
Lecture 8: Linear Transformations with Bases and the Dimension Formula 

8 Dimension Formula 

8.1 Review 

Last time, we ended of with the defnition of linear transformations. 

8.2 Matrix of Linear Transformations 

Given a linear transformation T : V → W , we know 

v 1 + · #» » v nT ( # 

for V , the above property tell us that T is completely determined by the 

#T (a1 v n) = a1T ( # v 1) + · · »» ).· + an · + an · 

#»#»Then, given any basis 
values of T ( #» 

v 1, . . . , v n 

v 1), . . . , T ( # v n 
» ). 

» 

#» 

Example 8.1 
Last time, we discussed a linear transformation from column vectors to another vector space. In particular, 

» 

if we have a basis w # 
1, . . . , wm of W , then we can create the following linear transformation: 

n →B F W: 
#» e i 7→ w # 

iX 
(a1, · · · , an) 7→ ai wi, 

» 

where e i is the zero column vector with a 1 in the ith position. This is an isomorphism due to choosing 
wi to be a basis. The inverse map B−1(w # ) = (a1, · · · , an) sends a vector to the coordinates of w # for the 
given basis. 

#»» 

#» 

#» 

» 

#» 

»» 

Example 8.2 
There is a bijection between matrices A ∈ Matm×n(F ) and linear transformations T : F n → F m . For every 
matrix A, it can be mapped to the linear transformation T = A · x . For every transformation T , it can be 
mapped to � � 

A = T ( # e 1) T ( # e 2) · · · T ( # e n) . 

Both the set of matrices and the set of linear transformations are vector spaces, so this defnes an isomorphism 
between two vector spaces. We will switch between these notions frequently. 

∼As a special case, if we have an isomorphism T : F n −→ F m , then this forces m = n and the corresponding 
matrix A must be in GLn(F ). 

From Example 8.1, suppose we have two diferent bases of V and create their corresponding linear transformations 
B and B ′ »» . Let the corresponding bases be { # v 1, . . . , v n} and {w # 

1, . . . , wn 
#» #» } respectively. Then, P := B−1 ◦ B ′ 

Furthermore, B ′ = B ◦ P . These relations defnes a mapping from F n to F n , and we must have P ∈ GLn(F ). 
can be seen by following the arrows in the below diagram: 

F n B V 

P 
B ′ 

»»» 

» 

» 

F n 

We can fgure out the columns of P as well: 

P ( # e i) = B−1(B ′ ( # e i)) = B−1(w # 
i). 

We know B−1(w # 
i) is just the coordinates of 

columns of P −1 by taking the each # » 

» wi for the basis { # v 1, . . . , v n 

v i and writing it in terms of the basis of w # ’s. 

#» #» Similarly, we can fgure out the 

» 

}. 

= (B ′ )−1( # v ). #» » x = B−1( # v ) and x #»′ ∈ V , we can write the coordinates The coordinates are»Given a vector # v 
»»»»related by P # x = x and P −1 # x = x ′ # # ′ by using our expression for P . 
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For any fnite-dimensional vector space, by picking a basis, we can write every vector in terms of coordinates. 
Then, for every transformation T : V → W , we can write it as a matrix A using coordinates. Suppose we have 

→ W and the respective bases are { # v i} and {w # 
i}. »»the coordinate maps B : F n → V and C : F m 

TV W 

B C 

F n A F m 

Following the arrows, we have A := C−1 ◦ T ◦ B ∈ Matm×n(F ). To write down A, we can fnd the ith column 
of A by writing T ( # v i) in terms of the w # ’s.»» 

Example 8.3 
′′ (t) = f(t).Let’s see an example of computing A. Let V be the set of complex functions such that f Let 

′′ (t) = −f(t).W be the set of complex functions such that f We can defne the transformation 

T : V → W 

f(t) 7→ f(it). 

Note that T looks nothing like a matrix right now, but we can turn it into one by picking bases for V and 
tW . One choice of basis is V = Span(e , e−t) and W = Span(cos t, sin t). 

it −itThen, by writing T (et) = e = cos t + i sin t and T (e−t) = e = cos t + −i sin t, we have found the columns 
of A: � � 

1 1 
A = . 

i −i 

itIf we had chosen a diferent basis for W = Span(e , e−it), then our matrix A ′ would just be the identity 
matrix. 

