
Chapter 5

Engines, Power, and the
Anthropocene

Through the control of fire, early humans gained control over their local en-
vironments - clearing land, warding off predators, and providing warmth to
survive the colder seasons. It took almost 2 million more years to discover
how to turn that thermal energy released on demand via combustion into me-
chanical power, kicking off a seemingly unstoppable cycle of human expansion
and increasing energy consumption. Indeed, since the advent and widespread
adoption of the heat engine, there has been an accelerating influx of new ap-
plications to justify using more energy ranging from manufacturing and trans-
portation to computation and space exploration - all largely driven by global
politics and economics. Now we are seeing that what began as a dominance
over our local environments has perhaps unsurprisingly resulted in the loss of
control over our global environment, for which humans have had such a hand
in shaping that it warrants its own geological age - the Anthropocene.

In the previous chapter, we showed that undoing carbon emissions by di-
rectly separating out CO2 molecules from the air requires a substantial amount
of energy, and while possible, this process would need to be carried out using
entirely renewable sources to avoid exacerbating the energy usage to carbon
emission feedback loop. While this process, called Direct Air Capture (DAC),
will need to be a prominent component of climate change mitigation - es-
pecially as humanity draws every closer to several dangerous climatological
tipping points triggered by rising CO2 concentrations - it is also essential that
greenhouse gas emissions be curtailed and ultimately stopped at the source.
To begin to understand the magnitude of these human-generated emissions,
we will now look at the thermodynamics behind one of the largest collective
carbon emitters of the “unnatural” world - engines.
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5.1. ENGINES

Using what we have already learned, in this chapter, we will look at en-
gines, heat pumps, and the various invented systems that drive the production 
and use of power today. We will discuss various combustion-based engine ar-
chitectures and their ideal efficiencies, as well as systems that generate power 
continuously by manipulating the state of a continuous stream. For these 
continuous flow power systems, we will additionally define a Second Law ef-
ficiency to relate the actual and maximum performance for the various com-
ponents that comprise them. In this context, we will then define the concept 
of the Gibbs Free Energy and how it relates to the maximum work that can 
be extracted from a stream. Finally, we will look at how all of the develop-
ment that has resulted from these systems has pushed the global climate to 
the brink of crisis, and some of the reasons why it is such a challenging but 
necessary problem to solve as soon as possible.

5.1 Engines

An engine is simply a device that uses a thermodynamic cycle to continuously 
convert thermal energy - historically from the burning of wood or fossil fuels 
- into mechanical work. We have already seen an example of an engine in our 
discussion of the forward Carnot Cycle. A Carnot Engine is the device that 
uses the Carnot Cycle to produce mechanical power by transferring thermal 
energy from a hot thermal reservoir to a colder one, extracting energy as work 
in the process. As used here, power in the thermodynamic context is the rate 
of energy conversion in units of energy per time - J/s or Watts (W) in SI units. 
As we discussed, the Carnot Engine has the theoretical maximum efficiency 
(1 −TL/TH) for any engine operating between two thermal reservoirs, which is 
a statement of the Second Law of Thermodynamics. Recall that an equivalent 
statement for the Second Law is that a device operating in communication 
with only one thermal reservoir at best can produce no net work over a cycle, 
and thus that we need two thermal reservoirs to produce any net positive 
mechanical power.

So to extract continuous power, we can easily construct a coupled system 
in communication with (at least) two thermal reservoirs in such a way that 
net work is done. The primary questions for engines then becomes 1) how 
can we minimize TL/TH and 2) how do we efficiently transfer thermal energy 
between the thermal reservoirs and the working fluid? The answer to the 
former since the 1700’s has largely been the combustion of fossil fuels but more 
recently has begun to include concentrated solar energy to achieve extremely 
high temperatures using massive mirror arrays, which we will explore in later 
chapters.
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5.1. ENGINES

Figure 5.1: Four main stages of a Stirling Cycle. First the displacer forces
the gas to be in contact with the hot reservoir, causing the gas to expand
and do work via the top piston. The flywheel attached to both the piston and
displacer then forces the displacer down, pushing the gas to the top part of the
cylinder in communication with the cold reservoir. This cools the gas, causing
it to contract and pull the piston down to reset the cycle.

5.1.1 External Combustion Engines

For combustion-based power cycles, any device for which the heat is released
externally and transferred to and from the working fluid indirectly is called an
external combustion engine. The Carnot Engine we looked at fits this descrip-
tion as there is an external thermal reservoir from which heat is transferred to
the working fluid. Early steam engines also operated in this way, and we will
dive deeper into the thermodynamics of steam or Rankine Cycles shortly. We
will now look at the most common engine architectures used in practice:

Stirling Engine

Another canonical external combustion engine is the Stirling Engine, which
is shown in Fig. 5.1 and is characterized by the property plots in Fig. 5.2.
As shown here, the engine works by displacing the working fluid back and
forth between a hot and cold side of a single cylinder. As labeled in these
property plots, from state 1 to 2, the working fluid is cooled by the cold
thermal reservoir and is compressed by the piston isothermally. The coupled
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5.1. ENGINES

Figure 5.2: P -V and T -S diagrams for a Stirling Cycle. Note the key difference
between this and an Otto cycle is that the expansion and compression happen
isothermally instead of isentropically.

motion of the displacer pushes the gas to the hot side of the cylinder where
thermal energy is transferred at constant volume between states 2 and 3. The
piston then expands isothermally to do work from states 3 to 4 and finally
heat is rejected to the cold reservoir at constant volume to bring the system
back to its initial state.

To determine the efficiency for this system, we can start by looking at the
heat added, Qin, over the course of a cycle. Here, heat is transferred to the
gas from states 2 → 3 and 3 → 4 and can be expressed mathematically by
writing the First Law for each process as

∆U2→3 = Q2→3 −����W 2→3 (5.1)

U3 − U2 = Q2→3 (5.2)

⇒ Q2→3 = U3 − U2 (5.3)

= mcv(TH − TL) (5.4)

and
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∆U3→4 = Q3→4 −W 3→4 (5.5)

mcv���
���:

0
(TH − TH) = Q3→4 −W 3→4 (5.6)

⇒ Q3→4 = W 3→4 (5.7)

=

∫ 4

3

P dV (5.8)

= mR̃TH

∫ V4

V3

dV

V
(5.9)

= mR̃TH ln
V4
V3

(5.10)

It is important to note here that the heat added from states 2 to 3 and 4
to 1 are equal and opposite in magnitude by this same logic. Typically, we
call this the regenerated heat as this can be supplied by the thermal mass of
the cylinder itself. That is to say from states 4 to 1, heat with a magnitude
of mcv(TH − TL) is rejected to the cylinder walls, which is then completely
reabsorbed by the gas - or regenerated - from states 2 to 3. Thus the total
extra heat that we need to keep the engine running is just

Qin = Q3→4 = mR̃TH ln
V4
V3

(5.11)

The net work, Wnet, is computed by similar logic as

Wnet = W 3→4 +W 1→2 (5.12)

= mR̃

[
TH ln

V4
V3

+ TL ln
V2
V1

]
(5.13)

but since V1 = V4 and V2 = V3,

Wnet = mR̃(TH − TL) ln
V4
V3

(5.14)

Putting this all together, we can solve for the efficiency of the ideal Stirling
cycle as
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ηStirling =
Wnet

Qin

(5.15)

=
mR̃(TH − TL) ln V4

V3

mR̃TH ln V4
V3

(5.16)

=
TH − TL
TH

(5.17)

= 1− TL
TH

(5.18)

= ηCarnot (5.19)

which is exactly equal to the Carnot efficiency! Now we did not say anything
about the reversibility of this cycle up until now, but looking carefully at each
process, as long as the work is carried out infinitely slowly and all heat is
transferred across zero temperature difference, this cycle is indeed reversible.
For the regeneration step in particular to be reversible, the cylinder walls
must always be the same temperature as the gas locally. The fact that we
can recover the Carnot efficiency from this analysis of a completely different
reversible cycle operating between two thermal reservoirs further supports the
validity of the Second Law of Thermodynamics.

