
Lecture 19: Modules over a Ring

19 Modules over a Ring
The motivation for modules is that we are trying to tell a story where rings are the protagonist, and for a story
to be interesting, the protagonist must act. When we find a way for a ring to act, we get the definition of a
module.

Definition 19.1
Let R be a ring. A module M over R is an abelian group, together with an action map R ×M → M
(written as (r,m) 7→ r(m) or rm), subject to the following axioms:

• 1R(m) = m for all m imM ;

• r1(r2(m)) = (r1r2)(m) for all r1, r2 ∈ R and m ∈M ;

• Distributivity in both variables: (r1 + r2)m = r1m + r2m for all r1, r2 ∈ R and m ∈ M , and
r(m1 +m2) = rm1 + rm2 for all r ∈ R and m1,m2 ∈M .

The first two axioms are very similar to the definition of a group action on a set. So a ring to a module is like
a group G to a G-set (a set with an action by G). It’s not exactly the same because in a ring we have two
operations instead of one, but they’re a similar flavor.

19.1 Examples

Example 19.2
If R = F is a field, then a module is the same as a vector space.

The axioms here are exactly the same. The textbook emphasizes this heavily, and this analogy can get you
some mileage; but for general rings, things become more complicated.

Note 19.3
The definition also applies to a noncommutative ring R, in the same way — our definition does not reference
commutativity. Then we have some familiar examples of modules over noncommutative rings: for example,
given any field F we can take R = Matn×n(F ) and M = Fn, since matrices act on column vectors by
multiplication. As another example, if R = C[G] is the group ring, then a R-module is the same as a
complex representation of G.

For any ring R, there is a uniquely defined homomorphism Z → R, where 1 7→ 1R. On a similar note, every
abelian group has a unique structure of a Z-module: we know that 1 (in Z) must map m 7→ m, so then by
distributivity, n = 1 + 1 + · · ·+ 1 must map

v 7→ v + v + · · ·+ v︸ ︷︷ ︸
n

.

Similarly, −n must map v to −(v + v + · · ·+ v). So a Z-module is the same as an abelian group.

Example 19.4
What is a module over R = C[x]?

Proof. First, a C[x]-module is a C-vector space V by looking at the action of constant polynomials (which are
just scalars). But then we also need to see what x does. We know x must act by a linear map A : V → V ,
where xv = Av. There are no constraints on this map, and this defines the action of every other polynomial:
so a R-module is a vector space V , together with a linear map A : V → V . Explicitly, the action of a general
polynomial P (x) = anx

n + · · ·+ a0 is given by

Pv = a0v + a1Av + · · ·+ anA
nv.

Note that the vector space may or may not be finite-dimensional; if it is, then we end up in a situation studied
in linear algebra, where we have a vector space and a linear operator.
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Example 19.5
What is a module over R = Z/nZ?

Proof. The main point is that if R/I is a quotient of R, then every R/I-module is also a R-module, where we
define r(m) to be r(m) (here r denotes r mod I). Meanwhile, in order to go backwards, I must act by 0. So a
R/I module is the same as a R-module where every element of I acts in a trivial way (meaning that rv = 0 for
all r ∈ I and v ∈M).

So in this case, a Z/nZ-module is the same as an abelian group where the order of every element divides n —
meaning na = 0 for all a in the group.

Then more concretely, for every m (where we use m to denote m mod n), we can write

mv = v + v + · · ·+ v︸ ︷︷ ︸
m

.

In order for this to be well-defined, the sum should not depend on the choice of representative for the residue;
but this is guaranteed by the condition na = 0. (This is the same reasoning as in the first paragraph, for this
specific example.)

For any ring R, there is a simple example of a module:

Definition 19.6
The free module over R is M = R itself, where the action is multiplication (meaning that r(x) = rx).

This is parallel to the observation that a group G acts on itself by left multiplication.

19.2 Submodules

Definition 19.7
Given a module M , a submodule N ⊂M is an abelian subgroup which is invariant under the R-action —
meaning rx ∈ N for all x ∈ N and r ∈ R.

If N ⊂ M is a submodule, we can define their quotient M/N , where we take the quotient in the sense of
abelian groups. This quotient of abelian groups carries a module structure as well, given by the obvious rule
rm = rm (where m denotes m mod N). This is well-defined because N is a submodule — if m1 −m2 is in N ,
then rm1 − rm2 = r(m1 − r2) is in N as well.

Then the homomorphism theorem and correspondence theorem work in the exact same way as in abelian groups.
(For rings and ideals, we saw they work in a similar way; but here the parallel is closer.)

Example 19.8
What are the submodules of the free module M = R?

Proof. The answer is exactly the ideals of R — we’re looking for abelian subgroups of R which are invariant
under multiplication by all terms in R, and by definition these are ideals.

