with (3) gives

m1l"/( 2 2) . 16v m1l"2Am",13m",- W /Sf - 13m", sm13m",b = --2-
a mn1l" a

(7)

for m and n odd. This gives the quoted result. An analogous relation may be
obtained for E. which yields the same result.

(c) The amplitudes go to infinity when sin 13m",b = 0 or



or

13.4.4

13-16

(d)

Solutions to Chapter 13

wVjii.a = 1rJm2 + (:n)2 + (ip)2

We have already used the fact that the distribution of Es and E. in the Y= b
plane is the same as in the quasistatic case. The only difference lies in the
y-dependence which, for low frequencies gives the propagation constant

and is pure imaginary. The EQS solution according to (5.10.11) and (5.10.15)
IS

.". = Re ~ ~ 16& sinh kmny . m1r • n1r iwt
"Ii! L.J L.J --2 . hk b Sin -ZSIn -ze

m=l ..=1 mn1r sin mn a w
odd odd

and gives for Es :

E• -_ -Re ~ ~ 16& (m1r)sinhkmnY m1r. n1r iwt- L.J L.J -- - cos-zsm-ze
1 1

mn1r2 a sinh kmnb a wm. .
",odd odd

This is the same expre88ion as the EQS result.

z=w

a-tl
2

a+tl
2

w+~

2

w-~

2

___...l--_..L-_.L...-__-'-_

x=o
%=0

x =4/2 x=a

Flsure SIS.4.4.

The excitation produces a H,," It looks like TE-modes are going to satisfy all the
boundary conditions. H" must be zero at Y= 0 and thus from (25) of text

00 00

H" = Re L L(O~ne-ilfm.." + O';neilfm..") cos C:1r
z) cos C:: z)eiwt

m=On=O

= -Re L L 2iO~n sin PmnY cos (~z) cos (~z)eiwt
m=On=O a w

(1)

At Y= b we must represent the two dimensional square-wave in the z-direction and
in Fig. S13.4.4b in the z-direction as shown in Fig S13.4.4c.
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a-d
-2- z=o

w-d
-2-

z=w

x=o a/2 x=a

Figure SIS.4.4b

We have, setting
Figure SIS.4.4e

(2)

1
w14

", '" m1l" (n1r (P1l") (q1l" 1L-L-Amncos(-X)cos -z)cos -x cos -z)dxdz= --Apq(aw)
00 a w a w 4

w+oIil. A

1 2 i 2 p1l" q1l"=-Ho dz dxcos (-x) cos-z
J!!:A ..-I! a w

2 2

w±oIil. ~

1 2 12 p1l" q1l"+ Ho dz dxcos (-x) cos-z
.!!!=A A a w

2 2

H o [. (P1l" a) . (P1l" a- d)]= - (7) (~) sm 72 - sm 7-2-

[
. (q1l" W+ A) . (q1l" W- A)]sm --- -sm ---

w 2 w 2

Ho [. p1l" a+ d . p1l" a]
+ (7)(~) sm 7-2- - sm 72

[
. (q1l"w+A) . (q1l"w-A)sIn --- -sm ---

w 2 w 2

Ho [. (P1l" a)]
= - (7)(~) sm 72

. (P1I" a - d) . (P1l" a + d) . (P1l" a ]-sIn --- -sm --- +sm --)
a 2 a 2 a2

[
. q1l"w+A . q1l"W-A]sm----sm---

w 2 w 2

Ho [. (P1l") . (P1l") (P1l")] q1l". q1l"A=-( )("1r) 2sm - -2sm - cos -A 2cos-sm--
P!! .0.::.. 2 2 2a 2 2w

4 w

4Ho • (P1I") (q1l"). q1l"A [ P1I"]= - (p~)(~) sm "'2 COS "'2 sm 2w 1- cos 2a A

(3)
We find that P must be odd and q must be even for a finite amplitude to result.

A = Ho (-l)P-l(-l)f- l [l- cos p1I" A]
pq pq1l"2 2a (4)
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The case q = 0 must be handled separately. 

1 () H o [ • (P1f' a) . (P1f' a - d)]-A 0 aw = --- sm -- - sm --- w 
2 p (p~) a 2 a 2 

H 0 [ • P1f' ( a+ d) . (P1f' a)]+-- sm- -- -sm -- w (5)(7) a 2 a 2 

2wHo [ P1f'] . P1f' 
= - (p~) 1- cos 2a sm"2 

and thus 
Apo =	 Ho [1- cos P1f' .6](-1)P-l

P1f' 2a 

From (13.4.7) and (13.4.8), one finds 

'" '" 2;C;:;'nPmn (m:) . m1f' n1f' ;wt
Hz = Re LJLJ 2 p2 cospmnysm-xcos-ze (7) 

m n W JJ.€ - mn	 a w 

(8) 

with C;:;'n expressed in terms of the Amn's by (2) 

13.5	 DIELECTRIC WAVEGUIDES: OPTICAL FIBERS 

13.5.1 (a) To get an odd function of x for e", one uses the Ansatz 

Ae-a",(z-d) d<x<oo e - Asink",z -d < x < d (1)'" - { sink",d 
_Aea",(z+d) -00 < x <-d 

which has been adjusted so that e", is continuous at x = ±d. Since 

(2) 

and thus 
-azAe-a",(z-d)

k - _1_ k A cosk.. z (3)l/ - . z sink",d 
'WJJ. { -azAea",(z+d) 

kl/ and e", are continuous at x = d. The continuity of e", has already been 
established. From the continuity of hl/: 

(4) 
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The cutoffs are at k",d = (2n - 1H (see Fig. S13.5.1a).

I
I
I
I
I---1-. _

k",d (2n - 1)11"
211" k d --+ ----

'" 2

Figure SI3.6.la

(c) When according to 13.5.3

k",d = JW2IJ f i - k~ = (2n - 1)~

and w goes to infinity, then kll must approach w.,fiifi asymptotically.

(d) See Fig. S13.5.1h (Fig. 6.4 from Waves and Fields in Optoelectronics,
H. A. Haus, Prentice-Hall, 1984).

Asymptote ~ .. w \I~

1.00.5

2. -
T·wv~•••---

Asymptote tJ = (oJ ",;;t;

0.0

50

10.0

1....

