
Lecture 12: Factorization in Rings

12 Factorization in Rings

12.1 Review
Last class, we began discussing factorization.

Definition 12.1
An element a ∈ R is irreducible if it is not a unit, and if a = bc then either b or c is a unit.

In other words, irreducible elements are ones which cannot be factored in a nontrivial way; so when attempting
to factor in a ring, we want to factor our elements as a product of irreducibles.

In our discussion of factorization, we’ll always assume R is an integral domain (meaning that if ab = 0, then
either a = 0 or b = 0) — this allows us to perform cancellation.

When discussing unique factorization, we can always multiply the factors by units; so to make the notion of
“essentially unique” (as mentioned last class) more precise, we use the following definition:

Definition 12.2
Two elements a, b ∈ R are associate if a = bu for a unit u ∈ R.

Then a domain R is a unique factorization domain (UFD) if every non-unit element can be written as a product
of irreducible elements in a unique way, up to ordering and association.

Recall that a domain R is a principal ideal domain (PID) if every ideal in R is principal. As mentioned last
class, we can generalize our proof that F [x] is a UFD to work for any PID:

Theorem 12.3
Any PID is a UFD.

Sketch of Proof. We need to show that a factorization exists, and is unique.

To prove uniqueness, since R is a PID, we have that if p ∈ R is irreducible, then (p) is maximal. So then R/(p)
is a field, and since fields have no zero divisors, it follows that if p divides ab, then p divides a or p divides
b. This implies uniqueness — now given any two factorizations p1p2 · · · pm = q1q2 · · · qm, we can show that p1
must appear on the right-hand side as well (up to association), and cancel it out from both sides.

We won’t prove existence in general now (it requires a new idea, which we’ll see later). But in the examples
we’ll deal with, existence is clear. We can start with any element of R and keep factoring it until we’re stuck,
at which point all factors must be irreducible. Then in our examples, this factorization process always “shrinks”
the elements in some sense — in the case of integers, their size decreases, and in the case of polynomials, their
degree decreases — so it must terminate. (We can’t perform this argument in an abstract PID because it doesn’t
necessarily have a notion of size. We will later see a different way to show that the process terminates, using
Noetherian rings.)

Note 12.4
Elements with the property that if p | ab, then p | a or p | b (which we used in the proof of uniqueness) are
called prime.

12.2 Euclidean Domains
Earlier, we saw that for a field F , the ring F [x] is a PID. We can apply the argument used here to a somewhat
more general class of rings.
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Definition 12.5
A Euclidean domain is a domain R together with a size function σ : R \ {0} → Z>0 such that for every
a, b ∈ R with b ̸= 0, there exist q, r ∈ R such that

a = bq + r,

and σ(r) < σ(b) or r = 0.

In other words, a Euclidean domain is a domain where we can perform division with remainder, such that the
remainder has smaller size than the element we’re dividing by.

Proposition 12.6
A Euclidean domain is a PID, and therefore a UFD.

Example 12.7
The familiar ring Z is a Euclidean domain with size function σ(a) = |a|.

Example 12.8
For a field F , the polynomial ring F [x] is a Euclidean domain with σ(P ) = degP .

Example 12.9
The Gaussian integers Z[i] form a Euclidean domain with size function σ(a+ bi) = a2 + b2.

Proof. We can prove that the division with remainder property holds by geometry. Given b, the multiples of b
form a square lattice (generated as a lattice by b and bi).

b

bi

So by subtracting multiples of b, we can guarantee that a lands in the small square centered at the origin —
more precisely, we can guarantee that r = αb+ βib where − 1

2 ≤ α, β ≤ 1
2 . Then we have σ(r) ≤ 1

2σ(b) < σ(b),
as desired.

So the concept of a Euclidean domain is useful — there exist examples other than the ones we started thinking
about. We can now prove that Euclidean domains are PIDs, in the same way as we did with polynomials.

Proof of Proposition 12.6. If I ⊂ R is a nonzero ideal, then take an element b ∈ I with minimal σ(b). We know
that for any a ∈ I, we can write a = bq + r, with r = 0 or σ(r) < σ(b). The second case is impossible — we
have r ∈ I, but we chose b to have minimal size of the nonzero elements in I — so we must have r = 0. So b
divides all elements of I, which means I = (b).

However, this isn’t very general — there are many rings which it doesn’t cover.
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Example 12.10
The ring Z[

√
−5] is not a UFD, and therefore not a PID or Euclidean domain.

Proof. We have
6 = 2 · 3 = (1 +

√
−5)(1−

√
−5).

It’s possible to show that all of the elements 2, 3, and 1 ±
√
−5 are irreducible, so R does not have unique

factorization.

Note that it is still possible to bound σ(r) in terms of σ(b) by the same geometric argument as before; but this
bound will not be strong enough to imply σ(r) < σ(b).

