
Lecture 4: The Main Theorem

4 The Main Theorem

4.1 More on Maschke’s Theorem
Last class, given a finite-dimensional complex representation ρ : G → GL(V ) of a finite group G, we found a
G-invariant positive Hermitian form on V and used it to show that a G-invariant subspace W has an invariant
complement, namely W⊥ (its orthogonal complement with respect to the Hermitian form). We used this to
deduce Maschke’s Theorem — that every representation can be split as a direct sum of irreducible ones.

We’ll now discuss a few features of this proof.

First, why did we use Hermitian forms specifically? A different choice of form which may also seem reasonable
is the symmetric bilinear form, a form where we require ⟨w, v⟩ to equal ⟨v, w⟩ rather than its conjugate. (For
example, v · w is the standard symmetric bilinear form, while v · w is the standard Hermitian form.)

The reason is that in a symmetric bilinear form over C, it’s possible that v · v = 0. For example, consider the
representation of Z/3Z acting on C3, where

1 7→ A =

0 0 1
1 0 0
0 1 0

 .
We can see that (1, ζ, ζ2)t is an eigenvector, since0 0 1

1 0 0
0 1 0

 1
ζ
ζ2

 =

ζ21
ζ

 = ζ2

 1
ζ
ζ2

 .
But if we tried to perform our construction, taking W to be the span of this eigenvector, we’d see that W⊥

actually contains it, since (1, ζ, ζ2) · (1, ζ, ζ2) = 1 + ζ2 + ζ4 = 0. This means W⊥ isn’t actually a complement
of W , so this would break the construction. We require that our form is Hermitian (and positive) to avoid this
issue, since in that case W⊥ really is a complement of W .

Another useful takeaway from our proof was that we found an invariant Hermitian form by averaging. This
trick of averaging over all g ∈ G can produce many other invariant things.

Example 4.1
Given a representation ψ : G→ GL(V ) and a vector v ∈ V , the vector

1

|G|
∑
g∈G

ψgv

is G-invariant. This is because for any h ∈ H, we have

ψh
1

|G|
∑
g∈G

ψgv =
1

|G|
∑
g∈G

ψhgv =
1

|G|
∑
g∈G

ψgv,

since g 7→ hg is a bijection on G (as g runs over all of G, so does hg).

Note 4.2
We saw a similar trick in 18.701, when proving that every finite group of isometries of R2 (or more generally
Rn) has a fixed point — we can start with any point p, and consider the points gp in its orbit. Then the
center of mass (or average) of all these points is a fixed point, for the same reason we saw here.
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p

g

There’s something to be careful of here, though — in Example 4.1, we don’t actually know that this vector is
nonzero — in fact, for many representations ψ it must be zero (often there’s no nontrivial invariant vectors).

In fact, we can describe our construction directly in terms of the averaging trick as described in Example 4.1.
We can think of the space of Hermitian forms as a real vector space; then G has a real representation acting on
this space, sending ⟨v, w⟩ to ⟨gv, gw⟩. In our construction, we started with some positive form, and averaged
it over all g to get an invariant “vector” (meaning an invariant Hermitian form). Here we don’t have the issue
of the invariant vector possibly being zero, because when we add two positive Hermitian forms, our resulting
Hermitian form is again positive.

Student Question. How do we describe the space of Hermitian forms as a real vector space?

Answer. Every Hermitian form can be described as ⟨v, w⟩ = vAw for some matrix A with At = A. We can
think of all entries of this matrix in terms of their real and complex parts. Then the n entries on the diagonal
must all be real, we get to choose both the real and complex parts of the n(n− 1)/2 entries below the diagonal,
and this immediately determines the n(n− 1)/2 entries above the diagonal (which must be the conjugate of their
reflection). So we get to choose

n+ 2 · n(n− 1)

2
= n2

real numbers, which means the space of Hermitian forms has dimension n2.

