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SOLUTIONS TO CHAPTER 3 

3.1	 TEMPORAL EVOLUATION OF WORLD GOVERNED 
BY LAWS OF MAXWELL, LORENTZ, AND NEWTON 

3.1.1 (a) Replace z by z - ct. Thus 

E -
-	

E·
olxe-(z-ct)' /2a'., (1) 

(b) Because	 8( )/8z = 8( )/8y = 0 and there are only single components of 
each field, Maxwell's equations reduce to 

(2) 

Note that we could pick these expressions out of the six components of the laws 
of Faraday and Ampere by first writing the left hand sides of 3.1.1-2. Thus, 
these are respectively the y and z components of these laws. In Cartesian 
coordinates, the divergence equations are automatically satisfied by any vector 
that only depends on a coordinate perpendicular to its direction. Substitution 
of (1) into (2a) and into (2b) gives 

1 
c=--	 (3)

.j#lofo 

which is the velocity of light, in agreement with (3.1.16). 

(c)	 For an observer having the location z = ct+ constant, whose position increases 
linearly with time at the rate c m/s and who therefore has the constant velocity 
c, z - ct = constant. Thus, the fields given by (1) are constant. 

3.1.2 With the given substitution in (3.1.1-4), (with J = 0 and p = 0) 

8E 1
--=--VxH	 (1)

8t f o 

8H 1
-=--VxE	 (2)
8t #lo 

0= V· #loH	 (3) 

0= -V . foE	 (4) 

Although reordered, the expressions are the same as the original relations. 
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3-2 Solutions to Chapter 3

3.1.3 Note that the direction of wave propagation is obtained by crossing E into
B. Because it would reverse the direction of this cross product, a good guess is to
reverse the sign of one or the other of the fields. In that case, the steps followed
in Prob. 3.1.1 lead to the requirement that c = -1/';~ofo' We define c as being
positive and so write the solutions with z-ct replaced by z- (-c)t = z+ct. Following
the same arguments as in part (c) of Prob. 3.1.1, this solution is therefore traveling
in the -z direction.
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3.1.4. The role played by z is now taken by :z:, as shown in Fig. S3.1.4. With the
understanding that the z dependence is now replaced by the given :z: dependence,
the magnetic and electric fields are written so that they have the same ratio as in
(1) of Prob. 3.1.1. Further, in order to preserve the vector relation between E, H
and the direction of propagation, the sign of H is reversed. Thus,

E = Eoi. cos P(:z: - ct)j

3.2 QUASISTATIC LAWS

H = -- ~EoiycosP(:z: - ct)V~o
(1)

3.2.1 (a) These fields are transverse to the coordinate, :z:, upon which they depend.
Therefore, the divergence conditions are automatically satisfied. From the
direction of the vectors, we know that the :z: and y components respectively
of the laws of Ampere and Faraday will apply.

8H" 8foEz
- 8z = at (1)

8Ez 8~oH"
8z = ---at"" (2)

The other four components of these equations are automatically satisfied be
cause 8( )/8y = 8( )/8z = O. Substitution of (a) and (b) then gives

w
P= W';~ofo == - (3)
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3-3 Solutions to Chapter 3 

in each case. 

(b)	 The appropriate identities are 

1 w	 w )cos fjz coswt = 2"[cosfj(z- pt) +cosfj(z+ pt] (4) 

sinfjzsinwt= i[cosfj(z- ~t) -cosfj(z+ ~t)] (5) 

Thus, in view of (3), the fields indeed take the form of the sum of waves 
traveling in the +z and -z directions with the speed c. 

(c)	 In view of (a), this condition can be written as 

fjl = wy'IJoEol = wllc <: 1 (6) 

Thus, the condition is equivalent to having the electromagnetic delay time 
Tem = llc short compared to the time l/w required for 1/21r of a cycle. 

(d)	 In the limit of (c), cosfjz -+ 1 and sinfjz -+ fjz and (a) and (b) become the 
given fields. 

(e)	 The electric field of (c) is irrotational and hence satisfies (3.2.1a) but not 
(3.2.1b) while the magnetic field has curl and indeed satisfies (3.2.2a) but not 
(3.2.2b). Therefore, in the limit of having the frequency low enough to satisfy 
(6), the system is EQS. 

3.2.2 (a) See part (a) of solution to Prob. 3.2.1. 