We’ll later see how to understand any module by looking at generators and relations — this turns out to be
easier than the corresponding problem for a group. But first we’ll look at another example of a module, which
will be useful for developing that theory.
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Definition 19.9
Given two modules M and N , their direct sum is

M ⊕N = {(m,n) | m ∈M,n ∈ N}

with the action
r(m,n) = (rm, rn).

Note 19.10
The direct sum is the same as the product M ×N . This is true for any finite sum — we have

M1 ⊕ · · · ⊕Mn =M1 × · · · ×Mn.

But this isn’t true for infinite sums and products.

Definition 19.11
The free module of rank n is

Rn = R⊕R⊕ · · · ⊕R︸ ︷︷ ︸
n

.

In the case where R = F is a field, the free module of rank n is exactly Fn, the standard n-dimensional vector
space.

19.3 Homomorphisms
In linear algebra, we work with matrices in order to understand linear maps. Matrices are also relevant here —
the terms are different, but the concept is very similar.

Definition 19.12
A homomorphism from a module M to a module N is a homomorphism of abelian groups φ :M → N ,
which is compatible with the R-action — meaning φ(rm) = rφ(m) for all r ∈ R and m ∈M .

In vector spaces, this is the same as a linear map.

We’ll use HomR(M,N) to denote the set of all homomorphisms M → N . Note that homomorphisms can be
added and rescaled, in the same way as linear maps: (φ1 + φ2)(m) = φ1(m) + φ2(m), and (rφ)(m) = rφ(m).
So then HomR(M,N) is itself a R-module.

Understanding homomorphisms in general may be hard, but it’s easy to understand homomorphisms from a
free module. Given a homomorphism φ ∈ HomR(R,M) for any module M , we can let m = φ(1R). Then this
determines the entire homomorphism — for any r ∈ R, we have

φ(r) = φ(r · 1R) = r · φ(1R) = rm.

So a homomorphism is determined by m = φ(1R), and there are no restrictions on m — this is why R is called
a free module. This means HomR(R,M) is isomorphic to M : more explicitly, the bijection is given by mapping
φ ∈ HomR(R,M) to mφ = φ(1), and m ∈M to the homomorphism φm : r 7→ rm.

Similarly, HomR(R
n,M) is equally easy to understand. Now Rn is generated by the elements 1i which

have a 1 in their ith place, and 0’s everywhere else (so 1i = (0, . . . , 0, 1, 0, . . . , 0), where the 1 is in the
ith place). So HomR(R

n,M) is isomorphic to Mn, where the bijection sends φ ∈ HomR(R
n,M) to the element

(φ(11), φ(12), . . . , φ(1n)), and (m1, . . . ,mn) ∈M to the homomorphism φ(x1, . . . , xn) =
∑
ximi.

In particular, we have HomR(R
n, Rm) = (Rm)n = Matm×n(R) — we can write homomorphisms in the way

we’re used to in linear algebra, where A ∈ Matm×n(R) sends (x1, . . . , xn)
t to A(x1, . . . , xn)t. So as long as we

work with free modules and homomorphisms, to a large extent we can operate as if we’re doing linear algebra.
But in linear algebra, there’s various characterizations of nondegenerate matrices that no longer hold here —
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for instance, a linear operator that is injective (meaning it has zero kernel) is also surjective, but that’s not true
for general modules.

19.4 Generators and Relations

Definition 19.13
A collection of elements m1, . . . , mn ∈M forms a system of generators if every x ∈M can be expressed
as
∑
rimi for ri ∈ R.

So in other words, φm1,...,mn
: Rn →M is onto. If such a finite set exists, we say that M is finitely generated.

Many modules we’re interested in are in fact finitely generated.

If this map is also one-to-one, then it’s an isomorphism, and M is free. But usually this won’t happen, and we
still want to describe M . To do this, we can look at K = ker(φ), which is a submodule in Rn. If K is itself
finitely generated, then we can choose a set of generators for K, and get a somewhat explicit description of M —
we can fix a system of k generators for K, and obtain another homomorphism ψ : Rk → K. Since K sits inside
Rn, we can think of ψ instead as a homomorphism ψ : Rk → Rn, with image K. But such a homomorphism
corresponds to a matrix A ∈ Matk×n, and we have M = Rn/ARn.

Definition 19.14
If we can find a finite set of generators for M such that the kernel is also finitely generated, then M is
called finitely presented.

We’ll see that for many rings, the finitely presented modules are a very large class of modules — in fact, for
many rings, any finitely generated module is finitely presented. We’ll also see how to make this description of a
module very explicit when the ring is a Euclidean domain. In particular, taking the Euclidean domain to be Z
will give us a classification of all finitely generated abelian groups, and taking the Euclidean domain to be F [x]
will give us Jordan normal form!
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