Figure SI3.5.lb
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13.5.2 The antisymmetric mode comes in when 

Q", 'II" 
-=0 and k",d= ­
k", 2 

and from (13.5.8) 

or 

or

1 '11"/2 [E; c . ~ '11"/2


w = VJifid V(l- -:J = V7"dV -;; ";1- E/Ei


8 = 3 X 10 _1_ '11"/2 = 3.85 X 1010 
10-2 yI2.5. /1 - --L

V 2.5 

f = .!!!.... = 6.1 X 109 Hz 
211" 

13.5.3 (a) For TE modes 

Ae-a.,(",-d) x>d 
e - A cos k.,'" or A sin k a'" -d < x < d'" - { cos k.,d sin k.,d 

Aea.,(",+d) or - Aea.,(",+d) x< -d 

where we have allowed for symmetric and antisymmetric modes. Continuity 
of ellS has been assured on both boundaries. The magnetic field follows from 

h = _I_de", (2) 
y jwJ1. dx 

and thus 

_.!!.£ Ae-a.,(",-d) x>d 
~ 1 k"'· k
h =- -='A~ or -d < x < d (3)Y jw "'i cos k.,d

{ .!!.£Aea.,("'+d) or x< -d
'" 

Continuity of hy gives 
k", 

-
Q", 

= -tank",d (4a)
J1. J1.i 
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for even modes, and

for odd modes. Here

and thus, eliminating k",

as = J1c'tJ - W
2

1-'E

kIlO = JW2lJiEi - k~

13·21

(4b)

(5)

(6)

and

(7)

(b) Cutoff occurs when as/kIlO = 0 and ksd is fixed. We find that when IJi is
increased above 1-', W must be lowered.

(c) The constitutive law (a) for symmetric modes has the graphic solution of Fig.
13.5.2. The only change is the expression for as/kIlO but its ksd dependence
is qualitatively the samei as/ kIlO increases when IJi / I-' increases at constant
w. This means that the intersection point moves to greater ksd values. k~

increases directly with increasing 1Ji/I-' according to (6) and decreases with
increasing kIlO' The intersection point of ksd does not change as fast, in partic­
ular, at high frequencies it does not move at all. Hence, the direct dependence
on IJi predominates, k" goes up and A decreases.

13.5.4 (a) The fields are now

:.r:>d
-d <:.r: < d
:.r:< -d

(1)

where we have allowed for both symmetric and antisymmetric solutions. Cointi­
nuity of h. has been asured on both boundaries. Further,

Since
A 1 dha
e =---

" iWE d:.r:

(2)

(3)

(4)
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_!!a.Ae-a,.(.-d)
1 E

2 = -- _!..A a1n 1l:.. or !..coa1l:•• (5)" iw E; coa1l:,.d E; aln1l:,.d
{ ~Aea,.(.+d) or _ !!a.Aea,.(.+d) 

E 

Continuity of 2" at z = ±d gives 

(6a) 

for even modes, and 

(6b) 

for odd modes. Further, 

(7) 

Thus 
(8) 

and 

(9) 

(b) The cutoff frequencies are determined by k.d = m~ and a. =o. From (9) 

or 



SOLUTIONS TO CHAPTER 14


14.1	 DISTRIBUTED PARAMETER EQUIVALENTS AND 
MODELS 

14.1.1	 The fields are approximated as uniform in each of the dielectric regions. The 
integral of E between the electrodes must equal the applied voltage and D is con­
tinuous at the interface. Thus, 

(1) 

and it follows that 
V

Ea =-.,.------,-------:---:-:­
[a + b(€a/€b)] 

(2) 

so that the charge per unit length on the upper electrodes is 

(3) 

where C is the desired capacitance per unit length. Because the permeability of the 
region is uniform, H = I/w between the electrodes. Thus, 

>. = (a + b)J.LoH = LI; L == J.Lo(a + b)/w	 (4) 

where L is the inductance per unit length. Note that LC t J.L€ (which permittivity) 
unless €a = €b· 

14.1.2	 The currents at the node must sum to zero, with that through the inductor 
related to the voltage by V = Ldiconductor/dt 

L a 
D.z at [I(z) - I(z + D.z)] = V	 (1) 

and C times the rate of change of the voltage drop across the capacitor must be 
equal to the current through the capacitor. 

C a 
D.z at [V(z) - V(z + D.z)] = I	 (2) 

In the limit where D.z - 0, these become the given backward-wave transmission 
line equations. 

14.2	 TRANSVERSE ELECTROMAGNETIC WAVES 

1 
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14.2.1 (a) From Ampere's integral law, (1.4.10), 

H", = 1/21ff'	 (1) 

and the vector potential follows by integration 

H", = _-!:.. aa
A

• => A.(r) - A.(a) = -IJ201'n(r/a) (2)
IJo r	 1t' 

and evaluating the integration coefficient by using the boundary condition on 
A. on the outer conductor, where r = a. The electric field follows from Gauss' 
integral law,	 (1.3.13), 

Er = ).,f21t'Er (3) 

and the potential follows by integrating. 

Er = - alb => lb(r) :- lb(a) = ~'n(~) (4)
ar	 21t'E r 

Using the boundary condition at r = a then gives the potential. 

(b)	 The inductance per unit length follows from evaluation of (2) at the inner 
boundary. 

L == ! = A.(b) - A.(a) = IJo In(a/b) (5) 
1 1 21t' 

Similarly, the capacitance per unit length follows from evaluating (5) at the 
inner boundary. 

0==	 A, = 21t'E (6)
V In(a/b) 

14.2.2	 The capacitance per unit length is as given in the solution to Prob. 4.7.5. The 
inductance per unit length follows by using (8.6.14), L = 1/0c2 • 

14.3 TRANSIENTS ON INFINITE TRANSMISSION LINES 

14.3.1 (a) From the values of Land 0 given in Prob. 14.2.1, (14.3.12) gives 

Zo= ~ln(a/b)/21t' 

(b)	 From IJ = IJo = 41t' X 10-7 and E = 2.5Eo = (2.5)(8.8.5 X 10-12), Zo = 
(37.9)ln(a/b). Because the only effect of geometry is through the ratio alb 
and that is logarithmic, the range of characteristic impedances encoutered in 
practice for coaxial cables is relatively small, typically between 50 and 100 
ohms. For example, for the four ratios of alb, Zo = 26,87,175 and 262 Ohms, 
respectively. To make Zo = 1000 Ohms would require that alb = 2.9 x lOll! 



Solutions to Chapter 14 14-3

14.8.2 The characteristic impedance is given by (14.3.13). Presuming that we will
find that 1/R ::> 1, the expression is approximated by

Zo = ..;;[iln(21/R)/fr

and solved for 1/R.

l/R = iexp[frZo/..;;[iJ = exp[fr(300)/377J

Evaluation then gives 1/R = 6.1.