(b)	 The appropriate identities are 

sin(fjz) sin(wt) = i [ cos fj(z -	 ~t) + cos fj(z + ~t)] (1) 

cos(fjz) cos(wt) = 2"1 [ 
cosfj(z -

wpt) - cosfj(z + 
wpt)] (2) 

Thus, because wlfj = c, the fields indeed take the form of the sum of waves 
traveling in the +z and -z directions with the speed c. 

(c)	 See (c) of solution to Prob. 3.2.1. 

(d)	 In the limit where Ifjll <: I, the given fields become 

E ~ wIJoHozsinwtix (3) 

H ~ Hocoswti~	 (4) 

Thus, the magnetic field is uniform while the electric field varies linearly 
between the source and the "short" at z = 0, where it is zero. 

(e)	 The magnetic field of (4) is irrotational and hence satisfies (3.2.2b) with J = 0 
but not (3.2.2a). The electric field of (3) does have a curl and hence does not 
satisfy (3.2.1a) but does satisfy (3.2.1h). Thus, the system is magnetoqua,... 
sistatic. 



3-4 Solutions to Chapter 3 

3.3 CONDITIONS FOR FIELDS TO BE QUASISTATIC 

3.3.1	 (a) Except that it is in the z direction rather than the z direction, the quasistatic 
electric field between the plates is, as in Example 3.3.1, uniform. To satisfy 
the requirement of (a), this field is 

E = Iv(t)/d]ix	 (1) 

The surface charge density on the plates follows from Gauss' integral law 
applied to the plates, much as in (3.3.7). 

cr - {-EoEz(z = d) = -Eov/a; Z = d (2) 
• - EoEz(z = 0) = Eov/d; z = 0 

Thus, the quasistatic surface charge density on the interior surfaces of each 
plate is uniform. 

K.(z) 

17.(z) K.(z)	
y c 

(a)	 (b) 

Fisure S3.3.1 

(b)	 The integral form of charge conservation is applied to the lower and upper 
electrodes using the volume shown in Fig. S3.3.1a. Thus, using symmetry to 
argue that K z = 0 at z = 0, for the lower plate 

ocr.zw	 ZEo dv 
wIK.(z) - Kz(O)] + --ar:- = 0 ~ Kz(z) = -7 dt (3) 

and we conclude that the surface current density increases linearly from the 
center toward the edges. At any location z, it is that current required to 
change the charge on the fraction of "capacitor" at a lesser value of z. 

(c)	 The magnetic field is found using Ampere's integral law, (3.3.9), with the 
surface da = ixda having edges at z = 0 and z = z. By symmetry, Hy = 0 at 
z = 0, so 

(4) 
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Solutions to Chapter 3	 3-5 

Note that, with this field and the surface current density of (3)' Ampere's 
continuity condition, 1.4.16, is satisfied on the upper and lower plates. We 
could just as well think of the magnetic field as being induced by the surface 
current of (3) as by the displacement current of (3.3.9). 

(d)	 To determine the correction electric field, use Faraday's integral law with the 
surface and contour shown in Fig. 83.3.1b, assuming that E is independent of 
x. 

(5) 

Because of (a), it follows that the corrected field is 

2 
E ( ) = ~	 JoLo€o (z2 _ 2) d v (6)x Z d + 2d Z dt2 

(e)	 With the second term in (6) called the "correction field," it follows that for 
the given sinusoidally varying voltage, the ratio of the correction field to the 
quasistatic field at at most 

(7) 

Thus, because c = 1/VJoLo€o, the error is negligible if 

1 l - [-w] ~ 1	 (8)
2 c 

3.3.2	 (a) With the understanding that the magnetic field outside the structure is zero, 
Amper'es continuity condition, (1.4.16), requires that 

0- H y = K y	 = K top plate 

H y -0 = K y =-K bottom plate	 (1) 

where it is recognized that if the current is essentially steady, the surface 
current densities must be of equal magnitude K(t) and opposite directions in 
the top and bottom plates. These boundary conditions also require that 

H = -iyK(t)	 (2) 

at the surface current density sources at the left and right as well. Thus, 
provided K(t) is essentially steady, (2) is taken as holding everywhere between 
the plates. Note that this uniform distribution of field not only satisfies the 
boundary conditions, but also has no curl and hence satisfies the steady form 
of Ampere's law, (3.2.2b), in the region between the plates where J = O. 

http:83.3.1b


3-6 Solutions to Chapter 3 

(b)	 The integral form of Faraday's law is used to compute the electric field caused 
by the time variation of K(t). 

