
Lecture 24: Fields

24 Fields

24.1 Review — Noetherian Rings
Recall the definition of Noetherian rings:

Definition 24.1
A ring is Noetherian if every ideal is finitely generated.

This definition has a useful reformulation, in terms of chains.

Proposition 24.2
A ring is Noetherian if and only if every increasing chain of ideals stabilizes — in other words, given any
chain of ideals I1 ⊆ I2 ⊆ · · · , from some point on we must have In = In+1 = · · · .

Example 24.3
In the case R = Z, a chain of ideals amounts to a list of integers d1, d2, . . . where di | di−1 for all i. This
chain clearly has to stabilize, since it’s a nonincreasing sequence of positive integers.

Proof of Proposition 24.2. First suppose R is Noetherian, and we have a chain I1 ⊆ I2 ⊆ · · · . Then their union
I = I1 ∪ I2 ∪ · · · is an ideal. Since R is Noetherian, then I is finitely generated, so we can write I = (a1, . . . , an).
Then for each i, ai must be contained in some ideal (since it’s in their union). But there’s finitely many ai,
so some Im must contain all of them (since Ik ⊆ Ik+1, once ai appears in one ideal, it appears in all following
ones). So then Im = I, and the sequence must stabilize at Im — we must have Im = Im+1 = · · · = I.

For the other direction, suppose R is not Noetherian, and let I ⊂ R be an ideal that’s not finitely generated.
Pick a1 ∈ I, and define an inductively such that an ∈ I but an ̸∈ (a1, . . . , an−1) — this is possible because
otherwise I would be generated by a1, . . . , an−1. Now we can take In = (a1, . . . , an), which gives an infinite
non-stabilizing chain of ideals.

Note 24.4
Sometimes the chain condition is given as the definition of Noetherian rings.

This has an application to unique factorization in PIDs. Previously, we proved uniqueness but not existence —
in our specific examples we had a concept of a norm that we could use to prove that the factorization process
always terminates, but it’s nontrivial to prove existence of a factorization in an abstract PID. But now we do
have the tools to prove that the factorization process terminates in general.

Corollary 24.5
In a PID, every element can be factored as a product of irreducibles.

Proof. Start with the element, and keep on factoring terms until stuck. If we get stuck, then all factors must be
irreducible; so assume that the factorization process is infinite instead. Then we can organize the factorization
process into an infinite chain of ideals — attempting to factor an element will give a chain d1, d2, d3, . . . where
di+1 | di for all i, and then (d1) ⊂ (d2) ⊂ · · · . This would contradict the chain condition, so factorization must
terminate.

Similarly, we can also revisit a statement we made earlier about maximal ideals:

Proposition 24.6
In a Noetherian ring, every (non-unit) ideal is contained in a maximal ideal.

This is actually true in any ring, but the proof requires set theory. But we’re mostly interested in several
concrete rings, which are all Noetherian; so this proposition covers all such cases.
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Proof. Let I ⊂ R be an ideal, and assume I is not contained in a maximal ideal. Set I1 = I. Now find I2 ⊃ I
(not equal to I or R), which is possible since I is not maximal. But I2 is not maximal either, so we can similarly
construct I3 ⊃ I2, and inductively build a chain I1 ⊊ I2 ⊊ I3 ⊊ · · · ⊊ R — this is possible at every step
because if we couldn’t choose In+1, then In would be a maximal ideal containing I. This contradicts chain
termination.

Note 24.7
As a final remark on modules: one important tool in studying modules is an upgrade on the presentation
with generators and relations. The idea is that once we have generators and relations, we can also look at
the relations between relations, and so on. First construct a surjective map Rn →M by fixing generators.
This map has a kernel K1, and we can construct a surjective map Rm → K1 by fixing its generators. This
map has a kernel K2, and we can construct a surjective map Rℓ → K2, and so on. This is called the sygyzy
or free resolution, and it tells you a lot about the structure of the module.

24.2 Introduction to Fields

Definition 24.8
A field is a ring where all nonzero elements are units.

Definition 24.9
A field extension is a pair of fields L ⊃ K. The extension is written as L/K.

The theory of field extensions developed from trying to understand how to systematically solve polynomial
equations — an important example of a field extension is L = K(α) where α is a root of an irreducible polynomial.
We know a formula for solving quadratics; people were interested in understanding more general formulas. One
result we’ll get to in a few weeks is that if P is a generic polynomial in Q[x] of degree at least 5, and K = Q(α)
for a root α of P , then K is not contained in any field Q(β1, . . . , βn) such that βdii ∈ Q(β1, . . . , βi−1) for each
i (for some positive integers di) — you can’t build the field by repeatedly taking roots. It then follows that
there’s no expression for the roots of P in terms of arithmetic operations and radicals.

Another application is to compass and straightedge constructions — let ζn ∈ C be a primitive nth root of unity.

