
Chapter 4

Entropy and a Move Towards
Chaos

In the timeline of our Big History, the age of humans spans an incredibly short
stretch of time - just 2 million years. And within that time period - which is
bookended on one side by the discovery of fire and on the other with the present
day - the age of industrialization and the ensuing anthropocene spans only the
past 200 years, whose brevity in the greater context is almost unimaginable.
Yet the impact of industrialization, for all its seeming transience, has left its
permanent mark on the Earth’s climate. In what might have otherwise been a
natural cooling cycle for the planet driven by the slight precession of Earth’s
axis of rotation [1], we instead find the average global temperature continually
increasing as a result of increasing carbon dioxide concentrations in the atmo-
sphere. We know now for certain that this bolstering of the greenhouse effect
is directly caused by human activity, but how did we get here?

In this chapter, we will begin to answer this question by diving deeper into
the thermodynamics of the “unnatural” world - in particular, the physics un-
derlying the breakthroughs that have enabled virtually everything wonderful
and terrible in our modern societies. We will first develop an understand-
ing of the conversion between thermal energy and mechanical work and the
limitations therein posed by the Second Law of Thermodynamics. Next we
will introduce the concept of entropy, a fundamental physical quantity crucial
to understanding engines and all other types of thermodynamic cycles that
represents a move towards not just chaos and disorder, but to equilibrium
as well. As we will see, the move towards a more chaotic equilibrium is one
that is difficult or impossible to undo under certain conditions. Finally, we
will begin to discuss the relationship between this increase in entropy and the
work required to undo it to help explain both the quantity of anthropogenic
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4.1. COUPLED THERMODYNAMIC SYSTEMS

greenhouse gas emissions and why it is so difficult to remove them from the
atmosphere, further compounding the issue.

4.1 Coupled Thermodynamic Systems

We have spent the better part of this book up to this point discussing energy
and the many ways it can be converted from one form to another. While the
delineations between certain forms of energy arise from fundamental differences
in physical phenomena - for example gravitation potential energy vs. chemical
potential energy - others represent only a difference in perspective and scale.
In particular, we have shown that what we consider to be thermal energy is
really the average kinetic energy of an ensemble of particles, and the reason
for differentiating between the two is mainly for practical purposes. We simply
cannot measure the kinetic energy of 1023 or so particles, but we can rather
easily measure their temperature. Similarly, at the macro scale, momentum
transfer from individual kinetic particles to the some external object results in
net energy transfer via mechanical work. Again, instead of keeping track of the
momentum exchange of the individual particles, we can define the emergent
property of pressure to better facilitate our understanding and analysis.

To expand upon this relationship, we can make a further distinction be-
tween the ways in which thermal energy and mechanical work can be ex-
changed. First, an uncoupled thermodynamic system is one in which mechan-
ical energy can be converted into thermal energy but not vice versa. For
example, a block sliding on a horizontal (i.e. normal to gravity) surface with
friction will slow down, and its temperature will increase as a result. This dis-
sipative process cannot happen in reverse, however - no matter how much heat
we add or remove from the block, we cannot change its macroscopic kinetic
energy. In this case, the block and surface together form an uncoupled system
in which heat transfer alone cannot be used to apply external mechanical work.

Gases on the other hand can expand predictably when heated as we know
from the ideal gas law. In this way, the addition of thermal energy to our gas
system can directly result in mechanical work as done by the integral of P dV ,
depending on the mechanical constraints of the system. Conversely, if we do
work to compress a gas adiabatically - no heat transfer to its surroundings -
for example, its temperature will increase. We call such a system a coupled
thermodynamic system, as mechanical and thermal energy can just as easily
transform from one to the other in either direction. In reality, all substances
change in volume when heated, but for solids and liquids, this effect is of-
ten minimal enough for the work done in the expansion or contraction to be
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4.2. PROCESSES AND CYCLES

Figure 4.1: An aeolipile, which is considered to be the first engineered coupled 
thermodynamic system that converts thermal to mechanical energy. Virtru-
vius first described this device in the first century BCE. This image is in the 
public domain.

ignored, especially compared to that of a gas for the equivalent heat transfer. To 
provide some context for our story of climate change, the discovery and 
subsequent engineering of coupled systems by humans dates back two 
thousands years to ancient Egypt, where as discussed in Chapter 1, it was 
discovered that heating water in a partially enclosed container creates high-
velocity water vapor at its opening that can be directed in such a way as to 
cause the container to rotate. Fig. 4.1 shows an illustration of this early device - 
called an aeolipile - which was primarily used as a parlor trick in its early 
conception. In this coupled system, the fluid that enables this coupling - in this 
case the water vapor - is called the working fluid. It was not for another 1500 or 
so years that this concept would be formalized as a heat engine and applied for 
the purpose of generating power.

4.2 Processes and Cycles

Before diving into specifics about heat engines and their many related devices, 
we need to first reiterate a few concepts and terms, as well as define several 
more to frame our understanding. First, recall that a thermodynamic process 
represents some transfer or series of transfers (e.g. heat or work) that takes
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Figure 4.2: Example process of parcel of air being heated by Earth’s surface,
expanding, rising, and cooling.

a thermodynamic system through a series of states. We can characterize the
system at each state using state properties that do not depend on the history
of the system (e.g. temperature, enthalpy, internal energy, pressure, etc.).

For example, if we look at a 1 kg parcel of air at T0 near the Earth’s
surface, which is at some elevated temperature Ts > T0 due to solar radiation,
the air will expand, rise, cool, and contract, as shown in Fig. 4.2. At any given
time, the state of this parcel can be given by properties like temperature,
pressure, volume, density, enthalpy, and internal energy. We can pick two of
these properties and plot the process as a function of those properties. For
this example, Fig. 4.3 is a sketched property plot that shows this process on
T -V axes. States 1, 2, and 3 are represented as points on this plot and the
transitions between them as curves with arrows indicating process directions.
As indicated here, those transitions are driven by heat and work transfer to and
from the environment. In reality, if we zoom in on the lines, we would actually
find an infinite number of points representing individual states; however, if
we know the constitutive relationship between the state variables for each leg
of the process, we can abstract away those points as members of a known
curve. This abstraction allows us to focus on the states that are perhaps more
relevant to our system or at least easier to nail down (e.g. the initial or final
states).

In our air parcel example, because we know that our state transition curves
are actually made up of infinitely many individual states, even though the gas
is expanding and moving, we can think of it as being quasistatic. That is
to say, in between adjacent states on the plot, the system reaches internal
equilibrium briefly before moving onto the next state. For an ideal gas, this
means at every instance, the properties are homogeneous (uniform) throughout
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4.2. PROCESSES AND CYCLES

Figure 4.3: Example thermodynamic process for air parcel system plotted as
Temperature-Volume curve. Note states and 3 do not necessarily have the
same temperature and these curves are drawn arbitrarily for some unknown
process.

the control volume. This assumption is valid typically if the internal dynamics
of the system are much faster than the macro-level state changes. For instance,
for all fluids, pressure equilibrates at the speed of sound, which for air is about
343 m/s. In many cases, this is much faster than the gas is moving on a
macro-level1. For our air parcel example, this is certainly the case.

