
Lecture 31: Applications of the Galois Correspondence

31 Applications of the Galois Correspondence

31.1 Review
Last class, we saw that if E/F is a Galois extension and G = Gal(E/F ), then there is a correspondence between
subgroups H ⊂ G and their fixed fields EH ⊂ E. We saw that in the tower of extensions E/EH/F , the top
extension E/EH is always Galois, with Galois group H. Meanwhile, EH/F is not always Galois; but it’s Galois
if and only if H is normal, and in that case G/H = Gal(EH/F ) (so in some sense, the left-hand side makes
sense if and only if the right-hand side does):

Proposition 31.1
If K = EH , then K/F is Galois if and only if K is invariant under all g ∈ G, which occurs if and only if H
is normal.

Student Question. What does it mean that K is invariant under all g ∈ G?

Answer. This means that for any g ∈ G, we have x ∈ K if and only if g(x) ∈ K. In other words, g(K) = K.
(So each g permutes the elements of K; this doesn’t mean that g fixes each element of K.)

Student Question. Did we prove the second equivalence (that K is invariant if and only if H is normal)?

Answer. At the end of last class — it follows from the correspondence being natural, and therefore compatible
with the action of G. More precisely, if H corresponds to K, then gHg−1 corresponds to g(K) (the action
by g on subfields corresponds to the action by g on subgroups via conjugation — this is unsurprising, since
conjugation is the natural action by group elements on subgroups). From this, we see that g(K) = K if and only
if gHg−1 = H.

Then ghg−1 fixes g(x) if and only if h fixes x — checking this is easy, as ghg−1(g(x)) = gh(x).

31.2 Cyclotomic Extensions
The main theorem can be used to answer our question about ruler and compass constructions:

Proposition 31.2
If p = 2k + 1 is a Fermat prime, then a regular p-gon can be constructed by a compass and straightedge.

Proof. Let ζ be a pth root of unity. Then it suffices to show that Q(ζ) can be obtained by iterating quadratic
extensions — if we let E = Q(ζ), then it suffices to show there exists a tower of subfields

Q = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn = E,

such that [Fi : Fi−1] = 2 for all i. Quadratic extensions can always be obtained by extracting the square root of
some element; so this would mean we can obtain Q(ζ) by starting with Q and successively applying arithmetic
operations and square roots.

This is fairly clear from the Galois correspondence. We saw earlier that

Gal(E/Q) = (Z/pZ)× ∼= Z/(p− 1)Z = Z/2kZ.

We can now write
G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ {0},

where G1 = 2Z/2kZ, G2 = 4Z/2kZ, and so on. Then Gi/Gi+1
∼= Z/2Z for all i.

We can then take Fi to be the fixed field of Gi. We saw that the correspondence reverses inclusion, and we know
how degrees correspond — we have [E : Fi] = 2i for each i, which implies that [Fi : Fi−1] = 2, as desired.

Example 31.3
Describe the first step in this construction (to find F1).
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Solution. We want to write down a quadratic extension of Q. We know F1 is the fixed field of G1, and G1

consists of the even residues in the language of Z/2kZ; converting back to the language of (Z/pZ)×, then G1

consists of the squares (or quadratic residues) in Z/pZ — elements of the form a = b2 for some b ̸= 0.

Suppose ζ = exp(2πi/p), and let
α =

∑
a∈QR

ζa

(summing over all (p− 1)/2 quadratic residues mod p — for example, if p = 5, then α = ζ + ζ4). It’s clear that
α is fixed by G1, since multiplying all a by a quadratic residue only permutes them.

We also want to find its Galois conjugate β. To do that, we apply an element of the Galois group not in G1,
which gives

β =
∑

b∈NQR

ζb

(summing over all quadratic nonresidues mod p — for example, if p = 5, then α = ζ2 + ζ3.) We now want to
compute the quadratic equation that α satisfies. We know

α+ β = ζ1 + ζ2 + · · ·+ ζp−1 = −1.

On the other hand, we can compute
αβ =

∑
ncζ

c,

where nc is the number of ways to write a+ b = c where a is a quadratic residue, and b is a quadratic nonresidue.

This is a combinatorial problem, which we can solve — first, n0 = 0, since −1 is a square (this means if a is a
square, so is −a, so we can’t have a+ b = 0 where a is square and b isn’t). On the other hand, we claim that
n1, . . . , np−1 are all equal — for any c and c′, we can write c′ = tc for some t (since Z/pZ is a field). If t is a
square, then we can get a bijection between (a, b) with sum c and sum c′, by multiplying by t. Meanwhile, if
t is not a square, then we can get a bijection by multiplying and swapping — given (a, b) with sum c, we can
take (tb, ta) with sum c′. This means nc = nc′ . Finally, we have n0 + · · · + np−1 = ((p − 1)/2)2, since this is
the number of ways to choose a summand from each of α and β. This means

nc =

{
p−1
4 if c ̸= 0

0 if c = 0,

so then our sum is

αβ =

p−1∑
c=1

p− 1

4
ζc = −p− 1

4
.

This means our quadratic equation is

α2 + α− p− 1

4
= 0 =⇒ α =

−1±√
p

2
.

So we have F1 = Q(
√
p).

Note 31.4
This argument works for any prime p ≡ 1 (mod 4), meaning that the quadratic extension of Q contained
in Q(ζp) is still Q(

√
p). Meanwhile, when p ≡ 3 (mod 4), we instead get Q(

√−p).