On a different note, the fact that every representation has an invariant positive Hermitian form (as shown in our
proof) is equivalent to stating that every representation of a finite group is conjugate to a unitary representation:

Definition 4.3
A unitary representation is a homomorphism ρ : G→ Un, where Un ⊂ GLn is the set of unitary matrices.a

aMatrices A for which At = A

Equivalently, we can define unitary representations without referring to matrices — a linear operator is unitary if
it preserves the standard Hermitian form ⟨v, w⟩ = v ·w, so a representation is unitary if and only if gv ·gw = v ·w
for all g ∈ G and v, w ∈ Cn.

To see why these two ideas are equivalent, note that given a positive Hermitian form, we can choose an
orthonormal basis with respect to that form. In that basis, the form will just be the standard Hermitian form
⟨v, w⟩ = v · w. So by changing the basis, we have produced a unitary representation.

Finally, we’ll describe the proof of Maschke’s Theorem (also known as complete reducibility) more explicitly.

Theorem 4.4 (Maschke’s Theorem)
Every complex representation of a finite group is isomorphic to a direct sum of irreducible representations.

Proof. We use induction on the dimension. For the base case, any one-dimensional representation is already
irreducible.
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Now suppose ρ : G→ GL(V ) is a representation. If ρ is already irreducible, we’re done. Otherwise, we can pick
an invariant subspace W , which is neither 0 nor V . Then let ⟨−,−⟩ be an invariant positive Hermitian form,
and decompose V = W ⊕W⊥. Since both W and W⊥ are G-invariant, then we get the subrepresentations
ψ : G → GL(W ) and η : G → GL(W⊥) in ρ, and we can decompose ρ ∼= ψ ⊕ η. But η and ψ have smaller
dimension than ρ, so both are a direct sum of irreducible representations (by the inductive hypothesis), and
therefore ρ is a direct sum of irreducible representations as well.

4.2 More on Characters
Let’s continue our discussion from earlier about characters. We’ll first state a few basic properties. (We will
assume that all our representations are of finite groups, unless stated otherwise.)

Proposition 4.5
If ρ : G→ GL(V ) is a complex representation, then

(a) χρ(g) is a sum of roots of unity;

(b) χρ(g−1) = χρ(g);

(c) χρ is the character of another representation of the same dimension, denoted ρ∗ and called the dual
representation.

Proof. These properties all come from the definition of the character as the trace of a matrix.

For (a), since G is a finite group, each g ∈ G and therefore ρg ∈ GL(V ) has finite order, so the eigenvalues of
ρg, which we denote by λi(g), are all roots of unity. Then Tr(ρg) =

∑
λi(g) is a sum of roots of unity (as the

trace is always the sum of eigenvalues with multiplicity).

For (b), the eigenvalues of ρg−1 are the inverses of the eigenvalues of ρg (since the two matrices are inverses),
and since the eigenvalues of ρg are all roots of unity, their inverses are equal to their conjugates. So we have

Tr(ρg−1) =
∑

(λi(g))
−1 =

∑
λi(g) = Tr(ρg).

Finally, for (c), let V ∗ be the dual space of V , consisting of linear maps f : V → C. For convenience, we’ll denote
f(v) by ⟨f, v⟩ (to emphasize the fact that we can think of it as a pairing between a vector v and a covector f).
Then the dual representation ρ∗ is given by

⟨ρ∗g(f), v⟩ = ⟨f, ρg−1(v)⟩.

(This defines ρ∗g(f) for each f ∈ V , by describing where it takes each vector.)

In other words, we make G act on V ∗ such that for every v ∈ V and f ∈ V ∗, we have

⟨f, v⟩ = ⟨ρg∗(f), ρg(v)⟩.

That is, the dual representation is defined such that operating on both the vector v (with the representation ρ)
and the covector f (with the dual representation ρ∗) does not affect the pairing ⟨f, v⟩ given by the dual space.
(Our original definition then follows from plugging in ρg−1(v) in place of v, to make the definition more explicit.)

This may seem somewhat abstract, but we can make it more concrete by describing it in terms of matrices. Fix
a basis of V , so then from ρ we get a matrix representation R : G→ GLn(C). Then the dual representation in
terms of matrices is given by

R∗
g = Rtg−1 .