1 E· ds = - ~ 1lo'oH . da	 (3)
fa at s 

(a)	 (b) 

Figure SS.S.Z 

SO that it links the magnetic flux, the sudace is chosen to be in the :z: - z plane, 
as shown in Fig. S3.3.2a. The upper and lower edges are adjacent to the perfect 
conductor and therefore do not contribute to the line integral of E. The left edge 
is at z = 0 while the right edge is at some arbitrary position z. Thus, with the 
assumption that EI/ is independent of :z:, 

(4) 

Thus the electric field is Ez (0) plus an odd function of z. Symmetry requires that 
Ez (0) = 0 so that the desired electric field induced through Faraday's law by the 
time varying magnetic field is 

(5) 

Note that the fields given by (2) and (5) satisfy the MQS field laws in the region 
between the plates. 

(c) To	 compute the correction to H that results because of the displacement 
current, we use the integral form of Ampere's law with the sudace shown 
in Fig. S3.3.2. The right edge is at the sudace of the current source, where 
Ampere's continuity condition requires that HI/{l) = -K(t), and the left edge 
is at the arbitrary location z. Thus, 

(6) 
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Solutions to Chapter 3	 3-7 

and so, from this first order correction, we have found that the field is 

H = -K( ) WfoJJo (12 
- Z2) cPK (7)

1/ t + W 2 dt2 

(d) The second term in (7) is the correction field, so, at worst where z = 0, 

IHcorrectedI = f o /Jo
l2 ...!....I cPK I (8)IKI 2 IKI dt2 

and, for the sinusoidal excitation, we have a negligible correction if 

(9) 

Thus, the correction can be ignored (and hence the MQS approximation is 
justified) if the electromagnetic transit time 1/c is short compared to the 
typical time 1/w. 

3.4 QUASISTATIC SYSTEMS 

3.4.1	 (a) Using Ampere's integral law, (3.4.2), with the contour and surface shown in 
Fig. 3.4.2c gives 

(1) 

(b) For essentially steady currents, the net current in the z direction through the 
inner distributed surface current source must equal that radially outward at 
any radius r in the upper surface, must equal that in the -z direction in the 
outer wall and must equal that in the -r direction at any radius r in the lower 
wall. Thus, 

21l"bKo = 21l"rK,.(z = h) = -21l"aK.. (r = a) = -21l"rK,.(z = 0) 
b b b (2)

=> K,.(z = h) = -Koi K.. (r = a) = -Koi Kr(z = 0) = -Ko r	 a r 

Note that these surface current densities are what is called for in Ampere's 
continuity condition, (1.4.16), if the magnetic field given by (1) is to be con
fined to the annular region. 

(c) Faraday's integral law 

1 E . dB = -	~ { /JoB· da (3)
'e	 at ls 



3-8 Solutions to Chapter 3 

applied to the surface S of Fig. P3.4.2 gives 

(4) 

Because E.(r = a) = 0, the magnetoquasistatic electric field that goes with 
(2) in the annular region is therefore 

E. = -J.&obln(a/r) d~o (5) 

(d) Again, using Ampere's integral law with the contour of Fig. 3.4.2, but this time 
including the displacement current associated with the time varying electric 
field of (5), gives 

(6) 

Note that the first contribution on the right is due to the integral of Jasso
ciated with the distributed surface current source while the second is due to 
the displacement current density. Solving (6) for the magnetic field with E. 
given by (5) now gives 

Htf> = !Ko(t)+ EoJ.&oba
2

{(:')2[!ln(:')_!] _(!)2[!zn(!)_!]} f1JKo (7)
r r a 2 a 4 a 2 a 4 dt2 

The last term is the correction to the magnetoquasistatic approximation. 
Thus, the MQS approximation is appropriate provided that at r = a 

(8) 

(e) In the sinusoidal steady state, (8) becomes 

The term in I I is of the order of unity or smaller. Thus, the MQS approxi
mation holds if the electromagnetic delay time a/e is short compared to the 
reciprocal typical time l/w. 