The description of Gal(Q(ζ)/Q) can be generalized to apply to all n (meaning ζ is an nth root of unity), not
just primes.

Definition 31.5
The nth cyclotomic polynomial Φn is the monic polynomial in Z[x] whose roots are exactly the primitive
nth roots of unity.
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We then have
xn − 1 =

∏
d|n

Φd(x).

This is because the roots of xn− 1 are all elements whose order in C× divides n, and the right-hand side groups
such terms by their order d).

This formula lets us compute Φn.

Example 31.6
We have Φ1(x) = x− 1, and

Φp(x) = xp−1 + · · ·+ 1.

We can also compute other polynomials Φn(x), such as

Φ12(x) = x4 − x2 + 1.

The cyclotomic polynomials don’t always have all coefficients 0 or ±1, but the smallest counterexample is 105
(the smallest product of three distinct odd primes). But from this formula, it’s easy to show by induction that
all Φn have integer coefficients.

Fact 31.7
Φn is irreducible in Q[x].

We proved this fact for primes; we won’t prove it for general n, since the proof is longer.

Also note that deg(Φn) is the number of elements of order n in the additive group Z/nZ, which is φ(n) =
|(Z/nZ)×|. If n = pd11 · · · pdkk , we have the explicit formula

φ(n) =
∏
i

(pdii − pdi−1
i ).

Now we have
[Q(ζ) : Q] = φ(n),

and Q(ζ) is a splitting field (for the same reason as in the prime case — all roots of Φn are powers of ζ). By
the same reasoning as the prime case, we then have

Gal(Q(ζ)/Q) = (Z/nZ)∗.

Note that this is not necessarily cyclic — in fact, it’s not cyclic unless n is a prime power or twice a prime power
(and it’s also not cyclic if n ≥ 8 is a power of 2). It’ll be the product of cyclic groups (since it’s still abelian),
but there will usually be multiple factors of even order in this product.

31.3 Kummer Extensions
We’ll now consider extensions E/F where E = F (α) for some α such that αn ∈ F for a positive integer n (and
α ̸= 0). Assume that F contains all nth roots of unity, meaning that

µn(F ) = {x ∈ F | xn = 1}

has exactly n elements (and therefore µn(F ) ∼= Z/nZ); this is equivalent to requiring that F contains a primitive
nth root of 1.

Our main example is over characteristic 0, but this can be done over characteristic p as well, with the additional
requirement that p ∤ n.

Proposition 31.8
In this case E/F is Galois, and

Gal(E/F ) ∼= Z/mZ

for some m | n. In fact, if xn − a is irreducible in F [x], then m = n.
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Proof. We have
xn − a =

∏
(x− ζiα),

where 0 ≤ i ≤ n−1 and ζ is a primitive nth root of 1 (since all ζiα are roots of xn−a, and they are all distinct).
So if we’re given one root of xn − a, then all possible roots are obtained by multiplication by roots of unity
(which are in F ). So E is the splitting field of xn − a.

Now an element σ ∈ G = Gal(E/F ) is uniquely determined by σ(α), which must be ζiα for some i. For each i,
let σi be the element in G such that σi(α) = ζiα, if it exists (the element σi doesn’t necessarily exist for all i).

It’s clear that
σiσj(α) = σi(ζ

jα) = ζi+jα = σi+j(α)

(because ζ ∈ F , so σ must fix it). So then σiσj = σi+j . This means G is isomorphic to a subgroup in Z/nZ,
and every such subgroup must be of the form Z/mZ where m | n.

In fact m = deg(E/F ), so m = n if and only if xn − a is irreducible. (When xn − a to be reducible, this fails in
a trivial way — then a smaller power of α is in F .)

31.4 Quintic Equations
Using these ideas, we can obtain the famous application of Galois theory to the impossibility of solving a general
polynomial equation of degree at least 5.

Definition 31.9
A finite group G is solvable if there exists a sequence of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn = {1}

such that for all i, Gi is a normal subgroup of Gi−1 and Gi−1/Gi is abelian.

The main idea of the proof is the following two propositions:

Proposition 31.10
Given an extension E/F and some α ∈ E such that α can be obtained from elements of F by arithmetic
operations (addition, subtraction, multiplication, and division) and extracting arbitrary nth roots (where
we’re allowed to choose any of the possible nth roots), then α lies in a Galois extension of F with a solvable
Galois group.

Proposition 31.11
Sn is not solvable for n ≥ 5.

The first proposition essentially follows from what we’ve already discussed — we’ll discuss it in more detail next
class, but the idea is to first add the roots of unity; then when we extract a nth root, we get an extension with
cyclic Galois group. Then when we extract nth roots repeatedly, we get a sequence of subgroups with abelian
quotients. Meanwhile, the second is an elementary finite group argument.

Corollary 31.12
A root of a polynomial P of degree 5 with Galois group S5 cannot be expressed through the rational numbers
in radicals.

Saying the root can’t be expressed in radicals is shorthand for the longer sentence from earlier — it simply
means that it can’t be obtained by arithmetic operations and extracting nth roots.

So this means not only is there no universal formula for the roots using radicals (as there is in lower degrees),
there isn’t even a way to write down the roots of a specific polynomial.

Proof of corollary. If it were possible to express all roots of P in radicals, then the splitting field K of P would
be contained in a Galois extension of Q with solvable Galois group G. But then we have an onto homomorphism
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G↠ Gal(K/Q) = S5. But the quotient of a solvable group is again solvable; so this would imply S5 is solvable,
contradiction.
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