This is a valid representation since (AB)t = BtAt and (AB)−1 = B−1A−1, so ((AB)t)−1 = (BtAt)−1 =
(At)−1(Bt)−1 (intuitively, each of taking the inverse and transposing means we need to swap the two matrices,
so doing both means we need to swap twice and get back our original order). Since Tr(At) = Tr(A), we have

χR∗(g) = χR(g
−1) = χR(g).

Student Question. Why is the transpose important — if there was no transpose, would we still get a repre-
sentation?
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Answer. We’d get what’s called an anti-representation instead — we’d have a map with the property that
ρgh = ρhρg. (This is a representation if G is abelian.) It’s possible to get an anti-representation in two ways —
by inverting the elements, or by taking their transposes — and doing both gives us back a valid representation.

Student Question. Why are the two definitions of the dual representation (the abstract one and the one given
in terms of matrices) equivalent, and how do we get the formula for the character from the abstract definition?

Answer. One way to think about this is to first think in terms of matrices — in that setting, it’s clear that
χR∗ = χR. Now in the abstract setting, we can pick a basis for V . This gives a basis for V ∗ as well — given a
basis {v1, . . . , vn} for V , we take fi to be the function which is 1 on vi and 0 on each of the other basis vectors.
Then our abstract definition is equivalent to taking the inverse transpose of the corresponding matrices.

Student Question. If ρ : G → GL(V ), does there exist a representation on the same vector space V with
character χρ?

Answer. Technically, yes. The dual space V ∗ is isomorphic to V — they have the same dimension, so fixing a
basis for each gives an isomorphism between them. But they’re not isomorphic in a canonical way.

4.3 The Main Theorem
To understand the main theorem, we need to understand the space of class functions.

Definition 4.6
A class function is a function f : G→ C which is fixed on each conjugacy class of G. That is, for a class
function f, if g and h are conjugate, then f(g) = f(h).

The space of class functions is a vector space over C, with addition and scalar multiplication defined as usual
for functions.

We’ll now state the main theorem in our story about representations, which gives surprisingly detailed information
about the characters of irreducible representations.

Theorem 4.7 (Main Theorem)
Let G be a finite group. Then:

(a) The characters of irreducible representations form a basis in the space of class functions on G.

(b) This basis is orthonormal with respect to the Hermitian form on the space of class functions given by

⟨f1, f2⟩ =
1

|G|
∑
g∈G

f1(g)f2(g).

(c) If d1, . . . , dm are the dimensions of the irreducible representations of G, then

d21 + d22 + · · ·+ d2n = |G|,

and each di divides |G|.

In particular, (a) also implies that the characters of different irreducible representations are distinct, since they
must form a basis.

For (c), note that although this isn’t written in terms of characters, we can interpret it as a statement about
characters as well, since dim(ρ) = χρ(1).

We’ll prove these properties in later classes; first we’ll look at a few important implications.

Corollary 4.8
The character of a representation uniquely determines the representation, up to isomorphism.

Proof. By Maschke’s Theorem, we know that any representation ρ can be decomposed as a sum of irreducibles —
if we use ρ1, . . . , ρn to denote the irreducible representations, then by grouping together isomorphic summands,
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we can write
ρ =

⊕
i

ρni
i

for some integers ni (the notation ψk, or ψ⊕k, denotes a direct sum of k copies of the representation ψ). But
then we have

χρ =
∑

niχρi .

So the coefficients ni when decomposing ρ as a sum of irreducibles are the same as the coefficients when
decomposing χρ as a sum of χρi . But since the χρi form a basis of the space of class functions, there’s a
unique way to write χρ (which is a class function) as a linear combination of these χρi ! So the ni are uniquely
determined from the character of ρ, and therefore so is ρ itself.

Corollary 4.9
The number of irreducible representations of G is the number of conjugacy classes on G.

Proof. The number of irreducible representations of G is the dimension of the space of class functions (since
their characters form a basis for this space). But this dimension is just the number of conjugacy classes, since
to specify a class function f : G→ C, we need to specify its value on each conjugacy class.

This theorem gives a lot of concrete information that we can figure out about irreducible representations by
just looking at the group; we’ll see some examples of this next class.
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