14.8.8 The solution is analogous to that of Example 14.3.2 and shown in the figure.

v

I

14.3.4

Figure 814.8.8

From (14.3.18) and (14.3.19), it follows that

V::I: = Vo exp(- z2 /2a2
) /2

Then, from (9) and (10)

1
V = iVo{exp[-(z - ct)2/2a2

J + exp[-(z + ct)2/2a2]}
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14.3.5	 In general, the voltage and current can be represented by (14.3.9) and (14.3.10). 
From these it follows that 

14.3.6	 By taking the ao/at and ao/az of the second equation in Prob. 14.1.2 and 
substituting it into the first, we obtain the partial differential equation that plays 
the role played by the wave equation for the conventional transmission line 

(1) 

Taking the required derivatives on the left amounts to combining (14.3.6). Thus, 
substitution of (14.3.3) into (I), gives 

By contrast with the wave-equation, this expression is not identically satisfied. 
Waves do not propagate on this line without dispersion. 

14.4 TRANSIENTS ON BOUNDED TRANSMISSION LINES 

14.4.1 When t = 0, the initial conditions on the line are 

I = 0 for 0 < z < I 

From (14.4.4) and (14.4.5), it follows that for those characteristics originating on 
the t = 0 axis of the figure 

For those lines originating at z = I, it follows from (14.4.8) with RL = oo(rL = 1) 
that 

V_ =V+ 

Similarly, for those lines originating at z = 0, it follows from (14.4.10) with r g = 0 
and Vg = 0 that 

V+ =0 

Combining these invarlents in accordance with (14.1.1) and (14.1.2) at each location 
gives the (z, t) dependence of V and I shown in the figure. 
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:II

Vj ~ V.

1, = 0

/

V+ =0

"

V
I

14.4.2

J = -V"/2Z,,

Figure 814.4.1

When t = 0, the initial conditions on the line are

1 == V./2Z.

!II

V. == V./2 ..

V=Oj

.I == v./z.

1= Vo/Zo for 0 < z < l

Figure 814.4.2

From (14.4.4) and (14.4.5), it follows that for those characteristics originating on
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the t = 0 axis of the figure

V+ =Vo/2; V_ = -Vo/2

For those lines originating at z = " it follows from (14.4.8) with RL = 0 (rL = -1)
that

V_ = -V+

Similarly, for those lines originating at z = 0, it follows from (14.4.10) that

V+ =0

Combining these invarients in accordance with (14.4.1) and (14.4.2) at each location
gives the (z, t) dependence of V and I shown in the figure.

14.4.S H the voltage and current on the line are initially zero, then it follows from
(14.4.5) that V_ = 0 on those characteristic lines z + ct = constant that originate
on the t = 0 axis. Because RL = Zo, it follows from (14.4.8) that V_ = 0 for all of
the other lines z + ct = constant, which originate at z = ,. Thus, at z = 0, (14.4.1)
and (14.4.2) become

V =V+; I=V+/Zo

and the ratio of these is the terminal relation V/ 1= Zo, the relation for a resistance
equal in value to the characteristic impedance. Implicit to this equivalence is the
condition that the initial voltage and current on the line be zero.

14.4.4

• t

21lclie

Figure 814.4.4

~-,....--~---....,.--'''---------.. t

z.



Solutions to Chapter 14 14-7

The solution is constructed in the z - t plane as shown by the figure. Because
the upper transmission line is both terminated in its characteristic impedance and
free of initial conditions, it is equivalent to a resistance Ra connected to the ter­
minals of the lower line (see Prob. 14.4.3). The values of V+ and V_ follow from
(14.4.4) and (14.4.5) for the characteristic lines originating when t = 0 and from
(14.4.8) and (14.4.10) for those respectively originating at z = I and z = o.

14.4.5 When t < 0, a steady current flows around the loop and the initial voltage
and current distribution are uniform over the length of the two line-segments.

v., - RaVo • L' _ Vo

'-Ra+Rb' '-Ra+Rb

In the upper segment, shown in the figure, it follows from (14.4.5) that V_ = O.
Thus, for these particular initial conditions, the upper segment is equivalent to a
termination on the lower segment equal to Za = Ra. In the lower segment, V+ and
V_ originating on the z axis follow from the initial conditions and (14.4.4) and
(14.4.5) as being the values given on the z - t diagram. The conditions relating the
incident to the, reflected waves, given respectively by (14.4.8) and (14.4.10), are also
summarised in the diagram. Use of (14.4.1) to find V(O, t) then gives the function
of time shown at the bottom of the figure.

.. t

v.. =0

1'_ =0

/

+ ­
",

\' =!:! (R., - Ro).12 (P.... Ro)

z.
\' =!:! 1R., - Ro)

- 2 (R.,.,. Ro)

1'.1 1",(t)__.!...---I- --:' ':"""'" .~ t

I

d
1'(0,1) :

1~ ~-.L~____ I____ 1 t=J

z.

I'. fR., - R.)
TIR.,.,. R,}

l/e 21fe
\'.IR. -R.}'
T (R., - R,l'

Figure 81-&.4.5

14.4.6 From (14.4.4) and (14.4.5), it follows from the initial conditions that V+ and
V_ are zero on lines originating on the t = 0 axis. The value of V+ on lines coming
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or

from the z = 0 axis is determined by requiring that the currents at the input
terminal sum to zero.

i g (l/Zo - 1/Rg )

V+ = (1/Rg + l/Zo) + V_ (l/Zo + 1/Rg )

It follows that for 0 < t < T, V+ = l oRu/2 while for T < t, V+ = o. At z = I,
(14.4.8) shows that V+ = -V_. Thus, the solution is as summarized in the figure.

v;=-v+=o

z~ f::::::::t:=lt:=====::::;::=========:::P
•
i

g V(o. t)t IoRg/2

-q-J...,----2l-/e-ci:Jr--
2l

-/
e
-+-

T
--... t

I~/2 l/e

Fleur. 814.4.8

14..4..7 (a) By replacing V+/Zo -+ 1+,V_/Zo -+ -L, the general solutions given by
(14.4.1) and (14.4.2) are written in terms of currents rather than voltages.