Guiding Question 
We have seen that the same linear transformation leads to diferent A, so can we pick bases so that A “looks 
very nice"? For example, in the previous example, we were able to make A the identity matrix by picking 
a diferent basis. 

We will answer this question at the end of the next section. 

8.3 Dimension Formula 

Note that linear transformations are very similar to group homomorphisms. They are both mappings that 
preserve the structure that we care about. We can defne and prove similar results as the ones we showed for 
group homomorphisms. 

#» 

#» 

» 

»

» 

»

» 

Defnition 8.4 
Given a linear transformation T : V → W , we can defne the kernel and image. 

ker(T ) := { # v | T ( # v ) = 0 } 
im(T ) := {w # | T ( # v )w # for some v ∈ V } 

By similar logic to group homomorphisms, these are vector subspaces of V and W respectively. We also 
defne the nullity and the rank as the dimension of the kernel and image respectively. 

Theorem 8.5 (Dimension formula) 
Given T : V → W , 

dim(ker T ) + dim(im T ) = dim(V ). 

This is somewhat reminiscent of the theorem on groups |G| = |ker(G)||im(G)|. 
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#»Proof. Pick # v 1, . . . , v k as a basis for ker(T ). From a theorem from last class, we can add vectors # v k+1, . . . , v n 

to get a basis for V where n = dim V and k = dim(ker(T )). 

» 

T ( # v i). 

#» 

» 

» 

#» #» #»Let 0 for 1 ≤ i ≤ k.:=wi By the defnition of kernel, wi = We will show that {w # 
k+1, . . . , wn 

» } is a 
basis for im(T ), so that 

rank(T ) = n − k = dim(V ) − dim(ker(T )). 

To prove that it is a basis, we need to show that they are linearly independent and they span im(T ). For the 
span, 

im(T ) = Span(T ( # 

= Span(T ( # 

»

» 

» 

))v 1), . . . , T ( # v n 
» 

))v k+1), . . . , T ( # v n 
» 

#» ).= Span(w # 
k+1, . . . , wn 

For linear independence, we consider the solutions to: 

wk+1 + · 

v k+1 + ·#» 

#» #»»wn 
# 0 .· · + anak+1 = 

This implies that 
#» 

) = 0#»T (ak+1 · · + an v n 

and thus 

#» 

#» 

v k+1 + ·#» 

is a basis for the kernel, there must exist coefcients a1, . . . , ak such that 

v 1 + · 

v ’s form a basis for V . 

#» ∈ ker(T ).· · + anak+1 v n 

#»Since # v 1, . . . , v k 
» 

» + ·v k+1 
# #» #» · + an · + ak · ·ak+1 v n = a1 v k. 

#»However, this forces ai = 0 for all i since the } are linearly»Therefore, {w # 
k+1, . . . , wn 

independent and thus a basis of im(T ). 

#» 

» 

» 

» 

The proof of the dimension formula shows a bit more. Using the same notation as in the proof, take a basis for V 

» 

are also permuted. We extend the basis for im(T ) to a basis for W with the vectors # 

by writing down the coordinates of T ( # v i) with respect to the w’s. 
k + 1 ≤ i ≤ n, T ( # v i) = When 1 ≤ i ≤ k, T ( # v i) = 0. 

»v 1, . . . ,#v ,n 
#» #» This is essentially the same basis, but permuted so that the coordinate vectors to be # v k+1, . . . , » v k. 

#»#»#» wk+1, . . . , wn, u 1, . . . , u r. 
Then we fnd the matrix for T When 

#» Our matrix for T is particularly simple (written in wi. 
block form): � � 

A = 
In−k 

0 
0 
0 

. 

Corollary 8.6 
For any linear transformation, we can write its matrix in the above form for some choice of basis for V and 
W . 

Corollary 8.7 
As a special case, if we already are given a matrix M ∈ Matm×n representing a linear transformation from 
F n → F m , then there exists change of basis matrices P ∈ GLn(F ), Q ∈ GLm(F ) such that Q−1MP is in 
the above form. Pictorially, this looks like: 

F n M F m 

QP 

F n A F m 
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