In reality, a Stirling engine will not exactly follow the cycle diagrams in
Fig. 5.2 but instead will be closer to the bold curve shown in Fig. 5.3. This
actual cycle will not be perfectly reversible and will therefore have an efficiency
lower than ηCarnot, which again is consistent with the Second Law. In practice,
Stirling engines can be made with extremely high efficiencies but typically
do not scale well for many applications. Interestingly, because this cycle is
reversible, we can run it backwards to get extremely efficient cooling via the
heat pump effect previously discussed. This type of device - called a Stirling
Cooler - is used in laboratories to achieve extremely cold temperatures down
to 10 K or so.

5.1.2 Internal Combustion Engines

Another extremely common engine archetype is the internal combustion en-
gine for which the heat driving the cycle is released in such a way that it makes
direct contact with the working fluid or is released by the working fluid itself.
This type of engine is most commonly used with the combustion of hydrocar-
bon fuels like gasoline and diesel and is used to power everything from cars to
airplanes. While there are many different implementations of this architecture
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Figure 5.3: P -V diagram showing the path of an actual non-ideal Stirling
Cycle in bold. In reality, it takes finite time to transfer heat to the working
fluid and thus the heating does not happen isochorically.

with a plethora of compatible fuels, we will only look at a few of the most
common here.

Otto Cycle

The Otto Engine - which operates on the Otto Cycle - powers virtually every
internal combustion engine-based vehicle in the world. In this type of engine,
vaporized liquid hydrocarbons and air are drawn into a piston, compressed,
and ignited adiabatically using a spark plug to release thermal energy via a
combustion reaction. The heat release causes the piston to expand isentropi-
cally1 to do work, and the various combustion products are exhausted. Thus,
this cycle is for an open system, so even though the exact molecules of gas are
different from loop to loop, the cycle is still valid as long as the new reactants
are brought in at the same thermodynamic state. Additionally, the idealized
version of this cycle is shown in Fig. 5.4 and is theoretically reversible, though
unlike with the Stirling and Carnot Cycles, there is a less clear notion of what
the thermal reservoirs are.

1Requires no friction and no heat transfer. The latter requirement can be achieved in
practice if the time required for the piston stroke is sufficiently short. This tends to cause
dissipation, however.
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Figure 5.4: P -V and T -S diagrams for the Otto cycle used in many gasoline-
powered internal combustion engines.

To determine the maximum efficiency of an Otto Engine, we can start by
identifying the effective thermal energy input, Qin, and net work Wnet. Using
the states as labeled in Fig. 5.4, we see that heating release occurs as a result
of the combustion reaction between states 2 and 3. Writing the First Law for
this process, we can immediately see that the work done is 0 as the combustion
happens at constant volume:

U3 − U2 = Q2→3 −����:
0

W 2→3 (5.20)

⇒ Q2→3 = U3 − U2 = Qin (5.21)

where U3 is the internal energy of the products at T3 and U2 is the internal
energy of the reactants at T2. We will hold off for now saying anything else
about their values, as keeping track of the different species is tricky.

Similarly, we can write the heat rejected between states 4 and 1 as

Q4→1 = U4 − U1 (5.22)

Next, noting that processes 1 → 2 and 3 → 4 are isentropic (reversible
adiabatic) we can express the net work by writing the First Law for the cycle:
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���
��:0

∆Ucycle = Qnet −Wnet (5.23)

⇒ Wnet = Q2→3 +Q4→1 (5.24)

and substitute in our expressions for Q2→3 and Q4→1 to yield

Wnet = (U3 − U2) + (U4 − U1) (5.25)

The efficiency can therefore be written as

ηOtto =
Wnet

Qin

(5.26)

=
(U3 − U2) + (U4 − U1)

U3 − U2

(5.27)

= 1− U4 − U1

U3 − U2

(5.28)

where assuming that the products and reactants have the same non-temperature-
dependent specific heats, we can write:

ηOtto = 1− mcv(T4 − T1)
mcv(T3 − T2)

(5.29)

= 1− T4 − T1
T3 − T2

(5.30)

= 1−
(
T1
T2

)
T4/T1 − 1

T3/T2 − 1
(5.31)

As we did with the Carnot Cycle analysis earlier, we can use the adiabatic
expansion and compression relationships to show that

T4
T1

=
T3
T2

(5.32)

and thus

ηOtto = 1− T1
T2

(5.33)

which has a similar form as the Carnot Efficiency but represents a physically
different phenomena.
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Figure 5.5: P -V and T -S diagrams for the Diesel cycle used in many diesel-
powered internal combustion engines. The key difference between this and
the Otto cycle is that combustion happens isobarically in the Diesel cycle and
isochorically in the Otto cycle.

Finally, with Otto Engines, we typically know the minimum and maximum
volumes of the piston well, so we will now get an expression for the efficiency
in terms of those volumes, V1 and V2. To do this, we can easily relate T1/T2
to V1/V2 again via the adiabatic compression relationship:

T1
T2

=

(
V2
V1

)γ−1
(5.34)

and thus

ηOtto = 1−
(
V2
V1

)γ−1
= 1− 1

r(γ−1)
(5.35)

where r is the compression ratio equal to V1/V2. This is the maximum effi-
ciency that an actual Otto Engine can achieve, and in reality heat loss to the
environment and other irreversibility caused by friction and mixing of gases
will detract from this efficiency.
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Diesel Cycle

A similar process to the Otto Cycle is the Diesel Cycle, which differs from
the Otto Cycle in that combustion happens at constant pressure instead of
constant volume. Fig. 5.5 shows the property plots for the ideal reversible
Diesel Cycle which look very similar to that of the Otto Cycle in Fig. 5.4,
except for process 2 → 3. The efficiency can be derived in a similar manner,
though it is made more complex by the fact that the system does work during
the combustion process. We will not derive that here, but it can be shown
that the efficiency of this cycle is given by

ηDiesel = 1− 1

r(γ−1)

(
αγ − 1

γ(α− 1)

)
(5.36)

where α = V3/V2 and r = V1/V2.
We can see directly from Eq. 5.36 that the efficiency of the theoretical

Diesel Engine is less than that of the equivalent Otto Cycle, though in prac-
tice, diesel engines are often more efficient for a variety of reason we will not go
into detail about here. One of the main reasons, however, is that in an internal
combustion engine, a high compression ratio will cause the fuel to ignite be-
fore the piston reaches its minimum volume, wasting significant energy in the
process. Diesel engines can achieve much higher compression ratios due to the
fact that the combustion occurs at constant pressure and thus there is much
more room to increase the pressure during the compression. In fact, because
of this fact, diesel engines do not require a spark plug as the compression itself
is what ignites the fuel.

Note that in internal combustion engines (and many external combustion
engines as well), this cycle is occurring in several different piston simultane-
ously, each operating out of phase from one another. This helps to ensure
that the engine is balanced and that power is more or less being continuously
produced over time. Additionally, engines and the devices that use them rely
on the inertia of the engine itself to smooth out the operation. This can be
accomplished with a heavy spinning mass called a flywheel, which helps to en-
sure that any other moving parts coupled to the engine - like the displacer in
the Stirling Engine - continue to operate in between the power strokes of the
engine. In some machines - cars, for example - the inertia of the machine itself
helps to smooth things out. For this reason, most combustion engines cannot
simply start self start; instead, they need a small electric motor to start the
engine spinning in order to build up enough inertia to sustain the cycle2.

2This is why you cannot start a gasoline-powered car, for example, when the battery is
dead.
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5.2 Continuous Flow Power Systems

Up until this point, we have been primarily discussing closed systems and their
associated cycles with discrete temporally sequential processes. For example, a
gas in a piston undergoes expansion or compression but at any given time, our
control volume has a homogeneous state throughout and moves throughout
the cycle sequentially one step at a time. While most combustion engines
operate with multiple pistons running out of phase from one another, we still
treat each piston as a separate cycle with a homogeneous internal state. Also
even though internal combustion engines, for example, exhaust the working
fluid at the end of the cycle and replace the fuel and oxidizer before beginning
again, we are still able to analyze the cycle as if the same gas remained inside
the whole time.

