19 Modules over a Ring

The motivation for modules is that we are trying to tell a story where rings are the protagonist, and for a story to be interesting, the protagonist must act. When we find a way for a ring to act, we get the definition of a module.

Definition 19.1
Let R be a ring. A module M over R is an abelian group, together with an action map $R \times M \rightarrow M$ (written as $(r, m) \mapsto r(m)$ or $r m$), subject to the following axioms:

- $1_{R}(m)=m$ for all m im M;
- $r_{1}\left(r_{2}(m)\right)=\left(r_{1} r_{2}\right)(m)$ for all $r_{1}, r_{2} \in R$ and $m \in M$;
- Distributivity in both variables: $\left(r_{1}+r_{2}\right) m=r_{1} m+r_{2} m$ for all $r_{1}, r_{2} \in R$ and $m \in M$, and $r\left(m_{1}+m_{2}\right)=r m_{1}+r m_{2}$ for all $r \in R$ and $m_{1}, m_{2} \in M$.

The first two axioms are very similar to the definition of a group action on a set. So a ring to a module is like a group G to a G-set (a set with an action by G). It's not exactly the same because in a ring we have two operations instead of one, but they're a similar flavor.

19.1 Examples

Example 19.2

If $R=F$ is a field, then a module is the same as a vector space.

The axioms here are exactly the same. The textbook emphasizes this heavily, and this analogy can get you some mileage; but for general rings, things become more complicated.

Abstract

Note 19.3 The definition also applies to a noncommutative ring R, in the same way - our definition does not reference commutativity. Then we have some familiar examples of modules over noncommutative rings: for example, given any field F we can take $R=\operatorname{Mat}_{n \times n}(F)$ and $M=F^{n}$, since matrices act on column vectors by multiplication. As another example, if $R=\mathbb{C}[G]$ is the group ring, then a R-module is the same as a complex representation of G.

For any ring R, there is a uniquely defined homomorphism $\mathbb{Z} \rightarrow R$, where $1 \mapsto 1_{R}$. On a similar note, every abelian group has a unique structure of a \mathbb{Z}-module: we know that 1 (in \mathbb{Z}) must map $m \mapsto m$, so then by distributivity, $n=1+1+\cdots+1$ must map

$$
v \mapsto \underbrace{v+v+\cdots+v}_{n}
$$

Similarly, $-n$ must map v to $-(v+v+\cdots+v)$. So a \mathbb{Z}-module is the same as an abelian group.

Example 19.4

What is a module over $R=\mathbb{C}[x]$?

Proof. First, a $\mathbb{C}[x]$-module is a \mathbb{C}-vector space V by looking at the action of constant polynomials (which are just scalars). But then we also need to see what x does. We know x must act by a linear map $A: V \rightarrow V$, where $x v=A v$. There are no constraints on this map, and this defines the action of every other polynomial: so a R-module is a vector space V, together with a linear map $A: V \rightarrow V$. Explicitly, the action of a general polynomial $P(x)=a_{n} x^{n}+\cdots+a_{0}$ is given by

$$
P v=a_{0} v+a_{1} A v+\cdots+a_{n} A^{n} v
$$

Note that the vector space may or may not be finite-dimensional; if it is, then we end up in a situation studied in linear algebra, where we have a vector space and a linear operator.

Example 19.5

What is a module over $R=\mathbb{Z} / n \mathbb{Z}$?

Proof. The main point is that if R / I is a quotient of R, then every R / I-module is also a R-module, where we define $r(m)$ to be $\bar{r}(m)$ (here \bar{r} denotes $r \bmod I$). Meanwhile, in order to go backwards, I must act by 0 . So a R / I module is the same as a R-module where every element of I acts in a trivial way (meaning that $r v=0$ for all $r \in I$ and $v \in M)$.