1
V=Y

o
(I+-L) (1)

where Yo == l/Zo. When t = 0, the initial conditions are zero, so on char­
acteristic lines originating on the t = 0 axis, 1+ and L are zero. At z = "
it follows from (lb) that 1+ = L. At z = 0, summation of currents at the
terminal gives

i g = (Gg jYo)(l+ - L) + (1+ + L)

which, solved for the reflected wave in terms of the incident wave gives

(2)

(3)



Solutions to Chapter 14

where

14-9

(4)

Feom these relations, the wave components 1+ and L are constructed as
summarized in the figure. The voltage at the terminals of the line is

(5)

+

. 4. N=

iDL
t

I Q(l+fQI :t,(ItIqtIql

2 3

Figure 814.4.7'

It follows that during this same interval, the terminal current is

(
r N

-
1

)
1(0, t) =10 1 - (1 + ;"o/Og) (6)

(b) In terms of the terminal current I, the circuit equation for the line in the limit
where it behaves as an inductor is

i g = lLOg ~~ + I

Solution of this expression with i g = 10 and 1(0) = 0 is

1(0, t) =10 (1 - e-t/T ); l' == lLOg

(7)

(8)
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(c) In the limit where Gg/Yo is very large

(9)

Thus,

I 2Nl
2(N-l)- <t<-

c c
(10)

Following the same arguments as given by (14.4.28)-(14.4.31), gives

I I
2(N - 1)- < t < 2N-

c c
(11)

which in the limit here, (14.4.31) holds the same as (8) where (YofGg)(cfl) =
.JC/L/h/LCGg = l/lLGg • Thus, the current reponse (which has the same
stair-step dependence on time as for the analogous example represented by
Fig. 14.4.8) becomes the exponential response of the circuit in the limit where
the inductor takes a long time to "charge" compared to the transit-time of an
electromagnetic wave.

14.4.8
::

lie

-2J__f_v_o---1-7 _
/

1 V (0, ') (10) = V. = V.12 ~.v.
oVo/21 -------hl:-

2lleJ
Vo = (1 - ~e-{I-l/c}/r)

z~

+ V g -

Figure 914.4.8

The initial conditions on the voltage and current are zero and it follows from
(14.4.4) and (14.4.5) that V+ and V_ on characteristics originating on the t = 0
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axis are zero. It follows from (10) that on the lines originating on the z ~ 0 axis, 
V+ = Vo/2. Then, for 0 < t < llc, the incident V+ at z = I is zero and hence from 
the differential equation representing the load resistor and capacitor, it follows that 
V_ = 0 during this time as well. For llc < t, V+ = Vo/2 at z = I. In view of the 
steady state established while t < 0, the initial capacitor voltage is zero. Thus, the 
initial value of V_(I,O) is zero and the reflected wave is predicted by 

OL(RL + Zo) ~; + V_ = ~o U-l(t - llc) 

The appropriate solution is 

V_ (I, t) = iVo(l - e-lt-I/c)/")j 'f' == OL(RL + Zo) 

This establishes the wave incident at z = O. The solution is summarized in the 
figure. 

14.5	 TRANSMISSION LINES IN THE SINUSOIDAL STEADY 
STATE 

14.5.1 From (14.5.20), for the load capacitor where ZL = IfjWOL, 

Y(,81 = -11"/2) Yo Yo 
Yo = YL = jwOL 

Thus, the impedance is inductive.

For the load inductor where ZL = jwLL, (14.5.20) gives


Z(,81 = -11"/2) Zo 
Zo = jwLL 

and the impedance is capacitive. 

14.5.2	 For the open circuit, ZL = 00 and from (14.5.13), r L = 1. The admittance at 
any other location is given by (14.5.10). 

Y(-l) 1- rLe-2#1I 1- e-2i~1 

---y;:-- = 1 +r Le-2:i~1 = 1+ e-2:i~1 

where characteristic admittance Yo = 11Zoo This expression reduces to 

Y(-l) 
-- =jtan,81

Yo 

which is the same as the impedance for the shorted line, (14.5.17). Thus, wi~h 
the vertical axis the admittance normalized to the characteristic admittance, the 
frequency or length dependence is as shown by Fig. 14.5.2. 
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14.5.3 The matched line requires that 9'_ = 0. Thus, from (14.5.5) and (14.5.6),

v=v+ exp(-j,8Z)j

z

Yo = ~ SiIlIP(~ +1)1

I, = fff. silll.B(~ + 1)1

Figure 814.1.1

At z = -I, the circuitis described by

Vg = i(-l)lig +V(-l)

where, in complex notation, Vg= Re 9'g exp(.iwt) , 9'g == -jVo' Thus, for Rg= Zo,

and the given sinusoidal steady state solutions follow.

14.5.4 Initially, both the current and voltage are sero. With the solution written as
the sum of the sinusoidal steady state solution found in Prob. 14.5.3 and a transient
solution,

v =V.(z, t) +Vt(z, t)j I = I. (z, t) + It(z, t)

the initial conditions on the transient part are therefore,

l't(z,O) = -V.(z,O) = ~o sinl,8(z + I)l
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It{z,O) = -I. (z, 0) = VZo sin[,B(z + l)] 
2 ° 

The boundary conditions for 0 < t and with the given driving source are satisfied 
by V•. Thus, Yt must satisfy the boundary conditions that result if Vg = O. In 
terms of a transient solution written as 14.3.9 and 14.3.10, these are that V_ = 0 
at z = 0 and [from (14.5.10) with Vg = 0 and Rg = Zol that V+ = 0 at z = -l. 
Thus, the initial and boundary conditions for the transient part of the solution are 
as summarized in the figure. With the regions in the x - t plane denoted as shown 
in the figure, the voltage and current are therefore, 

V = V. + Vti I = I. + It 

where V. and I. are as given in Prob. 14.5.3 and 

with (from 14.3.18-19) 

V+ = ~o sin[,B(z + l)]; 

in regions I and III, and 

in regions II and IV. 

14.6	 REFLECTION COEFFICIENT REPRESENTATION OF 
TRANSMISSION LINES 

14.6.1	 The Smith chart solution is like the case of the Quarter-Wave Section exem­
plified using Fig. 14.6.3. The load is at r = 2, x = 2 on the chart. The impedance a 
quarater-wave toward the generator amounts to a constant radius clockwise rota­
tion of 1800 to the point where r = 0.25 and x = -jO.25. Evaluation of (14.6.20) 
checks this result, because it shows that 

. I 1 1 2 - j2 
r+ JX = . 