In contrast to these closed temporally sequential cycles, continuous flow or
continuous power cycles are comprised of a flowing working fluid whose state
changes continuously throughout the system. The cycle is happening such
that states are better represented spatially in the system than temporally as
is the case with the discrete closed systems we previously looked at. We just
as easily represent these cycles on property plots as we can imagine tracking
a small homogeneous packet of working fluid as it flows from one device to
the next, even though in reality, all states in the cycle exist at the same time
but separated in space. This concept will be made clear by looking at some
example devices and cycles.

5.2.1 Open Systems

Before we begin describing systems, we need to first establish a framework for
analyzing open systems, which unlike closed systems, allow mass to enter and
exist the control volume. Just like with closed systems, however, we can track
the energy of the streams in and out and relate those fluxes to the change in
internal energy using the First Law. As shown in Fig. 5.6 a generalized control
volume for such a system has mass flowing in and out with its own internal
energy, useful work done continuously via shear stresses of the liquid, useful
work done by the normal stresses (i.e.

∫
P dV ), and heat transfer in and out.

Because these systems are operating continuously, we replace our ∆ operators
for d

dt
operators in order to analyze how the system changes continuously with

time. For energy contained within the control volume, ECV , we have for
example

∆ECV →
d

dt
(ECV ) ≡ ĖCV (5.37)
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Figure 5.6: Generalized control volume for continuous flow open systems.

where ĖCV has units of energy per time or Watts in SI units.

Conservation of Mass

For the open systems we will look at in this text, mass is conserved, which can
be expressed mathematically as

d

dt
mCV = ṁin − ṁout (5.38)

which simply states that the rate of change of mass inside the control volume
is equal to the difference in mass flow rates between the entering and exiting
mass streams. Note that in steady state, d

dt
mCV = 0. Here ṁ is a mass flow

rate in units of mass per time. Because there can be many streams coming in
and leaving our system, Eq. 5.38 can be generalized to

d

dt
mCV =

(∑
i

ṁi

)
in

−

(∑
i

ṁi

)
out

(5.39)

First Law

We can similarly write the First Law for open systems as

ĖCV =

(∑
i

ṁiei

)
in

−

(∑
i

ṁiei

)
out

+ Q̇net − Ẇnet (5.40)
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where ei is the specific internal energy of stream i and can include kinetic
energy, gravitational potential energy, etc. For fluids flowing in and out of the
system, it is important to note that at the boundaries of our control volume,
the fluid stream itself is doing mechanical work of the form

∫
P dV as it will

have some pressure acting over a volumetric displacement. By definition, we
differentiate this work from any other work done by the deformation of the
control volume or mechanical work done by a shaft that is stuck into the fluid3.
The reason for this differentiation is that we can directly lump together the
internal energy of the stream, ui, and this PV flow work done by stream at
the boundary as the enthalpy of the stream:

hi = ui + (Pv)i (5.41)

where v is the specific volume in units of volume per mass.
Thus, it is often common to write the first law as

ĖCV =

[∑
ṁ(h+

1

2
w2 + gz + ...)

]
in

−
[∑

ṁ(h+
1

2
w2 + gz + ...)

]
in

+ Q̇net − Ẇnet (5.42)

where h is the specific enthalpy of the stream, 1/2w2 the specific kinetic energy,
gz the specific gravitational potential energy, and the ellipsis represents all
other forms of energy relevant to the particular problem.

Second Law

Similarly, we can write the Second Law for our open system as

ṠCV =

(∑
i

ṁisi

)
in

−

(∑
i

ṁisi

)
in

+
∑ Qi

Ti
+ Ṡgen (5.43)

where for irreversible cycles, Ṡgen > 0, and for reversible cycles, Ṡgen = 0.

Examples

Let us look at two simple examples to illustrate how to use these principles in
practice for open systems. Perhaps the simplest open system is an adiabatic

3We differentiate shaft work typically from PV work as shaft work requires that a shear
stress be applied to some surface to spin a propeller for example vs PV work which requires
that a normal stress be applied to a deforming boundary.
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Figure 5.7: Example problem where a gas in an adiabatic container initially
at some pressure P1 > Pa expands and exits the container.

container that is initially at some pressure, P1, that is greater than ambient
pressure. Intuitively if open the container, the gas contained within it will rush
out. The question is, what is the final temperature of the gas that remains
within the control volume, as shown in Fig. 5.7? There are two ways to solve
this problem. First, how we would have approached this previously would
be by working backwards and only encompassing the gas that remains in the
container at the end of the process in our control volume. We could then track
these particles back to state 1 and realize that this gas is simply undergoing
adiabatic expansion and then apply the appropriate relationships between P
and T for an ideal gas. Because we are tracking the same particles of gas
throughout the process and morphing our control volume continuously, we are
actually treating this control volume as a closed system. This allows us to
directly write

T2
T1

=

(
P2

P1

) γ−1
γ

(5.44)

Using our new understanding of open systems, we can also approach this
problem by maintaining a fixed control volume as shown in Fig. 5.7 and keeping
track of the gas that leaves the control volume between states 1 and 2. Writing
the open system form of the First Law, we have

ĖCV =���
��:0

(ṁh)in − (ṁh)out +�
��>

0
Q̇net −��

�*0
Ẇnet (5.45)

where we can immediately cancel out terms due to the system being adiabatic
and the fact that no work is being done other than by the stream itself exiting
the container, which as we saw, is captured in the enthalpy term of the outgoing
stream. Note we assume here that the macroscopic kinetic energy of the gas
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leaving is negligible. Recalling that h = cpT and u = cvT for an ideal gas, we
can rewrite this expression as

d

dt
(mcvT ) = −ṁoutcpT (5.46)

where m is mass in the control volume at some time t. By conservation of
mass we know that ṁ = −ṁout, and thus

d

dt
(mcvT ) = −ṁoutcpT (5.47)

ṁcvT +mcvṪ = ṁcpT (5.48)

⇒ mcvṪ = ṁ(cp − cv)T (5.49)

⇒ Ṫ

T
=
cp − cv
cv

ṁ

m
(5.50)

= (γ − 1)
ṁ

m
(5.51)

Switching the limits of integration from time to state variables of T and m
and integrating both sides, we have

∫ T2

T1

dT

T
= (γ − 1)

∫ m2

m1

dm

m
(5.52)

⇒ T2
T1

=

(
m2

m1

)γ−1
(5.53)

and finally using the ideal gas law to replace m with PV
RT

, we get

T2
T1

=

(
P2

P1

) γ−1
γ

(5.54)

which is exactly what would have gotten using our first approach. While
for this example, this open system approach was more convoluted, for many
systems, we cannot easily track the motion of the individual particles and
instead must use a fixed control volume.

Recall that this is the same result we obtained for a perfectly reversible
adiabatic expansion process, and thus if we compute the entropy for our control
volume over this process, we would indeed find that it is exactly 0. Intuitively,
however, we would not expect the process of gas rushing out of a container
into the surrounding air to be a reversible process. In reality it is not, but in
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Figure 5.8: Example where an adiabatic container is initially at some pressure
P1 < Pa and then opens to allow ambient air to rush in.

the way we defined our control volume, all irreversibility occurs outside the
container and outside our control volume. This makes the math much easier.