4.2.1 Reversibility

As we have hinted at thus far, the degree to which a transfer between thermal
and mechanical energy can be undone is extremely important to our under-
standing of thermodynamic systems. Though a process may be quasistatic,
it is not necessarily reversible. In this context, reversibility is achieved when
the system is not just at internal equilibrium within itself - which is the re-
quirement for quasistatic - but also with the environment in all states and
sub-states. We can illuminate this concept with a few examples of irreversible
processes. Again, consider a block sliding across a surface with some friction.
We know that in this process, kinetic energy will be converted to thermal en-
ergy, raising the temperature of the block. As we previously discussed, there
is no way that process can happen in reverse in such a way that restores the

1When you move particles faster than the speed of sound, you get a shock wave.
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Figure 4.4: Irreversible gas diffusion process.

system to some previous state where it was cooler and had more kinetic energy.
Friction and other dissipative processes can only generate heat and are thus
irreversible.

Next consider heat transfer between a hot and cold object. We know
experientially that heat moves from the hotter object to the colder object as
long as there is a difference in temperature between the two. Microscopically,
this is due to the simple fact that heat is transferred by vibrating, translating,
or rotating particles exchanging kinetic energy with one another. On average,
particles in the hot block will have more kinetic energy than those in the colder
block, and therefore intuitively, the net exchange in kinetic energy will tend
to go in one direction - hot to cold. In much the same way as our sliding block
example, there is no way to undo this process. The transfer of heat, as long
as there is a difference in temperature, can only go one way. A slower moving
object colliding with a faster moving object will never result in the faster object
leaving the collision with more kinetic energy than it started with. Thus, in
general, heat transfer over a finite temperature difference - where adjacent
particles have different average kinetic energies - is irreversible.

Finally, consider a container that is initially partitioned such that there
is some gas on one side and a vacuum on the other as shown in Fig. 4.4. If
we remove the partition all of a sudden (such that we do not do any work or
transfer any heat), the gas will move to equilibrate and will eventually fill the
entire container. In order to undo this, each particle would need to migrate
on its own back to the left side of the container, and while this is theoretically
possible, the statistics make it so unlikely that we can safely expect this to
not happen in a reasonable time frame. Therefore, this process of diffusion is
also irreversible for all practical purposes.

So in general, an irreversible process is one in which the physics or the
statistics prohibit the system going back to an earlier state without needing
to reverse time itself. Conversely, a reversible process can be restored to a

100
OCW V1



4.2. PROCESSES AND CYCLES

previous state via heat or work transfer, which requires that the system al-
ways be in equilibrium with its environment and that no dissipation occurs.
This mutual equilibrium requires that there never be a temperature or pressure
difference across the system boundaries, which ensures that any heat transfer
happens across zero temperature difference and any work transfer would occur
slowly and smoothly with no dissipation. In our previous gas diffusion exam-
ple, if we instead moved the partition to the right extremely slowly until the
gas filled the container, we could reverse this, by moving the partition back
to the left. This is a subtle difference, but because we are changing the state
in infinitesimally small increments and can always characterize the state using
the temperature and density of the gas, we can actually return to the prior
equivalent states via the reverse of this process. We will explore this difference
analytically later in this chapter, but for now it is important to understand
this distinction intuitively.

In reality, no process perfectly reversible. There will always be some dis-
sipation and heat transfer to the environment across some temperature differ-
ence. In some cases, the assumption of reversibility is a good one, but it is
not always the case. As it turns out, however, this does not prohibit us from
analyzing most thermodynamic systems of interest. In fact quantifying this
level of irreversibility is extremely important in characterizing systems that
convert energy from one form to another and is where we are heading.

4.2.2 Common Processes

In this chapter and going forward, it will be helpful to classify processes by the
assumptions we make about them. Specifically, we will talk about processes in
which one state variable is held constant throughout or in which an assumption
is made about an interaction (or lack thereof) between the system and its
environment. For example, we have already learned about adiabatic processes
in which no heat is transferred between the system and its environment. In
reality, no such process is truly adiabatic, but for systems that undergo very
rapid changes compared to the timescale of heat loss to the environment, this
is often a good approximation.

For changes in state that hold one particular state variable constant, we
will use the following nomenclature:

1. Isochoric = Constant volume2

2. Isobaric = Constant pressure

2From our definition of work, W , this ensures that dW = 0.
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Figure 4.5: Types of processes plotted on a P -V diagram for the same initial
pressure.

3. Isothermal = Constant temperature

More generally, we can also define a process to be polytropic in which the
state can be described by:

PV n = constant (4.1)

which for an ideal gas, has the following equivalencies to our defined terms:

1. n = 0 for isobaric process (PV 0 = P = constant)

2. n = 1 for isothermal process (PV = nRT = constant)

3. n = γ for reversible adiabatic process

4. n very large for isochoric process

On our property plots, we can represent these various types of processes
as straight or curved lines. These curved lines are typically called isotherms,
adiabats, isobars, and isochors, and examples of each are shown here in Fig. 4.5
on a P -V diagram.
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Figure 4.6: Thermodynamic cycle example with final and initial states being
equivalent. Here the volume contained within the curve is the net work done
by the system,

∮
P dV .

4.2.3 Cycles

A process or series of processes where the initial and final states are equivalent
is called a cycle and is the foundation for the modern human applications of
thermodynamics. Cycles can be open or closed with mass potentially entering
or exiting the control volume, but the important requirement is that the start-
ing and end points share an equivalent state, meaning they have identical state
properties even though the system may contain a different set of particles.

Fig. 4.6 shows the P -V diagram for an arbitrary cycle that goes between
two states. Because work is given as

W =

∫
P dV (4.2)

the area inside a closed curve on P -V plot tells us exactly the net work, Wnet,
done by the system over a single cycle. Expressed mathematically,

Wnet =

∮
P dV (4.3)

and specifically for the example in Fig. 4.6,
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Wnet =

∮
P dV =

∫ 2

1

P dV +

∫ 1

2

P dV (4.4)

For a general cycle that can be represented by a closed contour, we can
apply the first law over the entire cycle. Because the final and initial states
are equivalent for this case, the change in internal energy, ∆U , (and all other
state properties) over the whole cycle must be 0, as

∆U = Ufinal − Uinitial = 0 (4.5)

applying the first law for our system therefore yields

��
�∆U = Qnet −Wnet =

∮
dQ−

∮
dW (4.6)

and thus ∮
dQ =

∮
dW (4.7)

which means that the sum of all work transfers in and out of the system must
equal the sum of all heat transfers in and out of the system over one complete
cycle.