%=-1	 rL + JXL 2+ j2 8 

14.6.2	 From (14.6.3), f = 0.538 + jO.308 and IfI = 0.620. It follows from (14.6.10) 
that the VSWR is 4.26. These values also follow from drawing a circle through 
r + jx = 2 + j2, using the radius of the circle to obtain IfI and the construction of 
Fig. 14.6.4a to evaluate (14.6.10). 

http:14.3.10
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14.6.3	 The angular distance on the Smith charge from the point y = 2 + iO to the 
circle where y has a real part of 1 is I = 0.0975~. To cancel the reactance, where 
y = 1 + iO.7 at this point, the distance from the shorted end of the stub to the 
point where it is attached to the line must be I. = 0.347~. 

14.6.4	 Adjustment of the length of the first stub makes it possible to be anywhere 
on the circle 9 = 2 of the admittance chart at the terminals of the parallel stub and 
load. IT this admittance can be transferred onto the circle 9 = 1 by moving a distance 
I toward the generator (clockwise), the second stub can be used to match the line 
by compensating for the reactive part of the impedance. Thus, determination of 
the stub lengths amounts to finding a pair of points on these circles that are at the 
same radius and separated by the angle 0.042~. This then gives both the combined 
stub (1) and load impedance (for the case given, y = 2 + i1.3) and combined stub 
(2) and line impedance at z = -I (for the case given, y = 1 + i1.16). To create the 
needed susceptance at the load, 11 = 0.04~. To cancel the resulting susceptance at 
the second stub, h = 0.38~. 

14.6.5	 The impedance at the left end of the quarter wave section is 0.5. Thus, normal­
ized to the impedance of the line to the left, the impedance there is Z/Z: = 0.25. 
It follows from the Smith chart and (14.6.10) that the VSWR = 4.0. 

14.7	 DISTRIBUTED PARAMETER EQUIVALENTS AND 
MODELS WITH DISSIPATION 

14.1.1	 The currents must sum to zero at the node. With those through the conduc­
tance and capacitance on the right, 

av
I(z) -	 I(z + ~z) = G~zV + C~z­at 

The voltage drop around a loop comprised of the terminals and the series resistance 
and inductance must sum of zero. With the voltage drops across the resistor and 
inductor on the right, 

aI
V(z) -	 V(z + ~z) = R~zI + L~z­at 

In the limit where ~z - 0, these expressions become the transmission line equa­
tions, (14.7.1) and (14.7.2). 

14.1.2	 (a) IT the voltage is given by (14.7.12), as a special case of (14.7.9), then it follows 
that I(z,t) is the special case of (14.7.10) 

~ (e- ifJ- _ eifJ-) . 
1 - R g :Jwt 

- e Zo (ej{J1 + e-i{Jl) e 
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(b)	 The desired impedance is the ratio of the voltage, (14.7.12), to this cUlTent, 
evaluated at z = -I. 

(eiJJI + e-iJJ1 ) 
Z = Zo (eiJJI _ e-iJJ1 ) 

(c)	 In the long-wave limit, 1,811 <: 1, exp(i,81) -+ 1 + i,81 and this expression 
becomes 

Z = Zo = (R + iwL) = 1 
i,81 -,821 [G + iwCl1 

where (14.7.8) and (14.7.11) have been used to write the latter equality. (Note 
that (14.7.8) is best left in the form suggested by (14.7.7) to obtain this 
result.) The circuit having this impedance is a conductance lG shunted by a 
capacitance lC. 

14.1.3	 The short requires that V(O, t) = °gives V+ = V_. With the magnitude ad­
justed to match the condition that V(-l, t) = Vg(t), (14.7.9) and (14.7.10) become 

Thus, the impedance at z = -I is 

Z = Zo(eiJJI - e-iJJI)j(eiJJI + e-iJJ1 ) 

In the limit where 1,811 <: 1, it follows from this expression and (14.7.8) and (14.7.11) 
that because exp i,81 -+ 1 + i,81 

Z -+ Zoi,81 =	 I(R + iwL) 

which is the impedance of a resistance lR in series with an inductor lL. 

14.1.4	 (a) The theorem is obtained by adding the negative of V times (1) to the negative 
of 1 times (2). 

(b)	 The identity follows from 

(c)	 Each of the quadratic terms in the power theorem take the form of (1), a 
time independent part and a part that varies sinusoidally at twice the driving 
frequency. The periodic part time-averages to zero in the power flux term on 
the left and in the dissipation terms (the last two terms) on the right. The only 
contribution to the energy storage term is due to the second harmonic, and 
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that time-averages to zero. Thus, on the time-average there is no contribution 
from the energy storage terms. 

The integral theorem, (d) follows from the integration of (c) over the length 
of the system. Integration of the derivative on the left results in the integrand 
evaluated at the end points. Because the current is zero where z = 0, the only 
contribution is the time-average input power on the left in (d). 

(d)	 The left hand side is evaluated using (14.7.12) and (14.7.6). First, using 
(14.7.11), (14.7.6) becomes 

1= -yotTg tan f3z	 (2) 

Thus, 

(3) 

That the right hand side must give the same thing follows from using (14.7.3) 
and (14.7.4) to write 

GtT* = jwctT* _ di* (4)
dz 

Rl = - dt' - jwLl	 (5)
dz 

Thus, 

dtT

/0.!:Re [1* RI + tTtT*G]dz = /0 .!:Re [_l * _ jwLl1* 
-1 2 -12 dz 

~ ~ ~ di*]+ jwCVV* - V ---;J; dz 

0 1 dt'* dl* 
= - -Re [1- + tT-]dz (6) 

/ _12 dz dz 

= -.!:Re/O d(iV*) dz 
2 _I dz 

= iRe ItT *IZ=-I 
which is the same as (3). 

14.8 UNIFORM AND TEM WAVES IN OHMIC CONDUCTORS 
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14.8.1 In Ampere's law, represented by (12.1.4), J u = uE. Hence, (12.1.6) becomes 

oil) 2 oA 02A
V(V . A + Jjuil) + JjE-) - V A = -JjU- - JjE- (1)

ot	 ot ot2 

Hence, the gauge condition, (14.8.3), becomes 

oA. oil)
V . A =-- = -Jjuil) - JjE-	 (2)

OZ ot 

Evaluation of this expression on the conductor surface with (14.8.9) and (14.8.11) 
gives 

01 oV
L- =	 -JjuV - LC- (3)

OZ	 ot 

From (8.6.14) and (7.6.4) 

(4) 

Thus, 

01 = -GV _coV (5)
OZ ot 

This and (14.8.12) are the desired transmission line equations including the losses 
represented by the shunt conductance G. Note that, provided the conductors are 
"perfect", the TEM wave represented by these equations is exact and not quasi­
one-dimensional. 