We can also look at the opposite of this process, where instead we have the
initial pressure inside the container less than ambient pressure such that when
the container is opened, gas rushes in. We will take the same fixed control
volume as in the previous example and as shown in Fig. 5.8. Clearly there will
be irreversibility generated inside our control volume in this process due to
mixing and dissipation; however, we can still write the First and Second Laws
for this process. Starting with the First Law, again ignoring the macroscopic
kinetic energy of the gas coming in, we have that

ĖCV = (ṁh)in −����
�:0

(ṁh)out +�
��>

0
Q̇net −��

�*0
Ẇnet (5.55)

As before, we can substitute our expressions for internal energy and en-
thalpy to yield

d

dt
(mcvT ) = ṁcpTa (5.56)

where Ta is the ambient temperature of the entering gas - the temperature at
the boundary where we are tracking the enthalpy. Using the ideal gas law and
the relationship that R = cv/(γ − 1), this expression is equivalent to

d

dt

(
PV

γ − 1

)
= ṁcpTa (5.57)

Switching the limits of integration and integrating:
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V

γ − 1

∫ P2

P1

dP = cpTa

∫ m2

m1

dm (5.58)

⇒ (P2 − P1)V

γ − 1
= (m2 −m1)cpTa (5.59)

=

(
P2V

R̃T2
− P1V

R̃T1

)
cpTa (5.60)

For P1 = 0, this simplifies to the expression:

T2 = γTa (5.61)

We can write the Second Law for this example to characterize the irre-
versibility generated by this process as

ṠCV = (ṁs)in −����(ṁs)out +

�
�
�
�∑

i

Qi

Ti
+ Ṡgen (5.62)

Because entropy as used here is a relative quantity, we must choose some refer-
ence against which to measure the change in entropy throughout the process.
If we choose the reference state to be (Ta, Pa), then we conveniently find that

sin − s0 = cp ln
Ta
Ta
− R̃ ln

Pa
Pa

= 0 (5.63)

and after integrating Eq. 5.62 and taking P1 = 0,

∆Sgen = m2(s2 − s0)−����
���m1(s1 − s0) (5.64)

= m2

(
cp ln

T2
Ta
−
�
�
�
�

R̃ ln
Pa
Pa

)
(5.65)

= m2cp ln
γTa
Ta

(5.66)

= m2cp ln γ (5.67)

For gases, γ > 1, and thus the ∆Sgen > 0 as we would expect for this
irreversible process. Note that in the above analysis, we assumed that the
system inside the control volume started as a perfect vacuum with zero mass,
and therefore S1 = 0. In this process, the irreversibility comes from the
diffusion of the gas entering the container and the ensuing dissipation that
drives an increase in the temperature of the gas.
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5.2.2 Power Conversion Devices

With an understanding of how the First and Second Laws are formulated for
open and continuous flow systems, we can now take a high level look at a
class of devices that are used in the various processes of power cycles. These
so-called power conversion devices are used to manipulate the thermodynamic
state of a stream, extracting or supply net work or net heat to the stream
in the process. On our cycle diagrams, each one of these devices typically
represents a single process taking the system from one well-defined state to
the next. For each of the following devices, we are interested in characterizing
the subsystem at steady-state - where total internal energy and mass within
the control volume at any given time do not change with time.

For the devices in particular that require either the input or extraction of
mechanical work to change the state of the stream - for example a compressor
or pump - we will define a Second Law Efficiency4, which compares the actual
work to the work of the ideal reversible device. This efficiency will be defined
differently for each device, but it is worth noting here that it is fundamentally
different from the previous efficiency we looked at, which is typically called a
First Law Efficiency that compares the energy put in to the “usefull” energy
extracted. The Second Law Efficiency is measurable and thus gives us the
ability to model these devices as undergoing ideal reversible processes - which
are typically easier to analyze - and then simply apply the efficiency directly
in our analysis as we will see.

Compressor

A device that is capable of compressing a continuous stream of some working
fluid - typically a gas - is fittingly called a compressor. There are many different
implementations of this type of device, but they all take in a gas at P1 and
output it at P2 such that P2 > P1. Fig. 5.9 shows the simplified diagram
of a compressor with a stream entering at state 1 and leaving at state 2 as
mechanical power, Ẇ is applied to bring the gas to a higher pressure. Writing
the First Law for the idealized adiabatic compressor, we find that

ĖCV =�
��Q̇net − Ẇideal + ṁ(h1 − h2s) (5.68)

and thus

4also called isentropic efficiency
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Figure 5.9: Compressor and pump control volume and corresponding h-s plot
showing that generated entropy requires more work be added to achieve same
pressure ratio, P2/P1.

Ẇideal = −ṁ(h2s − h1) (5.69)

= −ṁcp(T2s − T1) (5.70)

= −ṁcpT1(
T2s
T1
− 1) (5.71)

which we can relate to pressures P1 and P2 by applying our familiar adiabatic
relationship between P and T . Substituting this expression into Eq. 5.69 gives
us

Ẇideal = −ṁcpT1

[(
P2

P1

) γ−1
γ

− 1

]
(5.72)

We can then define our Second Law Efficiency for the compressor, ηIIc , as

ηIIc =
Ẇideal

Ẇactual

(5.73)
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and thus if we are given this efficiency, we can compute the actual work re-
quired to change the stream from state 1 to 2 using a non-ideal compressor
as

Ẇactual =
1

ηIIc
ṁcpT1

[(
P2

P1

) γ−1
γ

− 1

]
(5.74)

because we can easily compute Ẇideal and can measure Ẇactual for a range of
different states, we can get a well-defined value for ηIIc in practice. Typical
Second Law Efficiencies range from 0.7-0.9.

To characterize the entropy generated in an actual compressor, we can
write the Second Law for a non-ideal compressor as

�
��ṠCV =

�
�
�
�∑

i

Qi

Ti
+ ṁ(s1 − s2) + Ṡgen (5.75)

⇒ Ṡgen = ṁ(s2 − s1) (5.76)

= ṁ

[
cp ln

T2
T1
− R̃ ln

P2

P1

]
(5.77)

= ṁ

[
cp ln

(
1 +

1

ηIIc

[(
P2

P1

) γ−1
γ

− 1

])
− R̃ ln

P2

P1

]
(5.78)

where we can easily see that for ηIIc = 1, Ṡgen = 0. Graphically, this relation-
ship between irreversibility and enthalpy - and thus work required to compress
the gas - can be clearly illustrated by plotting the process on an h-s diagram
as shown in Fig. 5.9. As shown here, the ideal process is isentropic and thus
represented by a vertical line on this plot connecting isobars at P1 and P2.
On these plots “2s” represents the idealized state 2. In reality, if entropy is
generated in this process, the enthalpy required to achieve the same pressure
increase will be greater as shown here. Because the work required for this pro-
cess is directly proportional to the change in enthalpy, then the actual process
will require more work as well, as we showed analytically here.

Pump

A pump is essentially just a compressor but one that is typically used with
incompressible fluids like water instead. It can be represented on a similar
h-s diagram as shown in Fig. 5.9. Because the fluid is incompressible, several
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simplifications can be made in the characterization of this type of device.
Writing the First Law, rearranging to solve for the input work, and substituting
in our expression for enthalpy for a solid or incompressible fluid:

ĖCV =�
��Q̇net − Ẇideal + ṁ(h1 − h2s) (5.79)

⇒ Ẇideal = ṁ(h1 − h2) (5.80)

= ṁ[c(T1 − T2) + (P1 − P2)v] (5.81)

where v is the fluid specific volume. To figure out the relationship between T1
and T2 for the ideal case, we can write the Second Law and show that

�
��ṠCV =

�
�
�
�∑

i

Qi

Ti
+ ṁ(s1 − s2s) +�

��Ṡgen (5.82)

⇒ s1 − s2s = 0 (5.83)

c ln
T2s
T1

= 0 (5.84)

⇒ T2s = T1 (5.85)

As before, we can define a Second Law Efficiency, ηIIp , such that

Ẇactual =
Ẇideal

ηIIp
=

1

ηIIp
ṁ(P2 − P1)v (5.86)

which is also useful in determining the temperature rise of the fluid in the
non-ideal case:

ṁ[c(T2 − T1) + (P2 − P1)v] =
1

ηIIp
ṁ(P2 − P1)v (5.87)

⇒ T2 − T1 =
1

c
(P2 − P1)v

(
1

ηIIp
− 1

)
(5.88)

This allows us to compute the entropy generated as

Ṡgen = ṁ(s2 − s1) = ṁc ln
T2
T1

(5.89)
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Figure 5.10: Turbine control volume and corresponding h-s plot showing that
the actual work extracted is limited by the generated entropy.