Carnot Cycle

Cycles can also be classified by their degree of irreversibility. A perfectly
reversible cycle is one in which each process is carried out reversibly - with
no dissipation and the system in constant thermal and mechanical equilibrium
with its environment. One such reversible cycle is called the Carnot Cycle,
which is shown plotted on a P -V diagram in Fig. 4.7. The ideal closed Carnot
Cycle, as shown in Fig. 4.8, operates between two thermal reservoirs3, at
temperatures TH and TL, and is carried out as follows:

1. From states 1 → 2, thermal energy is transferred to a gas isothermally
at TH in such a way that the temperature difference between the heat
source and the system is always zero. To maintain constant temperature,
the gas must expand and do some work.

2. From states 2→ 3, the gas expands adiabatically, bringing its tempera-
ture down to TL.

3a body with a theoretically infinite heat capacity
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4.2. PROCESSES AND CYCLES

Figure 4.7: Carnot Cycle plotted on P -V diagram. Processes 1 → 2 and 
3 → 4 are carried out isothermally, while 2 → 3 and 4 → 1 are carried out 
adiabatically [source]. This image is in the public domain.

3. At its maximum volume at state 3, thermal energy is transferred isother-
mally at TL from the gas to the heat sink in much the same way as step
1, bringing the gas to state 4.

4. Finally, from states 4→ 1, the gas is compressed back to its initial state
at TH adiabatically.

In the ideal case, each of these processes is carried out infinitely slowly to
ensure no dissipation occurs and that at no point there is heat transfer across a
temperature difference. When the temperature of the gas does change, it does
so adiabatically. Consequently, this cycle would not be practical as it would
take an inordinate amount of time to complete a single loop; however, it serves
an important purpose as the theoretical upper limit of how much work can be
extracted from an input of thermal energy to a cyclical process.

What has been implicit but not stated in our discussion thus far is that
thermodynamic cycles provide the opportunity to continuously convert ther-
mal energy to mechanical work and vice versa. It therefore makes sense to
ask, how much energy do we get back compared to how much we put in? To
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4.2. PROCESSES AND CYCLES

Figure 4.8: Carnot Cycle diagram. Ideal gas is in thermal communication with
two different thermal reservoirs at TH and TL respectively.

answer this for the Carnot Cycle, we can start by writing the First Law for
the cycle:

���
�∆Ucycle = Qnet −Wnet = 0 (4.8)

where ∆Ucycle = 0 since the initial and final states are equivalent. The net
heat transfer Qnet and work transfer Wnet are given as

Qnet =

∮
dQ = Qin −Qout (4.9)

= Q1→2 −Q3→4 (4.10)

Wnet =

∮
dW = Wout −Win (4.11)

= W 1→2 +W 2→3 −W 3→4 −W 4→1 (4.12)

We can define the efficiency, η, of the cycle as the ratio of the net work
output to the heat added to the cycle, which in this case is just Q1→2. From
Eq. 4.8, we see that

Wnet = Qnet = Q1→2 −Q3→4 (4.13)

and thus the efficiency is given as
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ηCarnot =
Wnet

Qin

(4.14)

=
Wnet

Q1→2
(4.15)

=
Q1→2 −Q3→4

Q1→2
(4.16)

= 1− Q3→4

Q1→2
(4.17)

To get this expression in terms of the temperatures of the thermal reser-
voirs, TH and TL, let us use what we have learned up to this point. Namely,
we can solve for Q1→2 and Q3→4 using the First Law and the Ideal Gas Law.
First, to compute, Q1→2, we can use the fact that between states 1 and 2, the
heat transfer occurs isothermally. Writing the First Law for this process, we
have

∆U1→2 = Q1→2 −W 1→2 (4.18)

however, we know for an ideal gas, U = CvT , and thus for an isothermal
process, ∆U = Cv∆T = 0. This gives us:

Q1→2 = W 1→2 (4.19)

where the work for an isothermal expansion of an ideal gas in our Carnot Cycle
can be computed as

W 1→2 =

∫ V2

V1

P dV (4.20)

=

∫ V2

V1

mR̃TH
V

dV (4.21)

= mR̃TH ln
V2
V1

(4.22)

and thus

Q1→2 = mR̃TH ln
V2
V1

(4.23)

By this same reasoning, Q3→4, is given by
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Q3→4 = −mR̃TL ln
V4
V3

(4.24)

where the negative sign is applied to be consistent with our definition that
Q3→4 is the positive heat transfer out of the system. The relationship between
V1 and V4, as well as V2 and V3, can be directly related to TH and TL via
the expression we derived in Chapter 2 for adiabatic expansion of an ideal gas
(Eq. 2.51):

THV
γ−1
2 = TLV

γ−1
3 (4.25)

and

THV
γ−1
1 = TLV

γ−1
4 (4.26)

Combining Eqs. 4.25 and 4.26 via TH/TL gives us:

TH
TL

=

(
V3
V2

)γ−1
=

(
V4
V1

)γ−1
(4.27)

or

V3
V2

=
V4
V1

(4.28)

⇒ V2
V1

=
V4
V3

(4.29)

which conveniently lets us cancel out the logarithm terms by dividing Eq. 4.23
by Eq. 4.24. Putting it all together, we find that the Carnot efficiency is
simply:

ηCarnot = 1− TL
TH

(4.30)

or

Wnet = ηCarnotQin =

(
1− TL

TH

)
Qin (4.31)

This expression is truly a profound statement, as it tells us the fraction of
mechanical work we can extract from a given heat input using a reversible cycle
with with two thermal reservoirs is related only a function of the temperatures
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Figure 4.9: Reversible isothermal cycle with zero net work. Gas and thermal
reservoir remain at temperature T throughout the whole cycle.

at which heat is input and extracted from the system. In nature, TL/TH will
always be some finite, non-zero value, since in practice, extremely high and
low temperatures are difficult to achieve and sustain. On Earth, for example,
a Carnot Cycle operating between TH = 1000 K, which is easily achievable via
combustion, and TL =300 K would have an efficiency of

η = 1− 300

1000
= 0.7 (4.32)

which means that in the absolutely ideal case, we can on average only extract
70% of the thermal energy we put in to the cycle back out as work. A machine
that does so continuously is called a heat engine. What this also tells us
that thermal energy at higher temperatures relative to our cold reservoir is
more valuable from a useful work perspective than the same thermal energy
at lower temperatures. High-temperature or high grade thermal energy allows
an engine to operate at higher efficiencies. This should make sense intuitively,
as we know that even though the Earth’s soil and the air surrounding us have
massive amounts of thermal energy stored as mcT , we cannot do anything
with that energy as our efficiency would essentially be 0, unless we could find
a comparatively colder thermal reservoir. This distinction between energy at
different temperatures will become important later in the discussion about
renewable energy.