So in this case, a $\mathbb{Z} / n \mathbb{Z}$-module is the same as an abelian group where the order of every element divides n meaning $n a=0$ for all a in the group.
Then more concretely, for every m (where we use \bar{m} to denote $m \bmod n$), we can write

$$
\bar{m} v=\underbrace{v+v+\cdots+v}_{m}
$$

In order for this to be well-defined, the sum should not depend on the choice of representative for the residue; but this is guaranteed by the condition $n a=0$. (This is the same reasoning as in the first paragraph, for this specific example.)

For any ring R, there is a simple example of a module:
Definition 19.6
The free module over R is $M=R$ itself, where the action is multiplication (meaning that $r(x)=r x$).

This is parallel to the observation that a group G acts on itself by left multiplication.

19.2 Submodules

Definition 19.7

Given a module M, a submodule $N \subset M$ is an abelian subgroup which is invariant under the R-action meaning $r x \in N$ for all $x \in N$ and $r \in R$.

If $N \subset M$ is a submodule, we can define their quotient M / N, where we take the quotient in the sense of abelian groups. This quotient of abelian groups carries a module structure as well, given by the obvious rule $r \bar{m}=\overline{r m}($ where \bar{m} denotes $m \bmod N)$. This is well-defined because N is a submodule - if $m_{1}-m_{2}$ is in N, then $r m_{1}-r m_{2}=r\left(m_{1}-r_{2}\right)$ is in N as well.
Then the homomorphism theorem and correspondence theorem work in the exact same way as in abelian groups. (For rings and ideals, we saw they work in a similar way; but here the parallel is closer.)

Example 19.8

What are the submodules of the free module $M=R$?

Proof. The answer is exactly the ideals of R - we're looking for abelian subgroups of R which are invariant under multiplication by all terms in R, and by definition these are ideals.

We'll later see how to understand any module by looking at generators and relations - this turns out to be easier than the corresponding problem for a group. But first we'll look at another example of a module, which will be useful for developing that theory.

Definition 19.9

Given two modules M and N, their direct sum is

$$
M \oplus N=\{(m, n) \mid m \in M, n \in N\}
$$

with the action

$$
r(m, n)=(r m, r n)
$$

Note 19.10

The direct sum is the same as the product $M \times N$. This is true for any finite sum - we have

$$
M_{1} \oplus \cdots \oplus M_{n}=M_{1} \times \cdots \times M_{n}
$$

But this isn't true for infinite sums and products.

Definition 19.11

The free module of rank n is

$$
R^{n}=\underbrace{R \oplus R \oplus \cdots \oplus R}_{n} .
$$

In the case where $R=F$ is a field, the free module of rank n is exactly F^{n}, the standard n-dimensional vector space.

19.3 Homomorphisms

In linear algebra, we work with matrices in order to understand linear maps. Matrices are also relevant here the terms are different, but the concept is very similar.

Definition 19.12

A homomorphism from a module M to a module N is a homomorphism of abelian groups $\varphi: M \rightarrow N$, which is compatible with the R-action - meaning $\varphi(r m)=r \varphi(m)$ for all $r \in R$ and $m \in M$.

In vector spaces, this is the same as a linear map.
We'll use $\operatorname{Hom}_{R}(M, N)$ to denote the set of all homomorphisms $M \rightarrow N$. Note that homomorphisms can be added and rescaled, in the same way as linear maps: $\left(\varphi_{1}+\varphi_{2}\right)(m)=\varphi_{1}(m)+\varphi_{2}(m)$, and $(r \varphi)(m)=r \varphi(m)$. So then $\operatorname{Hom}_{R}(M, N)$ is itself a R-module.
Understanding homomorphisms in general may be hard, but it's easy to understand homomorphisms from a free module. Given a homomorphism $\varphi \in \operatorname{Hom}_{R}(R, M)$ for any module M, we can let $m=\varphi\left(1_{R}\right)$. Then this determines the entire homomorphism - for any $r \in R$, we have

$$
\varphi(r)=\varphi\left(r \cdot 1_{R}\right)=r \cdot \varphi\left(1_{R}\right)=r m
$$

So a homomorphism is determined by $m=\varphi\left(1_{R}\right)$, and there are no restrictions on m - this is why R is called a free module. This means $\operatorname{Hom}_{R}(R, M)$ is isomorphic to M : more explicitly, the bijection is given by mapping $\varphi \in \operatorname{Hom}_{R}(R, M)$ to $m_{\varphi}=\varphi(1)$, and $m \in M$ to the homomorphism $\varphi_{m}: r \mapsto r m$.