Turbine

A turbine is the opposite of a compressor and pump in that it takes in a
stream a reduces its enthalpy by expanding it, extracting mechanical work in
the process. Again we can start with the First Law for a gas to analyze the
ideal device and then define an efficiency to relate its performance to an actual
turbine:

��
�ĖCV =�

��Q̇net − ˙Wideal + ṁ(h1 − h2s) (5.90)

⇒ Ẇideal = ṁ(h1 − h2s) (5.91)

where 2s on the h-s diagram in Fig. 5.10 indicates the endpoint of the idealized
isentropic expansion process. As before, we define a Second Law Efficiency to
relate this ideal work to the work done by an actual turbine:

Ẇactual = ηIIT Ẇideal (5.92)

= ηIIT ṁcpT1

[
1−

(
P2

P1

) γ−1
γ

]
(5.93)

With this information, we can use the First Law for an ideal gas to establish
a relationship between T2 and T1 as
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(T2 − T1) = ηIIT T1

[(
P2

P1

) γ−1
γ

− 1

]
(5.94)

which enables us to solve for the entropy generated in this process as

Ṡgen = ṁ

[
cp ln

T2
T1
− R̃ ln

P2

P1

]
(5.95)

As we did with the pump, we can also analyze a turbine assuming that the
stream is comprised of incompressible fluid. For this case,

Ẇactual = ηIIT Ẇideal = ηIIT ṁ(P1 − P2)v (5.96)

where ∆T = 0 across the ideal process if no entropy is generated. The entropy
generated for the real process can be solved exactly as we did for the pump
case.

Heat Exchanger

The final continuous flow device we will briefly look at here is the heat ex-
changer, which unlike the compressor, pump, and turbine serves to transfer
heat between two streams. As shown in Fig. 5.11, heat exchangers can oper-
ate in parallel flow or counter flow configurations, both of which transfer heat
continuously along their length. Writing the First Law for control volumes
surrounding each of the streams, we have

��
��ĖCV,B = Q̇−��̇W + [ṁ(h2 − h1)]A (5.97)

and

�
��
�

ĖCV,A = −Q̇−��̇W + [ṁ(h2 − h1)]B (5.98)

because the heat flux leaving one stream is equal and opposite in magnitude
to the heat flux entering the other stream, we can relate these two equations
as
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Figure 5.11: Two common heat exchanger configurations that facilitate a heat
transfer, Q, between two streams.

[ṁ(h2 − h1)]A = −[ṁ(h2 − h1)]B = Q̇ (5.99)

The actual physics determining how this heat transfer occurs is beyond
the scope of this text but is covered in detail in most previous heat transfer
textbooks [Mills]. What Eq. 5.99 tells us, however, is that if we can measure
the enthalpy of either stream at the inlet and outlet, we can determine the
amount of heat transferred between the two streams. In order to compute the
entropy generated from this process, we would need to be able to say something
about the temperature profile along the length of the heat exchanger. This is
dependent on the various parameters of the exchanger itself.

Additionally, heat can only flow where there is temperature difference be-
tween the two streams and the heat flux is proportional to the temperature
difference. For this reason the counter flow configuration is capable of main-
taining a larger temperature difference over the entire length and is therefore
often favored for applications requiring a continuous flow heat exchanger. De-
spite the effectiveness of the heat exchanger, considerable entropy will be
generated in this process as a result of the intentional heat transfer across as
large a temperature difference as possible.
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5.2.3 Continuous Power Cycles

Putting this all together, the previously discussed continuous flow devices can
be used to generate power continuous via numerous different power cycles. In
particular, we will look at what is arguably the oldest known power cycle, the
Rankine Cycle, which underlies the operation of old steam engines and modern
power plants that use geothermal, nuclear, or other external heat sources. We
will also analyze the Brayton Cycle, which is the continuous analog to the
Diesel Cycle. Like the Diesel Cycle, Brayton Cycle utilizes a combustible
fuel source undergoing constant-pressure combustion to generate the thermal
energy necessary to do net mechanical work. Instead of taking place in a
piston, however, the Brayton Cycle uses a continuous compressor and turbine
as configured in Fig. 5.13.

Rankine Cycle

The first known engine was the previously mentioned Aeolipile, which was a
very rudimentary steam engine that uses an external heat source to vaporize
water, causing the whole device to spin and perform mechanical work. Almost
2000 years later, in the 1700’s CE, this cycle was improved upon to create
what is now the modern Rankine Cycle. As shown in Fig. 5.12, a Rankine
Cycle is a closed-loop, continuous power cycle that utilizes a pump, boiler or
heat exchanger, turbine, and condenser. In the ideal cycle, between states
1 and 2, liquid water or some other working fluid in liquid phase is pumped
isentropically to high pressure. Then heat is transferred to the fluid isobarically
between states 2 and 3, first bringing the fluid to its saturation temperature,
then vaporizing the fluid, and finally superheating the vapor, bringing it to
state 3. The superheated vapor is then sent through a turbine where work is
extracted as the vapor expands isentropically to state 4, which is typically at
atmospheric pressure. Finally, between states 4 and 1, heat is rejected and the
vapor condenses back into liquid phase isobarically to reset the cycle.

To analyze the ideal system, we can write the First Law for each process
given our stated assumptions. Starting with the pumping process, we have
from Eq. 5.81 that

Ẇpump = Ẇ 1→2 = ṁ(h1 − h2) (5.100)

= ṁ[c(T1 − T2) + (P1 − P2)v] (5.101)

as no thermal energy transferred in or out of our control volume in the ideal
case.
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Figure 5.12: Ideal Rankine Cycle schematic and T -S diagram.

From state 2 to 3, we can again write the first law to relate the heat
transferred, Q̇in = Q̇2→3 to the other state properties as

��
�˙ECV = ˙Q2→3 −����˙W 2→3 + ṁ(h2 − h3) (5.102)

⇒ Q2→3 = ṁ(h3 − h2) (5.103)

It is important to keep track of what phase the working fluid is at the beginning
and end of this process. While we do not need to know anything about how the
phase change occurs, we do need to be able to fully characterize the state of
the fluid at states 2 and 3 to determine h2 and h3. In the example cycle shown
in Fig. 5.12, state 2 lies outside and to the left of the vapor dome, meaning
that it will be completely in liquid phase in state 2. State 3 lies outside the
dome and to the right, meaning that it will be completely in vapor phase at
state 3. If state 3 instead terminates inside the vapor dome, then we need to
know some additional piece of information about the working - e.g. the total
specific volume or enthalpy - to also then determine the vapor quality.

For the expansion and work extraction process between states 3 and 4, the
ideal work output is given by Eq. 5.72 as
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Ẇturbine = Ẇ 3→4 = ṁ(h3 − h4) (5.104)

= −ṁcpT3

[(
P4

P3

) γ−1
γ

− 1

]
(5.105)

In practice, modern turbine blades can be easily damaged by the formation
of water droplets during the expansion process, and thus Rankine Cycles are
typically operated such that state 4 lies right on the vapor dome or just outside
of it to ensure that the working fluid remains in vapor phase throughout.

With this information, we can compute the First Law efficiency for this
cycle as

ηRankine =
Ẇnet

Q̇in

(5.106)

=
Ẇturbine + Ẇpump

Qin

(5.107)

=
(h3 − h4) + (h1 − h2)

(h3 − h2)
(5.108)

which holds regardless of whether or not the cycle is ideal. For the ideal cycle,
however, we can substitute in our equations for the ideal pump and compressor
work derived here.

For non-ideal Rankine Cycles, we must use the isentropic efficiencies of each
component as previously discussed. Recall, for example, that the isentropic
efficiency of the pump for this example is

ηIIpump =
h2s − h1
h2 − h1

(5.109)

where the s subscript indicates the ideal enthalpy at that particular state.
Typically, we can compute h1 and h2s, and there if we are given ηIIpump, we can
solve for h2 via Eq. 5.109. Via a similar process, we can solve for h4 via the
definition for a given isentropic efficiency for a turbine:

ηIIturbine =
h4 − h3
h4s − h3

(5.110)
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Figure 5.13: Continuous flow power cycle called the Brayton Cycle which is the
continuous equivalent of the Diesel Cycle. Combustion happens from 2 → 3
at constant pressure.

