
  
   

 

Problem Set 1 
Thermodynamics and Climate Change 

MOSTEC 2021 

1. Properties of a thermodynamic system: If we take the top layer of 
the Pacific ocean as our thermodynamic system, which of the following 
are properties of that system? Which are not? Briefly state why. 

(a) Temperature of the water 

(b) Density of the water 

(c) The amount of water exchanged with lower layers each month 

(d) The concentration of dissolved oxygen in the water 

(e) The atmospheric pressure at the water’s surface 

(f) Concentration of salt in the water 

(g) The amount of water that evaporates each day 

(a), (b), (d), and (f) are properties, as they are directly measurable quan-
tities that do not require knowledge of the history of the system. (e) is a 
property but may not be part of the thermodynamic system, depending 
on how we define it. If we do not include any atmosphere, this would 
not be a property of the system, but it would influence the pressure of the 
water just below the surface, which would be a property of the system. (c) 
and (g) are not properties as there is no way to measure these quantities 
without knowing something about the history of system. They depend on 
a transfer of quantities over time. 

2. Concept questions: Answer each with a brief but specific explanation. 
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(a) For the following, state the type(s) and method of energy conversion 
(e.g. mechanical to thermal via frictional dissipation): (i) A block 
sliding down an incline and coming to a stop. (ii) Rain falling from 
a cloud and hitting the ground. (iii) The ground heating up in the 
sun. (iv) A forest fire. (v) Ice melting. (vi) Air expanding as it is 
heated. 

(i) Gravitational potential energy first to kinetic energy and ulti-
mately to thermal energy (ii) Gravitational potential energy to ki-
netic energy and ultimately to thermal energy (plus some acoustic 
energy as it hits). Also important to note that heat is transferred 
from water vapor to air to allow droplets to condense in clouds. Some 
of this energy also goes into surface tension potential energy hold-
ing the drop together, which gets dissipated when the droplet breaks 
apart upon impact. (iii) Nuclear fusion in the sun to thermal radia-
tion to sensible thermal energy in the ground. (iv) Chemical poten-
tial energy to sensible thermal energy and thermal radiation (light). 
Also forest fires may also cause liquid water to evaporate, which is 
thermal energy to energy stored in phase change. (v) Latent heat 
released via thermal energy transfer. Note, ice is less dense than liq-
uid water, so as it melts it shrinks, and thus some work is done on 
the ice. This observation is captured by a quantity called enthalpy, 
which we will soon discuss. (vi) Thermal energy to work and also 
gravitational potential energy as the expanding air will rise. 

(b) For an ideal gas at constant pressure: (i) What happens to the vol-
ume when you increase its temperature? (ii) What happens to the 
volume if we remove half of the molecules of gas? (iii) Does heating 
the gas in this case require more or less energy to achieve the same 
temperature than if the gas was kept at constant volume instead? 

Parts (i) and (ii) require the ideal gas law: 

PV = nRT (1) 

So from this equation, we can see directly that (i) the volume must 
increase if temperature increases to hold the pressure constant. This 
is captured in Charles’s Law : 

T2
V2 = V1 (2)

T1 
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and (ii) that if we reduce half the moles, the volume must also de-
crease by a factor of 2 to counter the resultant drop in pressure. (iii) 
If we heat the gas holding the pressure constant, its volume must 
increase as the temperature rises, and thus the gas does work on the 
environment. From the First Law of Thermodynamics: 

ΔU = Qcp − W (3) 

where ΔU = CvΔT . So the amount of heat necessary, to cause a 
temperature rise of ΔT , is 

Qcp = CvΔT + W = CpΔT (4) 

whereas in the constant volume case, W = 0, and thus the heat is 
simply 

Qcv = CvΔT (5) 

Clearly the constant pressure case requires more heat as some of 
that energy has to also supply the energy needed to do work. Also 
mathematically, we know that cp = cv + R and so cp > cv and 
Qcp > Qcv. 

(c) In which of the following cases is the First Law of Thermodynamics 
violated? Why or why not? (i) A solar sail in outer space that 
accelerates by sunlight shining on. (ii) A balloon that rises when 
you heat the gas inside. (iii) A block sliding on a frictional surface 
without slowing down. (iv) A device that extracts mechanical work 
from a heated block without cooling the block down. (v) The Moon 
causing tides on Earth. 

