
Lecture 7: Fields and Vector Spaces 

7 Fields and Vector Spaces 

7.1 Review 

Last time, we learned that we can quotient out a normal subgroup of N to make a new group, G/N. 

7.2 Fields 

Now, we will do a hard pivot to learning linear algebra, and then later we will begin to merge it with group 
theory in diferent ways. In order to defne a vector space, the underlying feld must be specifed. 

Defnition 7.1 
A feld F is a set with the operations (+, ×). It must satisfy that 

• (F, +) is an abelian group with the usual rules, and 

• (F × := F \ {0}, ×) is an abelian group. 

Also, addition and multiplication must distribute over each other.a 

aThere is some compatibility required. 

In essence, a feld is a set with additive and multiplicative group structures that interact in nice ways. 

Example 7.2 
The sets C, R, and Q are felds, but not Z, since it is not invertible under multiplication. 

Since division does not exist in Z, it is not a feld. In fact, Q is essentially obtained from Z by making it into a 
feld by adding division. 

Example 7.2 gives us examples of felds with infnitely many elements, but felds can also be constructed that 
have fnite order. Indeed, there is one for every prime number p. 

Example 7.3 (Fields of prime order) 
For a prime p, 

(Fp = Zp, +, ×) 

is a feld. If a ≠ 0 mod p, then gcd(a, p) = 1 implies that ar + ps = 1, and so ar ≡ 1 mod p, and thus a is 
invertible with multiplicative inverse r−1 . 

However, Z6 is not a feld; for example, 2 mod 6 has no inverse. In general, Zn where n is not a prime is not a 
feld, because there will exist some element that is not relatively prime to n, and it will not be invertible. 

7.3 Vector Spaces 

A vector space, which may be a familiar concept from learning about matrices, can be defned over any feld. 

Defnition 7.4 
A vector space V over a feld F is a set V with some operation + such that (V, +) is an abelian group. 

• We must be able to scale vectors: 

F ×V → V 

(a, ⃗v) 7→ av⃗. 

• Addition and multiplication play nicely and satisfy the usual rules 

(· · · , a(bv⃗) = (ab) · ⃗v, · · · ). 
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Example 7.5 
For a feld F, F n , column vectors with n components (a1, · · · , an)t , form a vector space of dimension n. 

Example 7.6 
If A is an m×n matrix, then 

{v⃗ ∈ F n : Av⃗ = (0, · · · , 0)} 

is a vector space. 

Example 7.7 
For a homogeneous linear ODE, the solutions form a vector space. 

7.4 Bases and Dimension 

A basis of a vector space is a set of vectors providing a way of describing it without having to list every vector 
in the vector space. 

Defnition 7.8 
Given v⃗1, ⃗v2, · · · , v⃗n ∈ V, a linear combination is X 

v⃗ = aiv⃗i 

for ai ∈ F. 

Defnition 7.9 
For S = {v⃗1, ⃗v2, · · · , ⃗vn}, the span X 

Span(S) = {v⃗ ∈ V : v⃗ = aiv⃗i} 

This is similar to generating subgroups using elements of a group G, except using the operations of vector 
spaces. 

Artin likes to use the (nonstandard) notation   � 
v⃗1 · · · 

a1�  . v⃗n  .  := . 
X 

aiv⃗i 

an 

for a linear combination. 

Defnition 7.10 
A set of vectors S spans V if Span(S) = V. a 

aThere is at least one way of writing v⃗ as a linear combination. 

Defnition 7.11 
A set of vectors {v⃗i} is linearly independent if X 

aiv⃗i = ⃗0 

if and only if ai = 0 for all i.a 

aThere is at most one way of writing v⃗ as a linear combination. 

A basis is both linearly independent and spans. 
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Defnition 7.12 
A set of vectors S = { # v 1, · · · , ⃗vn} is a basis if S spans V and is linearly independent. Equivalently, each 
v⃗ ∈ V can be written uniquely as v⃗ = a1v⃗1 + · · · + anv⃗n, where the ai are called the coordinates of v⃗ in 
the basis S. 