Brayton Cycle

This cycle can be broken up into four main processes. First, air enters the
compressor in state 1, where it is compressed adiabatically to state 2 with a
higher pressure and temperature than in state 1. Next, fuel is injected into
the flow and combusted to add heat to the system isobarically5. Between
states 3 and 4, the hot, high-pressure gas expands adiabatically in a turbine,
which outputs mechanical work and brings the products back to the initial
pressure. Finally, heat is rejected isobarically and the process repeats. The
power required to continuously compress the gas between states 1 and 2 is
typically supplied directly by the turbine itself. Fig. 5.13 shows this process
plotted on both P -V and T -S diagrams, both of which look very similar to
that of the Diesel Cycle.

To determine the First Law Efficiency for this cycle, we can use the re-
lationships we defined in the previous section to relate the various work and
heat transfers for each process to system properties. As with any continuous
power cycle, this efficiency is given by ratio of the net mechanical power, Ẇnet,
to the heat added, Q̇in. For this cycle,

Ẇnet = Ẇturbine − Ẇcompressor (5.111)

= ṁ[(h3 − h4)− (h2 − h1)] (5.112)

5For the ideal case analysis, we will ignore the change in mass due to this fuel injection.
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where it is important to note that even though on the P -V diagram we can
clearly see PV work being done for both constant pressure processes, this
work is not extracted as mechanical work and instead captured by the change
in enthalpy over those processes. This is different from the Diesel Cycle where
mechanical work is extracted during the constant-pressure combustion as it is
happening directly in the piston.

For the Brayton Cycle, the heat added is equal to

Q̇in = ṁ(h3 − h2) = ṁcp(T3 − T2) (5.113)

We therefore compute the ideal efficiency directly as

ηBrayton =
Ẇnet

Q̇in

(5.114)

=
(h3 − h4)− (h2 − h1)

h3 − h2
(5.115)

=
(h3 − h2)− (h1 − h4)

h3 − h2
(5.116)

= 1− h1 − h4
h3 − h2

(5.117)

= 1− T1 − T4
T3 − T2

(5.118)

= 1− T1
T2

(T4/T1 − 1)

(T3/T2 − 1)
(5.119)

where we can relate T4/T1 to T3/T2 by using the adiabatic expansion and
compression relationships as we did with the Otto Cycle analysis to show that

T4
T1

=
T3
T2

(5.120)

Thus,

ηBrayton = 1− T1
T2

(5.121)

= 1−
(
P1

P2

) γ−1
γ

(5.122)
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which interestingly looks very similar to the Otto Cycle efficiency. Again, this
is due to the fact that no mechanical work is extracted during the combustion
itself.

For the non-ideal or non-isentropic Brayton Cycle, the analysis becomes
much more complex as we must model each process using the relationships we
previously established. Starting with the compressor work, we have

Ẇcompressor = ṁ(h2 − h1) (5.123)

=
1

ηIIc
ṁcpT1

[(
P2

P1

) γ−1
γ

− 1

]
(5.124)

where ηIIc is the given isentropic efficiency of the compressor. Similarly, we
have for the turbine work that

Ẇturbine = ṁ(h4 − h3) (5.125)

= ηIIT ṁcpT3

[
1−

(
P4

P3

) γ−1
γ

]
(5.126)

which only holds for a perfect gas. If instead cp is a function of temperature,
care must be taken to evaluate h4 and h3 using empirically-derived formulae.

We can then determine the thermal energy input by looking at the heat
released in the combustion reaction itself between states 2 and 3. Since this
is a constant pressure combustion process, we can model this heat release
by the change in enthalpy across the products and reactants. We can then
compute the adiabatic flame temperature under these conditions to determine
the temperature of the reaction products at state 3 and finally compute the
First Law Efficiency by solving these equations simultaneously. Note that to be
completely accurate, we would also need to take into account that for an actual
power system, the specific heat of the working fluid(s) will not be constant
with temperature, especially over the typically wide temperature range these
systems operate under. In practice, computer simulations must be used to
characterize realistic power systems. Real power plants that combust methane
to generate mechanical power based on the Brayton Cycle do so at efficiencies
up to 55%. These plants effectively recover much of the enthalpy contained
within the hot gas exiting the turbine to extract work over multiple stages.
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5.3 Gibbs Free Energy

Like we did with enthalpy, we will now define another quantity that is a combi-
nation of state properties, which as we will show has some utility for analyzing
systems. To help characterize the amount of “useful” work, which we will de-
fine shortly, we will define a quantity called the Gibbs Free Energy, G, as

G ≡ H − TS = U + PV − TS (5.127)

or in differential form as

dG = dH − d(TS) = dU + d(PV )− d(TS) (5.128)

For a process in which both the temperature and pressure are held constant,
this can be further reduced:

dG = dU + d(PV )− d(TS) (5.129)

= dU + P dV +���V dP − T dS −���S dT (5.130)

= dU + P dV − T dS (5.131)

Following our methodology for determining the physical meaning of en-
thalpy, we can write the First and Second Law for an arbitrary steady-state
continuous process that exchanges heat and work with environment at (Pa, Ta)
and maintains constant pressure and temperature throughout:

�
��ĖCV = Q̇− Ẇ + ṁ(h1 − h2) (5.132)

and

�
��ṠCV =

Q̇

Ta
+ ṁ(s1 − s2) + Ṡgen (5.133)

We can combine Eqs. 5.132 and 5.133 and solve for Ẇ , giving us

Ẇ = ṁ(h1 − h2)− ṁTa(s1 − s2)− TaṠgen (5.134)

= ṁ[(h− Tas)1 − (h− Tas)2]− TaṠgen (5.135)

= ṁ(g1 − g2)− TaṠgen (5.136)

where g is the specific Gibbs Free Energy in units of energy per mass. This
expression tells us that the maximum work that can be extracted from a
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power cycle requires that each process be reversible and thus that Ṡgen = 0.
The maximum work in this case can be expressed simply as

Ẇmax = ṁ(g1 − g2) (5.137)

5.3.1 Availability

The Gibbs Free Energy again highlights the fact that the work that can be
extracted from a stream over a process is limited directly by any irreversibility
generated by the system. This relationship is derived directly from the Second
Law, but it serves an important purpose to help illuminate this concept from
another angle. This concept can be formalized to characterize the maximum
amount of work that can be extracted from a system in communication with
the environment at (Pa, Ta). A quantity called the Availability or Exergy, Ξ,
is defined as

Ξ ≡ E + PaV − TaS (5.138)

which allows us to characterize the “usefull” mechanical work that can be
extracted generally as

Wuseful = −∆Ξ− Ta∆Sgen (5.139)

= −(∆E + Pa∆V − Ta∆S)− Ta∆Sgen (5.140)

by the Second Law.
Throughout all of this analysis it is important to understand that in terms

of its conversion to mechanical work, not all thermal energy is treated equally.
We have from the Carnot Efficiency of a reversible heat engine that the greater
the difference in temperature between the hot and cold thermal reservoirs, the
more work can be extracted for the same thermal energy input. As such,
thermal energy has this notion of quality attached to it, with thermal energy
at a higher temperature relative to its environment having a higher quality.