Interestingly, we can run such a cycle in reverse, inputting net work to
move heat from a cold thermal reservoir to a hotter one. Because the Carnot
Cycle is reversible, it runs the same backwards as it does forwards, allowing
us to rearrange Eq. 4.31 as
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Wnet =

(
TH − TL
TH

)
Qout (4.33)

⇒ Qout =

(
TH

TH − TL

)
Wnet (4.34)

where Qout is now the heat rejected to the hot thermal reservoir and is equal to
Qin added from the hot thermal reservoir in the forward cycle case. Observe
here that the coefficient in front of Wnet is greater than 1 for TH > TL, and thus
more heat can be transferred than net work is input into the system. This is
exactly the reciprocal statement of our observation that for the forward case,
less work can be extracted than the amount of heat added. This is logically
consistent again due to the reversibility of this cycle, though it may be counter
intuitive. Remember that in both cases, heat is both being added and rejected
in each cycle, though they are not equal in magnitude as long as TH 6= TL.
Such a device that operates in this manner is generally called a heat pump
and forms the basis for not just refrigerators and air conditioners, but certain
atmospheric cooling cycles as well.

Now there is one more important distinction to make between cycles and
processes and that has to do with why we even care about cycles to begin
with. For a single reversible process, it is indeed possible to convert 100% of
some thermal energy input to work. For example, consider a gas with total
mass m in thermal communication with a heat reservoir at temperature T .
The gas undergoes reversible isothermal expansion as shown in Fig. 4.9. In
order to maintain constant temperature throughout this process, the gas must
expand and do work as thermal energy is transferred to it. Writing the First
Law from states 1 to 2, we have

∆U1→2 = Q1→2 −W 1→2 (4.35)

((((
(((mcv(T − T ) = Q1→2 −W 1→2 (4.36)

⇒ W 1→2 = Q1→2 (4.37)

so clearly we are getting 100% of the heat transferred to the gas back out as
work. From a practical perspective, however, once this process is complete,
the system can do no more work until we reset the gas to its original volume
by inputting work back in. Thus, we need a cycle to continually convert heat
to work.

For this reversible isothermal cycle in particular, we can then compress the
gas isothermally at the same temperature T , which by the same logic as for
the expansion process would require
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W 2→1 = Q2→1 (4.38)

Writing the first law for the cycle, we have

��
��∆Ucycle = Qnet −Wnet (4.39)

⇒ Wnet = Qnet (4.40)∮
dW =

∮
dQ (4.41)

If we plot this cycle on a P -V diagram as shown in Fig. 4.10, we can clearly
see that because both processes traverse the same isotherm at temperature T ,
if W 1→2 is given by

W 1→2 =

∫ 2

1

P dV (4.42)

then

W 2→1 =

∫ 1

2

P dV = −
∫ 2

1

P dV (4.43)

and thus, Wnet is

Wnet =

∮
dW =

∫ 2

1

P dV −
∫ 2

1

P dV = 0 (4.44)

and by Eqs. 4.38 and 4.39,

Q1→2 = −Q2→1 (4.45)

Consequently, the efficiency for this isothermal cycle, η, is simply

η =
Wnet

Qin

= 0 (4.46)

which means that using this system, we cannot convert any thermal energy
to work without putting the same amount of work back in on average, even
though this cycle is perfectly reversible. Graphically, we can see this repre-
sented by the fact that the area contained within the curve in Fig. 4.10 is zero.
As illustrated by this example, cycles are required for continuous net transfer
of heat to work and vice versa, and as we are about to see, this poses some
additional universal constraints.
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Figure 4.10: P -V diagram for isothermal cycle in Fig. 4.9

4.3 The Second Law of Thermodynamics

The First Law of Thermodynamics is based on the observation that you cannot
extract energy from a system without depleting its stored internal energy by
the equivalent amount - that is, energy cannot be created from nothing nor
can it be destroyed, only transferred. In thermodynamics, this is the “what”.
We now have the tools, though, to talk about the “how”. Specifically, as we
just discussed, in order to continuously transfer heat to work and vice versa,
we need to construct a cycle using a coupled system. Though it can take
many specific forms, the Second Law of Thermodynamics is fundamentally
the observation that the amount of net energy you can extract from such a
cycle is limited. In fact, the best efficiency you can achieve is that of the
Carnot Cycle4.

Stated another way, the Second Law tells us that the maximum net conver-
sion of thermal energy to work can only be achieved using a cycle comprised
of all reversible processes. You can extract less work - and in nature this is
virtually guaranteed as there is no such thing as a perfectly reversible process
- but never more. Therefore, the Second Law is different from the First Law
in that it is expressed as an inequality telling us about a maximum quantity.
For a cycle operating in thermal communication with one thermal reservoir,
as we previously showed, the net work is at most zero, which is written math-
ematically as

4See Fermi Thermodynamics Chapter 3 for a excellent proof of this [2].
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Figure 4.11: Graphical depiction of thermal energy diffusion. On average,
because particles on the left are moving faster than those on the right, more
particles will move from the left to the right than vice versa until average
kinetic energy is equal throughout whole volume.

∮
dW ≤ 0 (4.47)

We can certainly put in more work than we extract - which again is nearly
guaranteed to be the case in practice - but never the other way around5.

For a system in thermal communication with two thermal reservoirs, the
maximum efficiency you can achieve is via the Carnot Cycle. This notion,
called Carnot’s Theorem, can be expressed similarly as

∮
dW ≤ ηCarnotQin (4.48)

≤
(

1− TL
TH

)
Qin (4.49)

from which arises the corollary that without a temperature difference, no net
work can be extracted from a thermodynamic cycle. Additionally, it can be
shown that for both of these cases and in general, all perfectly reversible cy-
cles operating between the same number of thermal reservoirs are equivalent6.
Thus, this is a universal constraint on how energy is converted between these
forms.

An important equivalent statement of the Second Law that arises from
this observation is that the net transfer of heat from a body at some
temperature TL to a body at some higher temperature TH > TL is

5This is typically referred to as the Kelvin Postulate of the Second Law.
6See Fermi Thermodynamics Chapter 3 for a proof of this.
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impossible without doing net work7. While we understand this from
an intuitive perspective, the Second Law poses this as a universal truth. If
we think about what heat transfer is at the molecular level, we can see the
profundity of this statement. Because thermal energy is equivalent to kinetic
energy, conductive heat transfer is simply a diffusive process driven by the
statistics that on average, a body with particles of higher average kinetic will
transfer that kinetic energy to nearby bodies with lower kinetic energy and
not the other way around as we previously discussed.