Student Question. The size functions in our examples have nice properties — the size functions on Z and
Z[i] are multiplicative, and the size function in F [x] satisfies σ(PQ) = σ(P ) + σ(Q). Does something like this
have to hold in general?

Answer. No — the ones that we’ve seen in our examples do satisfy additional properties, but we didn’t need
those nice properties for the argument to work. The definition itself also doesn’t guarantee any other nice
properties. For example, in a field, the size function can be anything — every element is divisible by every
nonzero element, so we can perform division even without remainder (meaning that r = 0).

12.3 Polynomial Rings
Every PID is a UFD, but the converse is not true! There are cases where unique factorization is true, but
there are non-principal ideals. For example, we’ll see that Z[x] and C[x1, . . . , xn] are UFDs. But the ideal
(2, x) ⊂ Z[x] and the ideal (x, y) ⊂ C[x, y] are not principal.

The theorem that will imply both of these examples is the following.

Theorem 12.11
If R is a UFD, then R[x] is also a UFD.

Corollary 12.12
The rings Z[x] and C[x1, . . . , xn] are UFDs.

Proof of Corollary. For Z[x], this follows directly from the theorem (since we know Z is a PID). Meanwhile, for
C[x1, . . . , xn], we can use induction: we have

C[x1, . . . , xn] = C[x1, . . . , xn−1][xn]

by thinking of n-variable polynomials as polynomials in the last variable xn, whose coefficients are polynomials
in the other n− 1 variables — for example,

x+ xy + y2x2 + xy2 = (x) + (x)y + (x+ x2)y2

is a polynomial in y whose coefficients are in C[x]. So using induction, this follows immediately from the theorem
as well.

12.3.1 Greatest Common Divisors

To prove Theorem 12.11, we’ll need the concept of a gcd in R.

Definition 12.13
In a domain R, a greatest common divisor of two elements a, b ∈ R, denoted gcd(a, b), is an element d
such that d divides both a and b, and any other element δ that divides both a and b must also divide d.
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A gcd may or may not exist. But if gcd(a, b) exists, it is unique up to association, i.e., up to multiplying by a
unit — if d and d′ are both gcd’s of a and b, then we must have d | d′ and d′ | d. This implies we have d = ud′

and d′ = zd for some elements u and z. Then d = uzd, and since R is a domain, we have uz = 1, so u and z
are both units.

Example 12.14
In Z[

√
−5], there is no gcd of 2 + 2

√
−5 and 6.

Proof. Note that 2 is a common divisor of 2 + 2
√
−5 and 6, and it’s maximal in the sense that if multiplied by

any non-unit element, the result is no longer a common divisor. So if the gcd existed, it would have to be 2 (up
to association). But 1 +

√
−5 has the same property — in particular, 1 =

√
−5 is a common divisor but does

not divide 2. So there cannot exist a gcd.

Proposition 12.15
In a UFD, the gcd of any two elements always exists.

Proof. The usual way of calculating the gcd using prime factorization (for example, in the case of integers)
works in any PID. More explicitly, to find gcd(a, b) we can write down the factorizations of a and b, and take
the smaller power of each irreducible element.

Note 12.16
In a PID, if gcd(a, b) = d, then we have (a, b) = (d), which means d can be written in the form ap + bq.
But this is not true in general — for example, in C[x, y], we have gcd(x, y) = 1, but 1 ̸∈ (x, y).

12.3.2 Gauss’s Lemma

Our goal is to analyze factorization in R[x]. We know how factorization works in R, and we also know how
factorization works in a closely related ring — if F = Frac(R), then since F is a field, F [x] is a PID. To relate
factorization in R[x] to factorization in these two better-understood rings, we use Gauss’s Lemma.

Definition 12.17
A polynomial P ∈ R[x] is primitive if the gcd of all its coefficients is a unit.

Lemma 12.18 (Gauss’s Lemma)
If P,Q ∈ R[x] are primitive, then so is PQ.

Proof. It’s enough to show that for any irreducible p ∈ R, we can find a coefficient of PQ not divisible by p (as
then by unique factorization, no element other than units can divide the gcd of its coefficients).

Let P =
∑
aix

i and Q =
∑
bjxj , and let m be the maximal integer with m ∤ am and n the maximal integer

with n ∤ bn. Then in PQ, the coefficient of xm+n comes from ambn, and other terms aibj where at least one of
ai and bj is divisible by p; so this coefficient cannot be divisible by p.

Using this, we can get a good sense of which polynomials are irreducible in R — as we’ll see later, these are the
irreducible elements of R, and primitive polynomials in R[x] which are irreducible in F [x], where F = Frac(R).
So we can use unique factorization in R and in F [x] to prove unique factorization in R[x].

62



MIT OpenCourseWare 
https://ocw.mit.edu 

Resource: Algebra II Student Notes
Spring 2022  
Instructor: Roman Bezrukavnikov
Notes taken by Sanjana Das and Jakin Ng

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/pages/privacy-and-terms-of-use/
https://ocw.mit.edu