5.3.2 Chemical Equilibrium

In all systems, but in continuous flow power system in particular, we may have
chemical reactions that are proceeding in both the forward and backward di-
rections simultaneously. The rates of both reactions depend on the local con-
centrations of the products and reactants as we learned back in Chapter 3. We
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also talked about the equilibrium conditions of the reaction being established
from the temperature-dependent rate constant, kp(T ) as

∏
i

Xνi
i

(
P

P0

)∑
i νi

= kp(T ) (5.141)

At the time, we did not yet have the tools to derive where the mysterious kp
constant came from, but now that we have defined the Gibbs Free Energy, we
can establish that the equilibrium conditions for a chemical reaction actually
come from the even more fundamental notion that at equilibrium, the total
Gibbs Free Energy of this system is minimized, or that

dG = 0 (5.142)

To understand why this is the case, we need to augment the First Law
equation we have been using up until this point to also include the change in
energy that results from a change in the number of moles of a species in a
reaction:

dU = dQ− dW +
∑
i

µi dNi (5.143)

where µi is the chemical potential energy and dNi the change in number of
moles of species i. We sum over all species to get the total change in chemical
potential energy. The reason we did not include this before in our calculations
is that by definition, at equilibrium, the total change in chemical potential
must be zero and therefore this new term in the First Law expression is zero.
That is,

µ1 dN1 + µ2 dN2 + ... = 0 (5.144)

Substituting in our definition for dG in Eq. 5.128 into Eq. 5.143, we get

d(U + P dV − T dS)︸ ︷︷ ︸
≡dG

= dQ−���P dV +
∑
i

µi dNi +���P dV − T dS (5.145)

and then substituting our reversible Second Law equation in for dQ:

dG =���T dS +
∑
i

µi dNi −���T dS (5.146)

=
∑
i

µi dNi (5.147)
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which is called the Gibbs-Duhem equation for constant pressure and temper-
ature. Then at chemical equilibrium

dG =
∑
i

µi dNi = 0 (5.148)

Recall that by mass conservation, we have the relationship that for a chem-
ical reaction, the rate of change of any one species in the products must be
equal in magnitude and the opposite sign of the rate of change of any one
species in the reactants. This is expressed simply as

−dNi

νi
=
dNj

νj
≡ dλ (5.149)

where i is some reactant species and j is some product species, ν is the sto-
ichiometric coefficient for the particular species, and dλ is some constant.
Therefore, Eq. 5.148 is equivalent to

dG =

(∑
i

µiνi

)
dλ = 0 (5.150)

and at equilibrium

∑
i

νiµi = 0 (5.151)

Digging a bit deeper, we can relate this equilibrium constraint to state
properties by using the definition that G = H−TS as well as the constitutive
relationships for an ideal gas:

G =
∑
i

µiNi = H − TS (5.152)

=
∑
i

Ni

[
h◦f,i +

∫ T

T0

cp,i dT − T
(
s◦i +

∫ T

T0

cp,i dT

T
−R ln

Pi
P0

)]
︸ ︷︷ ︸

≡µi

(5.153)

where it is clear that the term multiplying Ni is equivalent to µi by comparison.
Note that here, Pi is the partial pressure of gas species i and is equal to
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Pi = XiP (5.154)

by Dalton’s Law. We can therefore rewrite our expression for µi using the
total pressure P as

µi =

[
h◦f,i +

∫ T

T0

cp,i dT − T
(
s◦i +

∫ T

T0

cp,i dT

T

)]
︸ ︷︷ ︸

≡µ+i (T )

+RT

(
ln
P

P0

+ lnXi

)
(5.155)

or

µi = µ+
i (T ) +RT ln

(
P

P0

)
+RT lnXi (5.156)

where the first term is defined as the purely temperature-dependent chemical
potential energy, µ+

i . Applying our equilibrium condition and pulling out the
pressure and concentration terms, we have

∑
i

µiνi =

(∑
i

νiµ
+
i (T )

)
+RT

[
ln

(
P

P0

)∑
νi

+
∑
i

lnXνi
i

]
= 0 (5.157)

Rearranging, we find

∏
i

Xνi
i

(
P

P0

)∑
νi

= exp

(∑
νiµ

+
i (T )

RT

)
≡ kp(T ) (5.158)

which gives us an expression for kp(T ). In practice, this quantity, as well as
the chemical potential energy, is computed from empirical data.

Note that Eq. 5.156 is only valid for an ideal mixture, or one that obeys
Raoult’s Law, discussed previously in Section 3.2.3. For non-ideal mixtures,
this expression is modified to include an empirically derived activity coefficient,
γ, such that

µi = µ+
i (T ) +RT ln

(
P

P0

)
+RT ln γiXi (5.159)

not to be confused with the heat capacity ratio.
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5.4 The Anthropocene

In the story of climate change, the study of the thermodynamics and engineer-
ing behind heat engines and power generation brings us into the Anthropocene,
a new geological epoch in which the Earth has been dramatically altered by
human activity. From the discovery of fire nearly 2 million years ago to the
mass combustion of fossil fuels in the present day, the accelerating expansion
and energy consumption has pushed the Earth’s many feedback loops so far
off their natural equilibrium that the evidence can be seen in virtually every
ecosystem on the planet, necessitating the demarcation of a new age. Thinking
hypothetically to what the geologists of the far future might uncover about
this era, it is likely that their geological observations - even in the absence
of digital records - will point to an extremely short period of time in which
the Earth experienced a major increase in both carbon dioxide concentrations
and average global temperature, coupled with an equally severe reduction in
sea ice and biodiversity. Additionally, given the wealth of detailed informa-
tion we can glean about the Earth’s history over the past 4 billion years, it
might also be clear to the future geologists that this shift occurred in such
way that had been yet unprecedented. They might be able to tell that this
progression had to have occurred external to the natural carbon cycles that
had governed the evolution of the planet up to that point with even more
sudden and far-reaching than effects than those of the Cambrian Explosion.

Focusing back on the present, as a moment of self-awareness, we should
recognize that the thermodynamical principles we have learned in this book
thus far and their many scientific and engineering applications are nearly fully
responsible for the transition from the Holocene to the Anthropocene. In fact,
this particular branch of physics was rapidly developed largely in response to a
growing demand for mechanical and later electrical power driving productivity
and progress over the last several hundred years. From consumer products
to military applications, thermodynamics has been applied at nearly every
level in the development of what we consider modernity - including an era-
defining change in our climate. As we continue on with this material, we will
move to focus on the sustainable application of thermodynamics and the many
technologies we may need to change course or in the event of a failure to do
so - survive.

Before launching into potential solutions, however, we must take a closer
look at the causes and effects of climate change to better understand the
problem itself. First, as we learned in Chapter 2, as more CO2, CH4, and other
greenhouse gases are added to the atmosphere, the global mean temperature
rises as a result of the greenhouse effect - the atmosphere becomes a more
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effective insulator, trapping ever more thermal radiation from the Sun. We can
measure the atmospheric CO2 concentrations, for instance, and show that it is
in fact driving an increase in the global mean temperature. The relationship
between the two are not necessarily linear, however, as there are numerous
positive feedback loops in the Earth’s climate system that are both driven
by global warming and human activity in such a way that results in even
more warming than we would expect from just the radiative forcing from the
greenhouse effect alone. For example, as sea ice melts, the once reflective
white surfaces at the poles give way to a dark blue ocean that is more effective
at absorbing incident solar radiation. At the same time, human expansion
is resulting in mass deforestation that greatly hampers the Earth’s ability to
take up excess CO2.

The important questions then become, 1) what is the exact relationship
between greenhouse gas emissions and temperature rise? and 2) what are the
ramifications of a warmer planet? Looking at the former, climate scientists typ-
ically frame this problem specifically as, if we double the concentration of CO2

and equivalent greenhouse gases in our atmosphere relative to pre-industrial
levels, what is the corresponding temperature rise? Taking the global average
pre-industrial CO2 concentration to be about 280 ppm, the question then is,
what happens if we get to 560 ppm? Studies as early as 1979 have shown that
this temperature rise will be somewhere between 1.5-4.5 °C, with more recent
studies reducing this uncertainty to 2.5-3.2 °C [1]. As of writing this book
in mid 2020, the global average CO2 concentration is between 410-420 ppm,
roughly halfway to the doubling point. Already, the global mean temperature
has risen 1.1 °C above pre-industrial levels.