For example, as Fig. 4.11 shows, if we have an enclosed volume that initially
has gas particles with higher average kinetic energy on one side, over time,
more particles will move from the “hot” side to the “cold” side. Statistically,
this will happen until equilibrium is reached and the average kinetic energy
is the same throughout the volume. In this example, the gas experiences an
irreversible run down to equilibrium in which the system naturally goes from
a state with more order to the equilibrium state with the maximum amount of
disorder. Indeed, the Second Law arises from the observation that the opposite
case is impossible, and that in general, on average, irreversible processes
will always result in an irreversible move from order to disorder.
At best, the degree of order in the system will stay exactly the same for a
reversible cycle.

Since there are no truly reversible processes in our actual8 Universe, we
can equivalently say that all systems are ultimately heading towards maxi-
mum disorder, and once complete, the information about any previous states
cannot be recovered. Indeed, in our gas diffusion example, if we were to only
observe the final equilibrium state in which the entire volume had a uniform
average kinetic energy, we can say nothing about how the system was initially
ordered. The same exact thing is happening on a Universal scale, indicating
that eventually, all energy in all of the forms we can currently observe will
eventually be distributed equally throughout9. It is fascinating to note that
because of this fact alone, time itself has an directionality to it. Most other
physical laws are indifferent to whether time moves forward or backwards, but
the Second Law of Thermodynamics can only go in one direction - the direc-
tion of time in which the disorder increases on average10. We will now see just
how this disorder can be quantified.

7This is typically referred to as the Clausius Postulate of the Second Law and its equiv-
alence to the Kelvin Postulate is proven nicely again in Fermi Thermodynamics Chapter 3.

8as opposed to theoretical
9This is often referred to as the Heat Death of the Universe.

10see the Arrow of Time
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4.4 Entropy

So we have learned that the Second Law of Thermodynamics places constraints
on how much work can be extracted from a thermodynamic cycle as well as
the degree to which a system can retain a sense of “order” under reversible and
irreversible processes. This latter constraint in particular manifests itself as
the fact that dissipative processes like thermal conduction cannot be undone.
To quantify the degree to which a system is irreversible, we introduce the
concept of entropy, which fundamentally represents how “disordered” a system
is. As is the case with temperature and pressure being emergent macroscopic
properties from microscopic phenomena, the same is true for entropy. This
measure of system’s “disorder” is fundamentally a measure of the number
of possible configurations or microstates - position and momentum - of its
constituent particles that equate to the same macrostate - temperature and
pressure. Two moles of a gas at temperature T and pressure P will have
double the number of possible microstates as one mole, all else held constant.
The relationship between entropy, S, and the number of microstates, Ω, is not
linear, but rather is given by

S = kB ln Ω (4.50)

where kB is the familiar Boltzmann constant. This Boltzmann Entropy tells
us fundamentally that entropy increases when there are more microstates.

Like enthalpy, we find that we often care more about the change in entropy
for a process or cycle. So to define this quantity, it makes sense to relate it to
a process we know is irreversible and therefore increases the degree of disorder
- heat transfer across a temperature difference. If we return to our Carnot
Cycle example, we observe that the ratio of the heat transfer from the thermal
reservoir at TH , QH , and the heat transfer to the thermal reservoir at TL, QL,
is given by Eq. 4.23 divided by Eq. 4.24 as

QH

QL

=
TH
TL

(4.51)

or equivalently:

QH

TH
− QL

TL
= 0 (4.52)

More generally, it can be shown that for any reversible cycle with i discrete
heat transfers,
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∑
i

Qi

Ti
= 0 (4.53)

or ∮
dQ

T
= 0 (4.54)

Looking at the arbitrary example cycle shown in Fig. 4.6 with discrete states
1 and 2, if this cycle is reversible, we consequently have that∮

dQ

T
=

(∫ 2

1

dQ

T

)
I

+

(∫ 1

2

dQ

T

)
II

= 0 (4.55)

where I and II represent the two different process paths that comprise this
cycle. By rearranging terms and flipping the limits of integration, we find that
this expression is equivalent to(∫ 2

1

dQ

T

)
I

= −
(∫ 1

2

dQ

T

)
II

=

(∫ 2

1

dQ

T

)
II

(4.56)

What this relationship tells us is that this quantity contained within the
parentheses is not a function of the path taken between two points of a cycle,
as long as those paths are reversible. In other words, under this condition,
this quantity is a state property, just as enthalpy or internal energy. This is
what we call entropy, S, whose change between states 1 and 2 via a reversible
process is defined as

∆S ≡ S2 − S1 =

(∫ 2

1

dQ

T

)
reversible

(4.57)

where S as defined here is typically called the classical entropy11. In differential
form, a small change in entropy, dS, is given by

dS =
dQ

T
(4.58)

which under certain conditions is equivalent to the Boltzmann entropy in
Eq. 4.5012.

For any cycle, including irreversible ones, in accordance with the Second
Law, it follows directly that

11In contrast with the statistical entropy we will later see.
12Showing this is the case is beyond the scope of this text, but any good statistical

mechanics book will cover this in detail.
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Figure 4.12: Two ways to draw a control volume (red) for the same heat
transfer problem involving a transfer Q between a mass at temperature T and
a thermal reservoir at T0. (a) has a CV boundary inside the thermal reservoir
and (b) just inside the mass. Assuming a discontinuous temperature change
at the mass-reservoir interface, these heat transfers effectively occur at T0 and
T respectively.

∆Scycle =

∮
dQ

T
≥ 0 (4.59)

which is in fact an equivalent statement of the Second Law. Because working
with inequalities makes practical applications of this law more challenging,
this expression is often restated for a general process as

∆S = S2 − S1 =

∫ 2

1

dQ

T
+ ∆Sgen (4.60)

where ∆Sgen > 0 for irreversible processes and exactly ∆Sgen = 0 for reversible
ones. ∆Sgen is the entropy generated due to irreversibility and represents the
information lost due to dissipative and diffusive processes. Note that the units
of entropy are energy per temperature, J/K in SI units.

Like with enthalpy of formation, entropy is always defined relative to some
reference value. Here, this must be the case as it is defined by the integral over
some state interval. In practice, for all substances, we pick a standard state -
some temperature and pressure - where the entropy is defined to be zero, and
we compute the entropy at different conditions relative to that point. Thus,
the entropy at some state A is really

SA =

∫ A

0

dQ

T
= SA −���

0
S0 (4.61)
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and thus the change in entropy over a process has these implicit reference
values as well, but they cancel out. For example,

∆S = (S2 −��S0)− (S1 −��S0) = S2 − S1 (4.62)

which is what we have in Eq. 4.60 as we should expect. Because we will
primarily deal with changes in entropy here, we do not need to define this
reference state, as it will always cancel out13.