14.8.2	 The transverse dependence of the electric and magnetic fields are respectively 
the same as for the two-dimensional EQS capacitor-resistor and MQS inductor. 
The axial dependence of the fields is as given by (14.8.10) and (14.8.11). Thus, 
with (Prob. 14.2.1) 

u
C = 21rE/ln(a/b); L = Jjo In(a/b); G = -C = 21rU /In(a/b)21r E 

and hence {j and Zo given by (14.7.8) and (14.7.11) with R = 0, the desired fields 
are 

E - R ~ vg (e-;fJ. +
e
;fJ.) ;wt. 

- e rln(a/b)(e;fJ1 + e-;fJ1) e lr 

~ (-;fJ lIS ;fJ lIS )H R vg e - e ;wt. 
= e 21rrZ (e;fJ1 + e-;fJ1) e l<ll o 
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14.8.3 The transverse dependence of the potential follows from (4.6.18)-(4.6.19),
(4.6.25) and (4.6.27). Thus, with the axial dependence given by (14.8.10),

E = - Bq>i
x

_ Bq>i
Bx By 'Y

where

[ Vl~-:t)2+y,]
Vg In Vlv'P-R'+:t)'+Y' (e-i~z + ei~z) 'wt

q> - -Re - e3

- 2 In[:k+V(l/R)2_1] (ei~l+ei~l)

Using (14.2.2) Az follows from this potential.

where

II V: J(v'l2 - R2 - x)2 + y2 (e-i~z _ ei~z) .
A - -R !:!!.......J!..l 3wt

z - e n ( '~l '~l) e
21rZo y(v'l2 _ R2 + x)2 + y2 e3 + e 3

In these expressions, f3 and Zo are evaluated from (14.7.8) and (14.7.11) using the
values of C and L given by (4.6.27) and (4.6.12) with R = 0 and G = (u/€)C.

14.8.4 (a) The integral of E around the given contour is equal to the negative rate of
change of the magnetic flux linked. Thus,

and in the limit ~z -+ 0,

BEa BEb BH
a-- + b-- = -J1.o(a + b)--Y

Bz Bz Bt

Because €aEa = €bEb, this expression becomes

€a BEa BH
(a + -b)-B = -J1.o(a+ b)-BY

4 z t

(2)

(3)

If Ea and H y were to be respectively written in terms of V and I, this would
be the transmission line equation representing the law of induction (see Prob.
14.1.1).

(b) A similar derivation using the contour closing at the interface gives

(4)
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and in the limit ti.z -+ 0, 

aH" aEa 
E. = -aJ.'0ljt - a az (5) 

With the use of (3), this expression becomes 

HE. = - [aJ.'o(Ea - l)b/(a + E
a b)] aa " (6) 

Eb Eb t 

Finally, for a wave having a z dependence exp(-j,8z), the desired ratio follows 
from (6) and (3). 

IE.I = b(,8a) 11 - Ea I (7)lEal a+b Eb 

Thus, the approximation is good provided the wavelength is large compared 
to a and b and is exact in the limit where the dielectric is uniform. 

14.9 QUASI-ONE-DIMENSIONAL MODELS 

14.9.1 From (14.9.11) 
2

R=-­
1rWU 

while, from (4.7.2) and (8.6.12) respectively 

c- 211"E • L = e'n[('/a) + Y(I/a)2 - 1]
- In[(l/a) + y(l/a) -II' 11" 

To make the skin depth small compared to the wire radius 

6 = V2 :> R => w <: 2/a2J.W 
WJ.&U 

For the frequency to be high enough that the inductive reactance dominates 
2 

wL = wJ.'ua In [(l/a) + Y(I/a)2 _ 1]
R 2 

Thus, the frequency range over which the inductive reactance dominates but the 
constant resistance model is still appropriate is 

2 2 
-==-:-:-::-:--:---;:;:;;::;::::;::===: < w < -­
J.'uR2Inl(l/a) + y(l/a)2 - 11 a2J.'u 

For this range to exist, the conductor spacing must be large enough compared to 
their radii that 

1 <: In[( i) + Y(I/a)2 - 1]
a 

Because of the logarithmic dependence, the quantity on the right is not likely to be 
very large. 
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14.9.2 From (14.9.11), 

1 1 1 1 1 
R = 0'27l'a~ + 0'7l'b2 = 'frO' [a~ + b2 ] 

while, from Prob. 14.2.1 

L = ~;ln(a/b)j C= 2'frE 

In(a/b) 

For the skin depth to be large compared to the transverse dimensions of the con­
ductors 

0== V2 ::> ~ or b => W -< 2/b21J0' and 2/~21J0' 
WIJO' 

This puts an upper limit on the frequency for which the model is valid. To be 
useful, the model should be valid at sufficiently high frequencies that the inductive 
reactance can dominate the resistance. Thus, it should extend to 

wL = WlJoO' In(a/b)/[..!.... + -!.] > 1 
R	 2 a~ b2 

For the frequency range to include this value but not exceed the skin depth limit, 

2[~+;,\] 2 d 2 
1J00In(a/b) -< W -< b21J0' an ~21J0' 

which is possible only if 

1 In(a/b) 
-< [a~	 + ;,\](b2and~2) 

Because of the logarithms dependence of L, this is not a very large range. 

14.9.3	 Comparison of (14.9.18) and (10.6.1) shows the mathematical analogy between 
the charge diffusion line and one-dimensional magnetic diffusion. The analogous 
electric and magnetic variables and parameters are 

H;s +-+ V, Kp +-+ Vp , IJO' +-+ RC, b +-+ I, :z: +-+ % 

Because the boundary condition on V at % =0 is the same as that on H;s at :z: =0, 
the solution is found by following the steps of Example 10.6.1. From 10.6.21, it 
follows that the desired distribution of V is 

% co (-l)n. n1r% 
V = -v. - - '" 2V. --Sin (_)e- t /.,.....P, LJ P n7l' I ' 

n=l 

This transient response is represented by Fig. 10.6.3a where H;s/K p - V /Vp and 
z/b - %/1. 

14.9.4 See solution to Prob. 10.6.2 using analogy described in solution to Prob. 14.9.3. 

http:10.6.21
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15.1 SOURCE AND MATERIAL CONFIGURATIONS

15.1.1

TABLE PI5.l.1. Modal Field Representation

Cartesian

Laplace's Eq.

Poisson's Eq.

Polar

Laplace's Eq.

Initial Value

Helmholtz Eq.