To answer the second question about what that temperature rise induced
by greenhouse gas emissions means for the Earth and its various ecosystems,
we can look to a comprehensive report issued by the Intergovernmental Panel
on Climate Change (IPCC), a group of the world’s leading climate scientists
and economists. In their 2018 special report (SR15), they detail and compare
the effects of both a +1.5 °C and +2 °C warming scenario, as well as make
the well-supported case that the roughly 1 °C warming between 1850 and
2018 has already negatively impacted a wide swath of the Earth’s climate
system. Current observed effects include more frequent and severe heatwaves
over virtually every landmass, more frequent heavy precipitation events and
severe weather events, increased drought in the Mediterranean region, sea
level rise, and a loss of biodiversity in many biomes, among many more. With
an additional 0.5-1 °C warming, these consequences will likely be magnified,
placing further strain on the many ecosystems that simply have not had time
to adapt. Additionally, with this additional warming and associated increase
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Figure 5.14: Plots showing how the carbon dioxide concentrations in the at-
mosphere and associated mean surface temperature increase can linger for over 
1000 years even after emissions cease [3]. Image courtesy of Susan Solomon, 
Gian Kasper Plattner, et al. "Irreversible Climate Change due to Carbon Dioxide 
Emissions." PNAS. February 10, 2009. 106 (6) 1704–1709.

in carbon dioxide concentrations ocean acidification is expected greatly reduce 
the productivity of the oceans, threatening the food security of a major portion 
of the Earth’s human population [2].

This report also showed that while the least of these effects can no longer be 
avoided, there remains a significant difference in their severity between the 1.5 
and 2 °C warming scenarios. Limiting the warming to 1.5 °C - which is far lower 
than the well-established 2.5-3.2 °C climate sensitivity value we are hurtling 
towards - stands to greatly reduce the threat of mass extinction of insects, 
plants, and vertebrates, limit sea level rise, comparatively reduce the threat of 
severe forest fires, and even help limit the spread of disease. As detailed in this 
report, the case for preventing additional warming past 1.5 °C is well made, and 
though the Earth would still be left with many detrimental impacts of climate 
change that are already coming into focus, we made be able to avoid the worst 
of them. Regardless, there is yet some uncertainty surrounding several tipping 
points that, for example, would result in the majority of the Greenland and 
Antarctic ice sheets melting, resulting in a multi-meter sea level rises over next 
several centuries - which against the backdrop of even the human timeline, let 
alone evolution, is troublingly short.

The final point to reiterate about the Anthropocene here is that in some 
sense, humanity has pushed well past the point of no return on its far-reaching 
alteration of the natural world. Report after report details the loss of biodiver-
sity, increase in extreme weather events, and more frequent flooding, among 
others, that are at this point historical - there is no hypothetical climate change. 
The climate has changed and we are at the point where we can play a role in 
limiting this change. What is important to note is that simply stop-ping carbon 
emissions, while extremely important, will not undo what has
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Figure 5.15: Global carbon emissions broken down by sector [source].

already been done. In a landmark study in 2009, Solomon et al showed that this
climate inertia can be quantified. As illustrated in Fig. 5.14, without removing
CO2 from the atmosphere, its concentration will remain at its ele-vated value in
the atmosphere for over 1000 years after the emissions cease, with the
associated mean surface temperature rise stabilizing at its elevated value as well
[3]. Indeed, we are pushing well past the limits of the Earth’s own carbon
feedback loops to regulate these added emissions as we approach a new
equilibrium, further justifying giving this era its own name.

5.4.1 Current Climate Change Drivers

So to recap, we know with a high degree of certainty that humans are emitting
more CO2 that can be taken up by the Earth’s natural carbon cycle, and that
a doubling of concentrations above pre-industrial levels to 560 ppm would
result in a temperature rise of 2.5-3.2 °C with a high degree of certainty. 
As the IPCC report shows, an Anthropocene characterized by even a 1.5-2
°C warming would be bad news for a majority of the Earth’s ecosystems and 
would take thousands of years to recover from via the Earth’s natural feedback
mechanisms. That leaves us with the question of how do we stop this?

Before getting into the strategies for mitigating the ensuing climate crisis, it
is first necessary to take a more detailed look at exactly where exactly these
emissions are coming from. If we look to Fig. 5.15, we can see that the majority
of the Earth’s carbon emissions come from the energy sector and are driven by
the combustion of fossil fuels in very heat engines we have learned about
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Figure 5.16: Global annual CO2 emissions for each major carbon-intensive
economic sector [IEA].

here. The International Energy Agency (IEA) maintains detailed reports on
the global energy consumption and greenhouse gas emissions broken down by
a variety of different categories and metrics. Fig. 5.16 shows a breakdown
of global annual CO2 emissions from 1990 to 2017 for key economic sectors.
As is shown here, the top three most carbon-intensive sectors are electricity
and heat production, transportation, and industry, which includes emissions
associated with the production of raw materials and commodities6.

Currently, the carbon emissions associated with electricity and heat pro-
duction as well as transportation come from the direct combustion of fossil
fuels. Of these emissions, we can see from Fig. 5.17 that as of 2017, the ma-

6Aluminum production for example has significant carbon emissions from the electro-
chemical reaction that reduces aluminum from aluminum oxide.
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Figure 5.17: Global annual CO2 emissions for each major carbon-intensive
energy source [IEA].

jority still come from coal and oil, which is driven in part by the high carbon
intensities of those fuel sources as well as their global ubiquity, as also illus-
trated in Fig. 5.19. The growth of natural gas emissions shown in this figure
are largely due to the increasing prevalence of natural gas combustion plants
that are displacing coal power plants, especially in the United States. The
corresponding dip in coal emissions since 2013 are primarily a result of this
shift towards natural gas usage as well and less so a result of the adoption of
renewable energy sources, which we will soon discuss.

It is also important to note that in Fig. 5.17, the annual global carbon
emissions associated with the combustion of fossil fuels continue to increase,
despite the greater adoption of less carbon-intensive fuel sources and more
efficient infrastructure. This disparity illustrates the second primary issue at
play - the more efficient consumption of energy grows the global economy,
which in turn drives more energy consumption. As shown in Fig. 5.18, the
global annual energy consumption in nearly every economic sector is increasing
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Figure 5.18: Total global annual energy consumption broken down into various
economic sectors [IEA].

and so too is the total global annual energy consumption, making climate
change mitigation an extremely challenging problem. This phenomenon helps
to explain why in Fig. 5.19, we see the yearly consumption of fossil fuels
increasing steadily. These trends are especially alarming given that there is
an upper limit on cumulative carbon emissions since the Industrial Revolution
associated with limiting global warming to a safer temperature increase. From
just these four plots by IEA, we can paint a sobering picture of the total issue
wherein both energy consumption and the proportional usage of fossil fuels
are increasing.

This landscape consisting of these multiple compounding issues requires so-
lutions that address both the reduction of energy consumption and greenhouse
gas emissions. As we will see, however, these measures alone will likely not be
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Figure 5.19: Total global primary energy supply broken down by source, show-
ing that even though renewables are expanding, so too fossil fuels [IEA].

enough to mitigate the crisis and additional CO2 will need to be taken from the
atmosphere. It is perhaps safe to say that the tools built using the knowledge
garnered through the study of thermodynamics have largely brought us to this
critical tipping point and continue to push us well into uncharted territories.
As we will soon see, however, these same principles might be able to be used
to mitigate this crisis.

5.5 Summary

In this chapter we bridged the short gap between the discovery of fire and the
first use of chemical combustion reactions to generate power, as well as the
even shorter gap between what is considered the Industrial Revolution and the
present self-ascribed Anthropocene. We took a detailed look at how the First
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and Second Laws of Thermodynamics can be used to construct heat engines to
continuously convert the thermal energy released in combustion into mechan-
ical work to meet the world’s ever-growing energy demands, which account
for the vast majority of anthropogenic greenhouse gas emissions. In looking at
external and internal combustion engines, as well as continuous flow power sys-
tems, we developed a framework for determining how much mechanical work
can be extracted for a given input of thermal energy, a relationship that de-
fines the carbon emissions per unit output of energy associated with different
fuel sources and power system architectures. Finally, we discussed the harm
that these emissions have caused through climate change and the importance
and urgency of reducing them to avoid a 1.5 °C warming.

Up to this point in the story of climate change, we have answered many of
the questions pertaining to how we got here and why this is such an unprece-
dented and important problem to solve. Naturally then, the next question to
tackle is how do we solve it?
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