(i) Not violated as light has momentum which can transfer to the 
sail, doing work on it, causing it to accelerate. (ii) Not violated if 
we allow the balloon to expand, then it becomes less dense than the 
surrounding air and can float upwards, increasing its gravitational 
potential energy. (iii) Depends. Violated if not on an incline since the 
friction would heat up the block and/or the surface and that thermal 
energy would need to come from somewhere i.e. the block’s kinetic 
energy. If on an incline, this is possible as gravitational potential 
energy is repeatedly cashed in to overcome the energy dissipated by 
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friction. Eventually you would hit the center of the Earth and bad 
things would happen. (iv) Always violated. Internal energy must 
decrease to power mechanical work. (v) Not violated of course, but 
in fact this is causing the moon to drift farther from Earth, slowing 
the Earth’s rotation in the process. So that energy is coming at the 
cost of the Earth’s rotational kinetic energy. Eventually the tides 
will be locked in place and no more energy can be harvested from 
the changing tides. (See tidal friction). 

(d) (i) Does ice absorb or release thermal energy as it melts? (ii) Does 
water absorb or release thermal energy as it evaporates? 

(i) Ice absorbs energy as it melts, which is why ice packs work. (ii) 
Water absorbs energy as it evaporates, which is why sweating cools 
the skin. 

3. An Earth without its atmosphere: The Earth’s atmosphere is essen-
tial for maintaining its surface temperature above the freezing point of 
water. 

(a) Estimate the Earth’s surface temperature if it had no atmosphere, 
modeling the system as a uniform rocky sphere exposed to sunlight in 
a vacuum. Assume that sphere is of uniform temperature. You can 
use the following average values for the Earth in your computations: 
solar irradiance at the upper atmosphere is about 1400 W/m2 , an 
average albedo (fraction of light that is reflected) of 0.3, and an 
emissivity of 0.8. 

First draw a picture. See Fig. 1. Taking a control volume of just the 
Earth model, shown by the dashed red line, we write the First Law 
in its time derivative form: 

dECV dQnet dW� 
= − � = 0 (6)

dt dt �dt 

We can set this to zero because in steady state, we know that the 
temperature is constant and thus the rate of change of the internal 
energy - which is proportional to temperature - is equal to zero. The 
net heat transfer, dQ

dt 
net , is purely radiative and must therefore also 

equal zero. Based on our picture and the information given, we see 
that the net heat transfer is the sum of the solar energy in, some 
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Figure 1: Diagram for Problem 3a. 

of which gets reflected, and the thermal radiation of the Earth itself 
out. Mathematically, this balance is written as: 

q̇00 Ain(1 − α) = AoutσεT 4 (7)solar 

where α is the albedo and the right hand side is given by the Stefan-
Boltzmann Law. For this problem, we will assume the incident sun-
light falls on projected surface area equal to a circle with the radius 
of the Earth (Ain = πRe 

2) while the outgoing radiation happens over 
the total surface area of the earth (Aout = 4πRe 

2). We were not given 
Re but fortunately it cancels out in Eq. 7. Plugging in these values 
and rearranging to solve for T : 

00 � �q̇ πR2(1 − α) = 4
�
πR2σεT 4 (8)solar� e e 

� � 
q̇00 (1 − α)solarT = 

1 
4 

(9)
4σε 

Plugging in numbers: 

� � 
1400 [W/m2] ∗ (1 − 0.3) 

1 
4 

T = 
4 ∗ 5.67x10−8 [W/m2-K4] ∗ 0.8 
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= 271 K = −2.1 °C (10) 
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Figure 2: Diagram for Problem 4a. 

(b) A more detailed computer simulation shows that Earth’s surface tem-
perature would be -18 °C without an atmosphere. Is your value 
higher or lower? Why might that be the case? 
We assumed a smaller emissivity or a higher solar irradiance. If 
you plug in 1 for ε into Eq. 9, you will find that indeed the value 
is much closer to -18 °C. Note that for perfectly perpendicular in-
cident light, ε = (1 − α); however, since our albedo is taken as an 
average here, which includes added reflectance of lower wavelengths 
at oblique angles (i.e. why sunsets and sunrises are more red than 
blue), the emissivity is higher than (1 − α). Also care must be taken 
to determine the effective insolation area. You could have said it was 
equal to half the surface area of sphere as well, for example, which 
would skew temperature even higher. 

4. Energy lost in a spring: Let’s say you have a linear spring with a 
spring constant of 750 N/m. This spring is non-ideal though and in fact 
dissipates some energy. You put in 5 J of work in compressing the spring 
such that its length changes by 10 cm. 

(a) How much work would it have taken if the spring was ideal and did 
not dissipate any energy? 
As always, start with a picture and define control volume. See Fig. 2. 
Writing the First Law for the control volume, 

ΔECV = Q� − W (11) 
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Using the constitutive relationship for a spring that relates the stored 
potential energy to the compressed length, Δl, we find that 

W 
1 

= − k(Δl)2 1 
= − ∗ 750 [N/m] ∗ (0.1 [m])2 (12)

2 2 

W = −3.75 J (13) 

where the negative sign indicates that work is being done on the 
control volume. 