Physical Constraints

EQS Potential

EQS 3-Dimensional

Polarization

Conduction
Charge Relax.
MQS, Equi-A

Magnetization
MQSE
MQS Eddy Current

EQS Potential
MQS Equa-A

EQS Potential

Conduction
MQS, Constrained Current
MQS, Equi-A
MQSE

Diffusion Eq.

TM Modes

3-Dimensional

TE Modes

Example/Prob.

Sec. 5.5, Demo. 5.5.1
Probs. 5.5.1-7
Examp. 5.10.1
Probs. 5.10.1,3
Examp. 6.6.3,6.7.1
Prob. 6.3.10,6.6.9
Prob. 6.7.1
Examp. 7.4.1
Prob. 7.9.12
Examp. 8.6.3
Demo. 8.6.2
Prob. 8.6.10
Prob.9.6.9
Prob. 10.1.2
Prob. 10.1.5

Probs. 5.6.7-9, 13
Prob. 8.6.7

Examp. 5.8.2-3
Probs. 5.8.3-9
Prob. 7.4.4,7.5.6
Prob. 8.5.2
Prob. 8.6.5
Examp. 10.12
Prob. 10.1.3

Examp. 10.6
Prob. 10.6.1-2

Examp. 13.3.1
Prob. 13.3.1-6
Probs. 13.4.3-4
Demo. 13.3.1
Examp. 13.3.2
Demo. 13.3.2

1
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15.2	 MACROSCOPIC MEDIA 

~ 
15.2.1	 In each case, the excitation is an imposed uniform field at infinity. For (a), 

the field is tangential to the spherical surface everywhere except at the singular 
points at the poles. Thus, i) the system could be EQS with the regions insulating 
dielectrics and fa :> fb, ii) the system could be a stationary conductor with the 
field lines either J or E and O'a :> O'b, iii) it could be MQS with the lines B or H, 
the materials insulating and /Sa :> /Sb and iv) it could be a perfectly conducting 
sphere in an insulating media with the lines either B or H changing in time rapidly 
enough to induce the currents in the sphere required to exclude the field. 

For (b), the field is perpendicular to the surface. Thus, i) it could be EQS 
and a perfect conductor in an insulating medium with the lines representing E, ii) 
it could be EQS E with the materials perfect insulators (the field changing rapidly 
compared to the charge relaxation time in either material) with fb :> fa, iii) it 
could be J or E in stationary conduction with 0'1> :> O'a, iv) and it could be MQS 
H or B with the materials insulating and /Sb:> /Sa• 

.j 
15.2.2	 The excitation is inside the sphere. In (a), the field in that region is perpendic­

ular to the interface. Thus, i) the lines could be EQS E with the inside an insulator 
and the outside a perfect conductor, ii) the system could again be EQS and the 
lines could be E with both materials perfect insulators and fa :> fb, iii) it could be 
stationary conduction with the lines either E or J and a dipole current source with 
O'a :> O'b and iv) the lines could be MQS H or B with a magnetic dipole and the 
regions magnetizable insulators with /Sa :> /Sb. 

In (b), the interior field lines are tangential to the surface. Thus, i) the dipole 
could be electric and the materials perfect insula.tors ha.ving fb :> fa, ii) the dipole 
could be a current source for stationary conduction with the lines E or J and 
O'b :> O'a, iii) the system could be MQS with the dipole magnetic and the materials 
magnetizable insulators having /Sb :> /Sa, and iv) the system could be MQS with 
a magnetic dipole varying rapidly enough with time to make the outer material a 
perfect conductor while the interior one remains a perfect insulator. 

15.3	 CHARACTERIC TIMES, PHYSICAL PROCESSES, AND 
APPROXIMATIONS 

15.3.1 Because it does not involve O',W is normalized to rem. Thus, the horizontal 
axis is


log(wrem) = log(wlyPE)


Then 
Wf f	 0' 

wre = - = wrem --= 1 => wrem = --==-­
0' O'l.,jiif (Vi7/J/l) 

Thus, with the characteristic conductivity defined as 

0'* == v;[;/l 
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the critical line indicating charge relaxation, W'I"e = 1, is written in terms of the 
independent variables of normalized frequency and conductivity as 

logw'I"em = log (u
U
.. ) 

Similarly, 

'l"em l{iii ( U )-1	 ( U )
W'I"m = 1 => W'I"em = - = 1 = - => logw'I"em = -log ­'l"m P.U 2 u..	 u .. 

log("./".·) 

" " " MQS
"""" "" -1 

" " -- QSC ---+----:~------
/ 

/ 
/ 

/ 
/ 

/

/ EQS


/ / 

Figure S15.3.1 

Thus, the plot is as shown in Fig. S15.3.1. H U > u .. , raising the frequency results 
in a transition from stationary conduction to the MQS regime while if u < u.. , the 
transition is to the EQS regime. 

15.3.2	 (a) In the limit of zero frequency, the electric and magnetic fields are as summa­
rized by (7.5.7) and (7.5.11) and by (11.3.10) and (11.2.12). With (a) and (b) 
respectively designating the nonconducting annulus and the rod, 

fl.
Eb = -1.	 (1)

L 

EG _ fI [ Z • In(r/a).] (2)- - In (a/b) rL II' + L I. 

D 
b uflr.= --141	 (3)

L2 
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U O = ~b21<l>
L 2r

The magnetic field is induced by the uniform current density

(4)

O<r<b (5)

which is returned as the surface current density K. = -IO'ub2 /2La] in the
perfectly conducting wall. There is no volume charge density in the interior of
the rod. On its surface and on the inner surface of the outer wall, the surface
charge densities are

( )
fotl Z

0'. r = a = In(a/b) aL i ( )
fotl 11

0'. r = b = - In(a/b) Lb (6)

These fields and sources are sketched in Fig. 815.3.2a.
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Fleur. SlI.S.2_,b

(b) With all dimensions on the same order, the argument is as given in this section.
Anyone of the dimensions, a, b or L is the typical dimension. The ratio of
that dimension to either of the other two is presumed to be perhaps 2 or 3.
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The permittivity and permeability can similarly be taken as that of either 
region with the respective ratios of these quantities again presumed to be less 
than an order of magnitude. Thus, the system is first EQS as the frequency 
is raised if the characteristic dimension, a, b or L, is small compared to 1*, 
where the latter is based on the conductivity of the rod and the permittivity 
and permeability of either region. In the case where the charge relaxation 
time is the longest of the characteristic times, the EQS case, the magnetic 
induction is not important as the frequency is raised to the point where the 
sources begin to alter their distribution. In this case, the dominant source 
is the charge density, specifically the surface charge density. With each half­
cycle, the surface charge density on the surface of the rod undergoes a sign 
reversal. To change this charge, the current density of (5) must be revised so 
that there is a component normal to the interface. In the "distributed circuit" 
picture of Fig. PI5.3.2a, this is the current required to charge the capacitors. 
(In the next problem, the energy stored in the capacitors is used as a means 
of establishing the equivalent capacitance needed to account for the charging 
of the surface.) 