Similarly, $\operatorname{Hom}_{R}\left(R^{n}, M\right)$ is equally easy to understand. Now R^{n} is generated by the elements 1_{i} which have a 1 in their i th place, and 0 's everywhere else (so $1_{i}=(0, \ldots, 0,1,0, \ldots, 0)$, where the 1 is in the i th place). So $\operatorname{Hom}_{R}\left(R^{n}, M\right)$ is isomorphic to M^{n}, where the bijection sends $\varphi \in \operatorname{Hom}_{R}\left(R^{n}, M\right)$ to the element $\left(\varphi\left(1_{1}\right), \varphi\left(1_{2}\right), \ldots, \varphi\left(1_{n}\right)\right)$, and $\left(m_{1}, \ldots, m_{n}\right) \in M$ to the homomorphism $\varphi\left(x_{1}, \ldots, x_{n}\right)=\sum x_{i} m_{i}$.
In particular, we have $\operatorname{Hom}_{R}\left(R^{n}, R^{m}\right)=\left(R^{m}\right)^{n}=\operatorname{Mat}_{m \times n}(R)$ - we can write homomorphisms in the way we're used to in linear algebra, where $A \in \operatorname{Mat}_{m \times n}(R)$ sends $\left(x_{1}, \ldots, x_{n}\right)^{t}$ to $A\left(x_{1}, \ldots, x_{n}\right)^{t}$. So as long as we work with free modules and homomorphisms, to a large extent we can operate as if we're doing linear algebra. But in linear algebra, there's various characterizations of nondegenerate matrices that no longer hold here -
for instance, a linear operator that is injective (meaning it has zero kernel) is also surjective, but that's not true for general modules.

19.4 Generators and Relations

Definition 19.13

A collection of elements $m_{1}, \ldots, m_{n} \in M$ forms a system of generators if every $x \in M$ can be expressed as $\sum r_{i} m_{i}$ for $r_{i} \in R$.

So in other words, $\varphi_{m_{1}, \ldots, m_{n}}: R^{n} \rightarrow M$ is onto. If such a finite set exists, we say that M is finitely generated. Many modules we're interested in are in fact finitely generated.

If this map is also one-to-one, then it's an isomorphism, and M is free. But usually this won't happen, and we still want to describe M. To do this, we can look at $K=\operatorname{ker}(\varphi)$, which is a submodule in R^{n}. If K is itself finitely generated, then we can choose a set of generators for K, and get a somewhat explicit description of M we can fix a system of k generators for K, and obtain another homomorphism $\psi: R^{k} \rightarrow K$. Since K sits inside R^{n}, we can think of ψ instead as a homomorphism $\psi: R^{k} \rightarrow R^{n}$, with image K. But such a homomorphism corresponds to a matrix $A \in \operatorname{Mat}_{k \times n}$, and we have $M=R^{n} / A R^{n}$.

Definition 19.14

If we can find a finite set of generators for M such that the kernel is also finitely generated, then M is called finitely presented.

We'll see that for many rings, the finitely presented modules are a very large class of modules - in fact, for many rings, any finitely generated module is finitely presented. We'll also see how to make this description of a module very explicit when the ring is a Euclidean domain. In particular, taking the Euclidean domain to be \mathbb{Z} will give us a classification of all finitely generated abelian groups, and taking the Euclidean domain to be $F[x]$ will give us Jordan normal form!

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra II Student Notes

Spring 2022
Instructor: Roman Bezrukavnikov
Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