One sticky point with entropy as we have defined it here is a question of
what temperature is used in Eq. 4.60. We have learned that conductive heat
transfer across a temperature difference is irreversible as heat can not flow
back from one object to a hotter one, but then the natural question arises:
which temperature do we use for this equation? The answer, as unsatisfying
as it may be, is that it depends. As Fig. 4.12 shows, the temperature at the
boundary of the control volume can change depending on where it is drawn. In
reality, temperature is continuous and smoothly changes in space, so you end
up with a region of entropy generation in the volume over which temperature
changes. When looking at ideal systems, however, the temperature we use is
the value directly at the boundary of the system, and thus it depends on how
the control volume is defined.

4.4.1 The Entropy of Things

Now that we understand the basic form of entropy, we can start to look at
how the entropy of various substances in their different phases changes with
changes in state.

Solids and Incompressible Fluids

For solids and incompressible fluids, we can recall from Chapter 2 that a small
reversible transfer of heat, dQ, to a control volume containing such a substance
will correspond to a temperature increase, dT , such that

dQ

dT
= mc(T ) (4.63)

where m is the mass of the substance and c is its specific heat, which may be
a function of temperature. Solving for dQ and plugging into our definition for
entropy in differential form in Eq. 4.58, we get

13We will see later with the Third Law of Thermodynamics what this absolute reference
state actually is.
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dS =
dQ

T
=
mc(T )dT

T
(4.64)

Integrating both sides between states 1 and 2, we get

∫ 2

1

dS = S2 − S1 =

∫ 2

1

mc(T )dT

T
(4.65)

in its most general form, where c(T) can be any function. In reality, the specific
heat for many solids and liquids is relatively constant over large temperature
ranges and thus we can say c(T ) = c, allowing us to solve Eq. 4.65 explicitly
as

∆S = mc

∫ 2

1

dT

T
(4.66)

S2 − S1 = mc ln
T2
T1

(4.67)

What is important to note here is that even though we got to this result
by applying a reversible heat transfer, because entropy is a state function, the
path between two states is actually irrelevant. It is does not matter how we
got there but just that we did. So for any solid or incompressible liquid at
temperature T, its entropy relative to some zero reference point, S0, is given
by

S(T ) = mc lnT (4.68)

or

s(T ) = c lnT (4.69)

where s is the specific entropy in units of energy per temperature per mass,
J/kg-K in SI units.

Ideal Gases

For gases, the relationship between entropy and the various other state prop-
erties becomes more complex due to the coupling between thermal energy and
mechanical work as we know well know. For an ideal gas, with mass m, we
can start by writing the differential form of the First Law:

119
OCW V1



4.4. ENTROPY

dU = mcv dT = dQ− P dV (4.70)

and then the Second Law as

dS =
dQ

T
(4.71)

Combining Eq. 4.70 and 4.71 and substituting the ideal gas law to get P as in
terms of T and V ,

dS =
mcv dT + P dV

T
(4.72)

=
mcv dT

T
+
mR̃T dV

TV
(4.73)

Dividing both sides by m to get the specific entropy and integrating from state
1 to 2:

s2 − s1 =

∫ 2

1

cv(T )

T
dT + R̃

∫ 2

1

dV

V
(4.74)

where again the specific heat is a function of temperature. For a perfect gas,
cv(T ) = cv, and thus because it does not depend on temperature, this integral
can be solved explicitly as

∆s = s2 − s1 = cv ln
T2
T1

+ R̃ ln
V2
V1

(4.75)

from which we can obtain the alternate equivalent forms by substituting in
the ideal gas for different variables:

s2 − s1 = cp ln
T2
T1
− R̃ ln

P2

P1

(4.76)

= cp ln
V2
V1

+ cv ln
P2

P1

(4.77)

All of these forms are equivalent and can be used depending on the which
state properties can be measured. Remember though, for real gases, cp and cv
are functions of temperature and thus must be included in the above integrals.
For many common substances, entropy values are approximated by functions
much like the case for enthalpy, and can be computed directly.
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Figure 4.13: Property plots for the Carnot Cycle. Reversible adiabatic pro-
cesses are isentropic and are given by vertical lines on a T -S diagram.

4.4.2 Cycle Entropy

Like temperature, pressure, and volume, for example, entropy is a state prop-
erty, which means that we can track the system entropy on a property plot,
much like on a P -V diagram. Typically entropy is plotted against tempera-
ture, forming a T -S diagram, for which isothermal and isentropic (reversible
adiabatic) process show up as horizontal and vertical lines respectively. For
example, we plot the Carnot Cycle on both a P -V and T -S diagram side by
side for this cycle as shown in Fig. 4.13 to help illuminate what is going on. As
we can see here, the reversible cycle operating between two thermal reservoirs
at T1 = TH and T3 = TL is characterized by a rectangle on the T -S diagram
with the horizontal lines representing the two isothermal heat transfers and
the vertical lines the adiabatic expansion and compression. Because of our def-
inition of entropy, we can clearly see that the area contained within a closed
curve on this plot is the net heat transfer to the system over the cycle, Qnet,
since

Qnet =

∮
dQ =

∮
T dS (4.78)

which again comes right from our definition of entropy. This only holds, how-
ever, for reversible cycles.

This plot also highlights that the change in entropy of the system is always
zero for a complete cycle, as by definition, a cycle has the same initial and final
states. Because entropy is a state variable, that means the system must have
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the same entropy at the end of the cycle that it started with. For irreversible
cycles, however, while this is still true, the plot does not tell us everything
about how much irreversible entropy was generated at the boundary or within
our system over the cycle. From the Second Law, we have that

dS =
dQ

T
+ T dSgen (4.79)

and therefore that

dQ = T dS − T dSgen (4.80)

⇒
∮
dQ =

∮
T dS︸ ︷︷ ︸

Area within curve

−
∮
T dSgen (4.81)

Consequently, because for an irreversible process, we have∮
T dSgen > 0 (4.82)

by the Second Law, the net heat transfer will be less than the area contained
within the enclosed curve. It is therefore essential that all assumptions for the
analysis are well stated at the outset of defining the cycle. The net work done
by the system over a cycle is still the area within a closed curve on the P -V
diagram; however, the irreversibility will lower the cycle efficiency as Qin will
likely need to be higher for the same work production. In practice, we cannot
measure the entropy generated directly, but we can often measure temperature
and heat transfer and compute it from that.

A natural question that arises from this discussion is about where the
entropy for the cycle goes. We can see graphically and by definition that the
entropy of our control volume at the end of a cycle is the same as it had at
the beginning. Thus, whether or not the cycle is reversible,

∆Scycle =

∮
dS = 0 (4.83)

For an irreversible cycle then, we see that though the entropy of the control
volume remains the same on average, entropy must still be generated by the
Second Law somewhere. Some heat must have been transferred from a hot
entity to a cooler one or some sort of dissipation must have occurred somewhere
along the way, and if this associated entropy is not being generated in the
control volume, then where? The vague philosophical answer to this question
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is that entropy is being generated in the the Universe in such a way that
system’s ability to do work over a cycle is reduced. In short, the entropy
generated represents the difference in work that could have been done for the
same heat input using a fully reversible cycle.