In the case where the characteristic length is large compared to 1*, the system 
is MQS. The displacement current is negligible. This is equivalent to saying 
that the accumulation of charge has essentially no effect on the current density, 
which is itself solenoidal Thus, the conductivity of the rod is large enough that 
the current that enters at one end is negligibly diverted by supplying surface 
charge, essentially all reaching the far end. However, because the magnetic 
induction is important, these currents try to link as little magnetic flux as 
possible. As suggested by the distributed circuit picture of Fig. PI5.3.2b, 
the current distribution tends to crowd to the outer surface of the rod. The 
inductive reactance for a current circulating through the interior of the rod is 
less than that of a current nearer the surface. Thus, as the frequency is raised, 
the dominant field source, the current density, displays skin effect. 

In Cartesian rather than cylindrical geometry, Example 10.7.1 illustrates the 
distribution of magnetic field and current density. The radial direction in this 
problem plays the role ofthe z direction in the example. In both cases, the field 
and current density are independent of the axial direction (y in the example 
and z in this problem). One dimensional magnetic diffusion was pictured in 
Sec. 14.8 in terms of an L- G transmission line (negligible capacitance). Note 
that this is equivalent to the R - L distributed circuit used to schematically 
portray the MQS behavior in Fig. PI5.3.2b. The transmission line would be 
an exact representation if the rod were replaced by a "slab" conductor and 
the return conductors were planar rather than circular cylindrical. Such a 
configuration is shown in Fig. SI5.3.2b. 

Demonsatration 10.7.1 makes use of a transformer rather than a current source 
to drive the currents through the conductor. In the limit where the probed 
conductor is very long compared to its depth, it gives rise to the same current 
distribution as obtained in the slab conductor of Fig. SI5.3.2b. In the problem, 
the current distribution is somewhat different from that in the slab when the 
skin depth is on the order of the rod radius because of the cylindrical geometry. 

http:PI5.3.2a
http:PI5.3.2b
http:PI5.3.2b
http:SI5.3.2b
http:SI5.3.2b
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(c) The conditions are as discussed in Sec. 14.9. So that the skin depth is large
compared to the rod radius, the frequency must be low enough that the current
distribution in the center conductor is essentially uniform. The inductance
will nevertheless be self-consistently retained in the model provided that the
conditions found in Prob. 14.9.2 are satisfied.

1 <: In(a/b) (1)

(Here, the outer conductor has been effectively made to have an infinite con­
ductivity by setting li. - 00 in the solution to Prob. 14.9.2.). Once we have
decided to consider systems that are long in the axial direction, z, compared
to the transverse dimensions and taken the quasi-one-dimensional model as
representing the dynamics, it is interesting to see how the length, I, in the z
direction determines the order of the characteristic times

L
"M = -jR

I
"em = - = hlLOj

c
"s = z2 RO (2)

•

log(l/lO)

- WTM = 1

.----------==~~------...,..~ log(WTM)

WTE= 1

•

(c)

Figure S15.3.Jc

In the limit where the inductance is not important, the system is a charge diffusion
line as discussed in Sec. 14.9. Interestingly, the characteristic time associated with
this EQS limiting model depends on the square of the length. Again, by contrast
with a system having a single typical length, the interaction between the inductance
and the resistance is independent of length (magnetic relaxation rather than diffu­
sion). Thus, in constructing a length-frequency plane for sorting out the physical
possibilities, it is the time L/R that can be selected for normalizing the frequency.
Thus, in this plane the critical lines are

I I
WTM = Ij WTem = 1 => 1* == (WTM )-l j W"s = 1 => 1* = (WTM )-1/2 (3)
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and it follows (see Fig. S15.3.2c) that for the system to first be EQS as the frequency 
is raised, I> 1* == JL/C/R. 

15.4 ENERGY, POWER, AND FORCE 

15.4.1	 The electric field intensity in the three regions follows from Example 7.5.2. 
Feom (7.5.7) and (7.5.11), respectively, 

(1) 

EG = tI [z.+,n(r/a).] (2)
In(a/b) rLII' L I. 

The magnetic field intensity is summarized in Example 11.3.1. Feom (11.3.10) and 
(11.2.12), respectively, 

Uti.	 ()U b = -rio#>	 3
2L 

Uti b2
• 

U G = --141	 (4)L 2r 

The required electric energy, magnetic energy, and dissipation follow by carrying 
out the piece-wise volume integrations. 

(5) 

(6) 

and 
0 b 

Pd = 1 r uEb 
. Eb21rrdrdz	 (7) 

-L 10 

Note that this last integral is essentially one of the two carried out in (5). Evaluation 
of these expressions, using (1)-(6), gives 

(8) 

(9) 

(10) 
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Written with the voltage replaced by the total current, 

2 
. (U'lrb )
\=1) -- (11)

L 

the magnetic energy, (9), becomes 

_ ! [paL1n(a/b) PbL] .2 (12)
W m - 2 2'1r + 'irS \ 

Feom a comparison of (S), (12), and (10), respectively, to 

(13) 

it follows that the quasi-stationary parameters that model the system at frequencies 
that are low compared to either R/L or llRO, whichever is the lower, are 

L - ! [ Lln(a/b) PbL] (15) 
- 2 Pa 2'1r + S'Ir 

7rb2 
G = Ub (16)

L 

(Note that L on the right is the length L of the device, to be distinguished from 
the inductance L on the left in (15).) Written in the form of (15.2.S), the ratio of 
the total magnetic to the total electric energy is, from (9) and (S) 

W m = K(~)2. (17) 
We 1* ' 

where 
_ ( Pb) {4(alb)2 [1 2

K = In(alb) + 4pa / ln2(a/b) ilL/a) In(a/b) 

1 1 1 ]+ - [- + (b/a)2[ln(b/a) -ln2(b/a) - -I] (17)
222 

2Eb}+­
Ea 

Provided the ratio of all dimension.s and of the permittivities and permeabilities 
are on the same order, the coefficient K is "of the order of unity." 
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