» 

The standard basis for R2 is �� � � �� 
1 0 

, . 
0 1 

In general, when we write a vector (a, b)t , it represents the linear combination a(1, 0)t + b(0, 1)t . 

Example 7.13 
Let V = R2 . Then the set �� � � � � �� 

S = 
1 
1 

, 
3 
2 

, 
2 
1 

spans R2 , but is linearly dependent: v 1 − #v 2 +
»#» v 3 

#» = »» #But {0 . 
#

v 1, #» v 2} forms a basis. 

A good choice of basis often makes problems easier. 

#»#»» 

Defnition 7.14 
A vector space V is fnite-dimensional if V = Span({ # v 1, · · · , v n}) for some v i ∈ V.a 

aInfnite-dimensional vector spaces are super interesting, but not studied in this class. Real analysis can be used to study 
them! 

#»» 

Lemma 7.15 
If S = { # v 1, · · · , v r} spans V, and L = {w # 

1, · · · , ws} is linearly independent, then 

1. Removing elements of S gets a basis of V. 

#» 

2. Adding elements of S to L gets another basis of V. 

3. |S| ≥ |L|. 

» 

Corollary 7.16 
If S and L are both bases for V, then |S| = |L|. Any two bases of V contain the same number of vectors. 

Proof. Applying the lemma twice for S and L gives |S| ≥ |L| and |L| ≥ |S|. 

Defnition 7.17 
The dimension of a vector space v is the size of any basis of V. 

Proof of Lemma 7.15. We prove each point separately 

1. If S is not linearly independent, then there are some ai such that 
rX

#»#» 0 . 

#»#» 

ai v i = 
i=1 

Suppose WLOG that an ̸= 0. Then 

v 1 − · −1#» #» v r−1). 

Span(S) = V. This is because if we have a linear 

(−a1 · · − ar−1v r = a » v r−1) ∈ Span( # v 1, · · · ,r 

If we take S ′ #» v r−1}, we have Span(S ′ ) 
combination using the vectors of S, we can use the equation above to turn it into a combination of vectors 
in S ′ . We can repeatedly remove until we have a basis of V. 
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v i ̸∈ Span(L). 
Then L ′ is still linearly independent. We can just keep adding vectors to L so 

#»2. If S ⊂ Span(L), then Span(L) = V so we are done. Otherwise, suppose 
#» 

We can create 
= w1, . . . , ws, 

3. Each # 

»#{ 

» 

#»L ′ v i}. 
that it stays linearly independent but eventually spans V. P

#r 
, v r. Then w⃗j = i=1 aij v i.   
a11 a12 · · · a1s 

»#» Let A be the r×s matrixwj is a linear combination of # v 1, » · · · 

 . . . . A =  . . . .  ... . . 
ar1 ar2 · · · ars 

#» , v r)A. Suppose r < s. Then by row-reduction, there exists some nonzeroP 
» 

Then (w # 
1, » · · · , w⃗s) = ( # v 1, » · · · 

0 . Then#» » This is contradiction, since is0 La. 
## x such that A # x = »» #» = ( # v 1, »vector xiw⃗i · · · , v r)A # x = 

linearly independent, so r ≥ s. 

» 

» 

» 

A linear transformation is a map 
Defnition 7.18 

→T V W: 

## #» ) T (T ( ) + T ( )+ v =v v v21 1 2 

−1We say that is isomorphism if it is bijection is also isomorphism).T (Tan a an 

#» 

such that 
#» 

and 
T (a v ) = aT ( # v ). 

» 

#» 

{ # = v i 

v i ∈ V. 

For a vector space V over a feld F and a set of vectors S 
transformation: 

TS : F n → V X 

∈ V }, we can defne the following linear 

(a1, · · · , an) 7→ ai 

If S is linearly independent, then TS is injective; if Span(S) = V, then TS is surjective, and if TS is a basis, then 
TS is an isomorphism. 
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