While there seems to be a tautology here since this is basically just a re-
statement of the Second Law, this is consistent if we remember that we defined
∆Sgen to serve exactly this purpose. For a cycle in thermal communication
with only one thermal reservoir at T , we can write the First and Second Laws,
and combine them to yield:

���
�∆Ucycle = Qnet −Wnet (4.84)

0 = (T���
�∆Scycle − T∆Sgen)−Wnet (4.85)

⇒ Wnet = −T∆Sgen (4.86)

which tells us we need to add net work in the quantity T∆Sgen to keep our
cycle going. In the best case scenario, we can do 0 net work for our cycle,
which is what we already established with the Second Law. For a cycle with
two thermal reservoirs, the math becomes a bit more complex but this same
process can be applied to yield an expression of the form,

Wnet = Wnet,rev −Wnet,irr (4.87)

= ηCarnotQin −Wnet,irr (4.88)

where Wnet,irr is proportional to ∆Sgen and represents the extra work that
could not be done as a result of whatever irreversibility occurred over the
cycle.

4.4.3 Entropy of Phase Change

In Chapter 3, enthalpy as it relates to phase changes was discussed. We
can easily see how entropy and enthalpy are related under the conditions we
explored - namely constant pressure phase change - by writing the First Law
for a substance undergoing such a process and immediately substituting the
Second Law in for dQ:

du = T ds− P dV (4.89)

which is another very commonly used expression. Adding d(PV ) to both sides
as we have done previously to get enthalpy (h = u+ PV ):
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Figure 4.14: Saturation or vapor dome plotted for a substance on a T -s dia-
gram. The black lines represent isobars on this plot, showing constant pressure
phase change processes.

du+ d(PV ) = T ds− P dV − d(PV ) (4.90)

d(u+ PV ) = T ds−���P dV − (���P dV +���
�:0

V dP ) (4.91)

⇒ dh = T ds (4.92)

We could have also arrived at this expression by noting that for a substance
undergoing constant pressure reversible heat transfer, the change in enthalpy
equal to the heat transferred, Q, which is also equal to T ds by the second law.
In either case, the change in enthalpy across a phase change is

sfg = sg − sf =
hfg
T

(4.93)

where f and g represent the liquid and gas phases of the substance respectfully.
The same expression holds for any phase change at constant pressure.

124
OCW V1



4.4. ENTROPY

Figure 4.15: Vapor dome of water plotted on a T -s diagram showing lines of 
constant pressure and enthalpy. 

Note that the single-species, isothermal phase change we have introduced 
here is a reversible process if all heat transfer that occurs is at a single temper-
ature and no dissipation occurs. In nature, these constraints are not typically 
adhered to and thus real phase changes will result in some entropy generation. 
Additionally, some polymers and other complex molecules require the break-
ing of additional hydrogen bonds to allow the phase change to occur which 
can generate some irreversible entropy in the process.

As we did previously with the enthalpy of phase changes, it is also highly 
useful to plot the temperature of phase change process on a property plot as a 
function of entropy. From the definition of entropy, we know that the area 
under a curve on a T -S diagram is exactly equal to the net heat transfer for a 
reversible process. Fig. 4.14 shows an example of such a diagram with multiple 
isobars indicating constant pressure phase change processes. As with the T -h 
diagram in Fig.3.3, a vapor dome also emerges on this type of plot, such that to 
the left of the dome the substances exists as pure liquid, to the right as pure 
vapor, under the dome as both liquid and vapor, and above as a supercritical
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Figure 4.16: A perfect gas occupying part of a volume, V , in state 1. In
between states 1 and 2, the barrier is removed and the gas can move to fill the
remaining volume, coming to equilibrium at state 2. Control volume is shown
in red.

fluid. The rectangular area under the portion of the curve contained within
the vapor dome is exactly equal to the latent heat of vaporization per unit
mass at that given pressure, as

Area = T (sg − sf ) (4.94)

= hfg (4.95)

where sg and sf are the entropy values where the isobar intersects the right
and left sides of the vapor dome respectively.

Putting all of these concepts together, it is also useful to plot the tem-
perature, pressure, enthalpy, and entropy for a substance near this saturation
condition all at once. Fig. 4.15 shows how this is done in practice. Here the
dome is plotted on standard T -s axes but with both lines of constant pressure
and enthalpy drawn as well.

4.4.4 Entropy of Mixing

Entropy can also be generated in the mixing of two different gases. Let us first
take a simplified example where, as shown in Fig. 4.16, we have a perfect gas
with mass m in state 1 occupying only part of an enclosed insulated container
with total volume V . If we immediately remove the partition holding the
gas in place, it will expand via diffusion to fill the total volume, coming to
equilibrium in state 2. Writing the first law for the control volume marked in
red between states 1 and 2, we find that if there is no work or heat transfer
with environment and thus
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∆U = ��Q−��W (4.96)

mcv(T2 − T1) = 0 (4.97)

⇒ T2 = T1 (4.98)

and from the Second Law that

∆S =
�
�
�
�

∫ 2

1

dQ

T
+ ∆Sgen (4.99)

⇒ ∆Sgen = ∆S = S2 − S1 (4.100)

=
�
��
�
��*

0

mcv ln
T2
T1

+mR̃ ln
V

V1
(4.101)

= mR̃ ln
V

V1
(4.102)

which tells us that entropy generated for this process is positive as long as
V > V1. Therefore, by definition, this process is irreversible.

A natural question that arises is what happens instead if we move the
partition slowly and reversibly to the expand the gas into the total volume?
How are are these scenarios fundamentally different? Mathematically, this
controlled expansion scenario is just our familiar adiabatic expansion, which
gives us a relationship between T and V by Eq. 2.51 as

T1V
γ−1
1 = T2V

γ−1 (4.103)

⇒ T2
T1

=

(
V1
V

)γ−1
(4.104)

and if we plug this relationship into our Second Law formula for a perfect gas
to eliminate T, we find that
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Figure 4.17: Two perfect gases of different species occupying separate parts
of a volume, V , in state 1. In between states 1 and 2, the barrier is removed
and the gases can move to fill the remaining volume, coming to equilibrium at
state 2. Control volume is shown in red.

∆S =
�
�
�
�

∫ 2

1

dQ

T
+ ∆Sgen (4.105)

⇒ ∆Sgen = ∆S = S2 − S1 (4.106)

= mcv ln

(
V1
V

)γ−1
+mR̃ ln

V

V1
(4.107)

= m

[
cv(1− γ) ln

V

V1
+ R̃ ln

V

V1

]
(4.108)

= m

[
��
�
��−R̃ ln
V

V1
+
�
�
�
�

R̃ ln
V

V1

]
(4.109)

= 0 (4.110)

which confirms that our reversible adiabatic expansion is indeed reversible, as
it generates no entropy.