(b) How much thermal energy was generated in the process with the 
non-ideal spring? 

Now the spring heats up under the compression. Again writing the 
first law, as before, we can separate out the components of the inter-
nal energy into sensible heat and spring potential as 

ΔECV = ΔETE +ΔEPE = mcΔT +
1 
k(Δl)2 (14)
2 

We know how much work went into ΔEPE from part (a) and the 
total work is given to us as 5 J. Therefore, we know the work that 
must have gone into the thermal energy, ΔETE , is simply 5 − 3.75 = 
1.25 J . 

(c) If the spring is made of iron and has a mass of 5 kg, by how much 
does its temperature change during this process? (Iron has a specific 
heat of capacity of 444 J/kg-K). 

ΔETE = mcΔT = 1.25 J (15) 

and thus 

ΔETE 1.25 [J]
T = = = 0.00056 K (16) 

mc 5 [kg] ∗ 444 [J/kg-K] 

Not much! 

5. (Challenge) Atmospheric pressure: Derive the Earth’s atmospheric 
pressure as a function of height above sea level assuming that it is an ideal 
gas for cases where: 
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(a) The temperature profile is constant. 

Starting with the mass form of the ideal gas law: 

P = ρ e (17)RT 

We know from hydrostatics that the pressure in the atmosphere varies 
linearly with height: 

dP 
= −ρg (18)

dz 

(equivalent to the more common form P = ρgz). Solving for density 
ρ and plugging into Eq. 17, rearranging to separate variables, and 
integrating: 

edP RT 
P = − (19)

dz g Z P Z zdP 0 g dz0 
= − (20)

P 0 eP0 0 RT 

P gz 
ln = − (21)

P0 eRT 

giving us the final barometric formula equation for constant temper-
ature: � � 

gz 
P = P0 exp − (22)eRT 

where Re = R/M and M is the weighted average molecular weight of 
air. 

(b) The temperature profile decreases linearly from 300 K at the surface 
to 200 K at the mesopause, 85 km above sea level. 

We do the same as in part (a) but now instead of constant T, we are 
given that it is decreasing linearly. Expressed mathematically, 

(300 − 200) K 
T = 300 K − ∗ z = 300 − 0.0012 z (23)

85, 000 m 
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Plugging this relationship into Eq. 20 before the integration: Z P Z zdP 0 g dz0 
= − (24)

P 0 eP0 0 R(300 − 0.0012 z0) 

and integrating: 

−g� � 
0.0012 ReP g 300 300 

ln = ln = ln 
P0 −0.0012 Re 300 − 0.0012 z 300 − 0.0012 z 

(25) 

Giving us the final equation 

−g 

300 0.0012 Re 
� � 

P = P0 (26)
300 − 0.0012 z 

(c) How much work is done by a 1 kg packet of air rising from sea level 
to the mesopause (ignoring gravitational potential energy)? Assume 
that at all altitudes, the pressure of the air packet is equal to atmo-
spheric pressure at that altitude. Use the equation you derived for 
the linear temperature profile case. 

(Hint for parts (a) and (b): start with the ideal gas law and assume 
the pressure is hydrostatic - i.e. linearly proportional to height. Re-
member though that the density will be changing with altitude! ) 

Note: We will ignore gravitational potential energy here. The defi-
nition of work for the gas in our control volume is Z V 

W = P dV 0 (27) 
V0 

We need to get the pressure and volume of the gas in terms of the 
height above the ground, z. Assuming we know nothing about the 
heat transfer occurring, we can safely assume that the air packet still 
obeys the ideal gas law, giving us a relationship for the volume of 
the gas: 

m eRT (z)
V (z) = (28)

P (z) 
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into which we can plug our known P (z) and T (z): 

mRe(T0 + βz)
V (z) = (29)� �g/ eRβ 

P0 
T0 

T0+βz 

Taking the derivative of this equation to get dV in terms of dz: 

� �� �g/ e 
mRβe g T0 + βz Rβ 

dV = + 1 dz (30)eP0 Rβ T0 

Plugging into Eq. 27: 

Z � �g/Rβe 
� 
m e � �� �g/Rβe 

� 
zf T0 Rβ g T0 + βz 

W = P�0 

������� 

+ 1 
������� 

dz eT0 + βz P�0 Rβ T00 � 
(31)� �Z zf 

= m e g
Rβ + 1 dz (32)eRβ 0 

(33) 

Taking β = −0.0012 K/m, Re = 287 J/kg-K, g = 9.81 m/s2 , and 
T0 = 300 K, the final value after working through this integral yields: 

W = 804 kJ (34) 

As a bonus challenge, how much heat must be transferred over this 
process? Hint, we know the initial and final internal energy. 
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