Guiding Question
When is Q(ζn) contained in a field of the form Q(α1, . . . , αn) where α2

i ∈ Q(α1, . . . , αi−1) for all i?

In other words, we want to find out whether we can obtain ζn by the regular operations along with extracting
square roots. This is interesting because it happens if and only if a regular n-gon can be constructed by a
compass and straightedge. We’ll see how to get a complete answer (as Gauss did) — for example, the answer is
yes for n = 17 and no for n = 19. (In fact, a 17-gon appeared on Gauss’s tombstone — this was an achievement
he was proud of.)

24.3 Field Extensions

Definition 24.10
An extension L/K is finite if L is finite-dimensional as a vector space over K.

Essentially, what this means is that if we forget that we can multiply by elements of L, but remember that we
can add them and multiply by elements of K, then that turns L into a vector space over K; the extension is
finite when this vector space has finite dimension.

We’ve already seen how to construct examples of finite extensions: if P ∈ K[x] is an irreducible polynomial,
then we saw that K[x]/(P ) is a field. (This is because K[x] is a PID, so (P ) is a maximal ideal.) In this case,
the dimension of the vector space is d = degP , since we saw the monomials 1, x, . . . , xd−1 form a basis.
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Definition 24.11
The degree of the extension L/K, denoted [L : K], is the dimension of L as a vector space over K.

On the other hand, suppose we start with an extension L/K, and pick an element α ∈ L. We say α is algebraic
over K if it satisfies a polynomial equation — meaning that P (α) = 0 for some nonzero P ∈ K[x].

If α is algebraic, then we can take its minimal polynomial P (the monic polynomial of smallest degree with
P (α) = 0 — this is unique because all polynomials with P (α) = 0 form an ideal, and since K[x] is a PID,
all ideals are principal and generated by their minimal-degree element). The minimal polynomial has to be
irreducible — if P = P1P2, then P (α) = P1(α)P2(α) = 0, but since we’re in a field, this would imply P1(α) or
P2(α) is 0, contradicting minimality.

Then we have a homomorphism K[x]/(P ) → L sending x 7→ α. But any homomorphism of fields is injective
(alternatively, the kernel of the map f : K[x] → L sending x 7→ α is exactly the set of polynomials P with
P (α) = 0, which is generated by the minimal polynomial of α; so this homomorphism is injective). So we have
an isomorphism K[x]/(P ) ∼= K(α), where K(α) is the subfield of L generated by α.

Note 24.12
This isomorphism is important: later we’ll look at automorphisms of fields, and this is the trick that will
let us build such maps. For example, start with K = Q and L = C, and take α = 3

√
2 and β = 3

√
2ω for

a primitive third root of unity ω. Then α and β are both roots of the irreducible polynomial x3 − 2. So
Q(α) ∼= Q(β), since both extensions are isomorphic to the abstract construction Q[x]/(x3 − 2).

Lemma 24.13
If we have a field extension L/K, then α ∈ L is algebraic if and only if K(α) is finite-dimensional over K.

Proof. We’ve already seen that if α is algebraic, then K(α) is finite-dimensional (since it’s isomorphic to
K[x]/(P ) for some irreducible P , which is finite). Meanwhile, a polynomial relation can be thought of as a
linear relation between the powers of α. If m > dimK K(α), then 1, α, . . . , αm must be linearly dependent;
that linear dependence corresponds to a polynomial over K, giving a polynomial P such that P (α) = 0.

Corollary 24.14
If L/K is finite, then every α ∈ L is algebraic over K.

24.4 Towers of Extensions

Proposition 24.15
Suppose that we have a tower of field extensions K ⊃ E ⊃ F , where K/E and E/F are finite. Then K/F
is finite, and

[K : F ] = [K : E] · [E : F ].

Proof. Let α1, . . . , αn be a basis for E as a vector space over F , and β1, . . . , βm a basis for K as a vector space
over E. Then we’ll show that the terms αiβj form a basis for K/F .

This becomes clear just by substituting notation. First, in order to see that this is a generating set, every x ∈ K
can be written as x =

∑
λiβi, while each λi ∈ E can be written as λi =

∑
aijαj , which gives

x =
∑

aijαjβi.

Similarly, to prove independence, if we have
∑
aijαjβi = 0, we can collect terms into∑(∑

aijαj

)
βi = 0.

If the aij are not all 0, then one of the terms
∑
aijαj must be nonzero (since the αj are linearly independent),

and therefore the entire sum must be nonzero (since the βi are linearly independent), contradiction.
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Example 24.16
Find [Q(α, β) : Q], where α = 3

√
2 and β = 3

√
2ω.

Proof. We saw α and β both have minimal polynomial x3 − 2. Then [Q(α) : Q] = 3. Meanwhile, x3 − 2 factors
in Q(α) as (x − α)(x2 + αx + α2). The second factor is irreducible (as otherwise, β would lie in Q(α)), so
[Q(α, β) : Q(α)] = 2, which means [Q(α, β) : Q] = 6.
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