The key difference in how we formulated these two similar problems is
actually in how we defined our control volume and the work we had to add to
the process in the second case. In the irreversible case, we took a static control
volume that exchanged 0 work and heat with its environment, and therefore
its temperature remained constant throughout the process. In the reversible
case, we had to apply some work to ensure that no dissipation occurred and
that the process was in perpetual equilibrium from states 1 to 2.

The irreversible single gas expansion case we outlined here is just one half
of a gas mixing problem. Consider the same volume as before, but now on the
right side, we have a different gas species with a different mass and starting
state as shown in Fig. 4.17. At some time after the system has reached equi-
librium in state 1, the partition is removed and the gases are free to mix, each
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filling up the total volume, reaching equilibrium in state 2. In state 1, we can
use the ideal gas law to obtain the following expressions for the masses of each
each gas:

m1 =
P1V1

R̃T1
= Xm (4.111)

and

m2 =
P2V2

R̃T2
= (1−X)m (4.112)

where m is the total mass and X is the mass fraction of gas 1.
As before, we define our control volume to be the total volume and write

the First Law:

∆U = U2 − U1 = ��Q−��W = 0 (4.113)

⇒ U2 = U1 (4.114)

m(Xcv,1 + (1−X)cv,2)T
′ = m(Xcv,1T1 + (1−X)cv,2T2) (4.115)

where if T1 = T2 = T , then

((((
(((

((((
((

m(Xcv,1 + (1−X)cv,2)T
′ =
((((

(((
((((

((
m(Xcv,1 + (1−X)cv,2)T (4.116)

⇒ T ′ = T (4.117)

which we see is exactly equivalent to our previous single gas case. This makes
sense considering that a perfect gas does not interact with itself or other gases.
In essence, we can therefore superimpose two separate single gas scenarios if the
initial temperatures are equal. This allows us to skip directly to the equation
for the entropy generated by linearly adding the results of each single gas case,
given by Eq. 4.102. Because entropy is an extensive property, we must scale
the results by the mass of each gas as:

∆Sgen = m1R̃ ln
V

V1
+m2R̃ ln

V

V2
(4.118)

= mR̃

[
X ln

V

V1
+ (1−X) ln

V

V2

]
(4.119)

Solving for V1 and V2 gives us
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V1 =
m1R̃T

P1

=
XmR̃T

P1

(4.120)

V2 =
m2R̃T

P2

=
(1−X)mR̃T

P2

(4.121)

where if the gases have the same initial pressure, P , we can further simplify
Eq. 4.118 using the fact that

V = V1 + V2 (4.122)

=
(1−X)mR̃T

P
+

(1−X)mR̃T

P
(4.123)

=
mR̃T

P
(4.124)

to obtain:

∆Sgen = −mR̃ [X lnX + (1−X) ln (1−X)] (4.125)

We call this quantity in Eq. 4.125 the entropy of mixing for a binary mix-
ture and is very commonly used, as in many systems of interest, gases at the
same temperature and pressure are being mixed. For i species, this can be
generalized to

∆Sgen = −mR̃
∑
i

Xi lnXi (4.126)

where it is important that this expression is only valid for isothermal and
isobaric mixing, and under different conditions this value will change14.

4.4.5 Minimum Work of Separation

Returning to our discussion of anthropogenic climate change, a crucial conse-
quence arises from this notion that the mixing of gases irreversibly generates
entropy. Specifically, we can clearly see that carbon emissions generated via
combustion of hydrocarbons generate entropy as they rise and mix with air in

14For a fascinating thought experiment that illuminates some of the intricacies of the
definition of entropy from a microscopic perspective, see Gibbs’ Paradox.
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the atmosphere. Where this becomes important is in computing the energy
required to separate that carbon dioxide back out. Intuitively, we might ex-
pect that even though no energy was required to mix the gases, because it was
done so irreversibly, it will require some minimum amount of energy to sepa-
rate them, especially since the units of entropy have units energy embedded.

To figure out how much energy is required for separation in the best case
scenario, we can start with the combined First and Second Law statement:

∆U = T (∆S + ∆Sgen)−W (4.127)

where ∆U = 0 if this process happens isothermally at temperature T , and
∆Sgen = 0 if we can carry out this process reversibly. Simplifying, we have
under these assumptions that

Wmin = T∆S (4.128)

where we know from our previous exploration of mixing perfect gases that this
change in entropy in separating gases must exactly equal the entropy generated
in the mixing process to begin with. Consequently, plugging in Eq. 4.126 into
our expression for Wmin yields

Wmin = −mR̃T
∑
i

Xi lnXi (4.129)

Eq. 4.129 tells us the total minimum work required to separate a gas into
its constituent species, but it is often useful to know how much work is required
per mole of individual species i. To find this, we convert to our molar ideal
gas law and divide Eq. 4.129 by Xin, where n is the total number of moles of
our mixture. For a binary mixture, or any process where we want to separate
a single gas species, we have

ŵmin,i = −R̃T
[
ln

Xi

1−Xi

+
ln (1−Xi)

Xi

]
(4.130)

Fig. 4.18 shows ŵmin,i plotted as a function of Xi, showing that for vanish-
ingly small mole fractions of gas, the minimum work required approaches infin-
ity asymptotically. For carbon dioxide in our atmosphere, the mole fraction is
about 0.0004 and thus the minimum amount of energy required to remove the
carbon dioxide we are emitting is enormous. Indeed, it is not a simple matter
to just take the carbon dioxide back out of the air, further compounding the
issues we are seeing today with the causes and effects of climate change. We
will see later how carbon capture is performed in practice and some promising
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Figure 4.18: Minimum work of separation of gas species i in a mixture per
mole of that gas.

new ideas for improving this process; however, the thermodynamics tell us
that we must pay a minimum energy price for this separation.

4.5 Summary

This chapter presents the key limitations placed on the conversion between
thermal energy and mechanical work as expressed by the Second Law of Ther-
modynamics, which states that the maximum work that can be extracted from
a cycle is done so via all reversible processes. In this sense, irreversibility is
defined as a mathematical representation of the work that is “lost” or un-
extracted due to dissipation, heat transfer at a finite temperature difference,
or some other irreversible process. We showed we can quantify this irreversibil-
ity using the concept of entropy, which represents the degree of order within
a system. For an irreversible process, the entropy of the Universe must in-
crease, though the entropy of a particular gas or solid, for example, within
the control volume of interest may decrease. Finally, we further illuminated
the relationship between entropy generation and work by looking at an irre-
versible gas mixing process and showed that some minimum work is required
to separate out a single gas species from the mixture. Relating back to our
story of climate change, this means that there is a mandatory work penalty
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incurred when trying to separate CO2 from the atmosphere, making the task
of undoing anthropogenic greenhouse gas emissions extremely difficult.
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