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Lecture 32: More About One-Parameter Subgroups 

32 One-Parameter Subgroups, Continued 

32.1 Review 

Essentially, we want to restrict the image of φ to lie in G, in order to understand G better. 

Guiding Question 
How can we characterize which matrices A defne one-parameter subgroups satisfying this property? 

As a motivation, the real numbers with addition, (R, +), is essentially the simplest one-dimensional group, 
and here the notion of a one-parameter maps the real numbers into other groups, allowing us to study more 
complicated groups using the additive structure of the real numbers. 

Let’s see an example we covered last time. 

Example 32.1 (Unitary Matrices) 
tA ∈ UnLet G = Un ⊂ GLn(C). Last time, we showed that the condition that e for all t ∈ R is equivalent to 

requiring that A∗ = −Aa; that is, if and only if A is skew-Hermitian, the one-parameter subgroup described 
by A maps to only unitary matrices. 

aNote that it is not required for A to be in GLn/invertible; it simply has to be some n×n matrix. 

32.2 Examples! 
Another example is given by upper triangular matrices. 

Example 32.2 (Upper Triangular Matrices) 
Let    1 ⋆ ⋆  

G = 0 
0 

1 
0 

⋆ 
1 

≤ GL3(R) 

be the real upper triangular matrices. Then the corresponding A for which etA ∈ G for all t ∈ R make up 
the set of matrices    0 ⋆ ⋆  0 0 ⋆ ⊆ Mat3×3(R). 

0 0 0 

tAThe one-parameter group is a homomorphism φ(t) = e , for some matrix A; in particular, A is φ ′ (0). So fnding 
what A looks like, given G, is done by taking the derivative at t = 0. The image of φ lies in G, and since the 1s 
down the diagonal are not dependent on t, while the upper right entries could be nonzero,     

1 ⋆ ⋆ 0 ⋆ ⋆ 
A = 

d 0 1 ⋆ = 0 0 ⋆ . 
dt t=0 0 0 1 0 0 0 

It is also necessary to show the other direction that if A is of such a form, then the associated one-parameter      0 ⋆ ⋆   0 ⋆ ⋆  
tAgroup φ = e will actually have its image lie in G. If A ∈ P 

1k ≥ 1. Then, the exponential is a sum Ak , sok! 

0 
0 

0 
0 

⋆  
, then Ak 

0 
= 0 

0 
0 
0 

⋆ 
0 

for 

      
1 0 0 0 ⋆ ⋆ 1 ⋆ ⋆ 

A e = 0 1 0 + 0 0 ⋆ + · · · = 0 1 ⋆ , 
0 0 1 0 0 0 0 0 1 

and therefore etA ∈ G. So in fact etA ∈ G is equivalent to A being upper triangular. 

Now, let’s consider the orthogonal matrices. 
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Example 32.3 
Consider the orthogonal matrices On ⊂ GLn(R). For a one-parameter subgroup of On, the matrix A must 

tA)Tsatisfy (e = (etA)−1for all t. 

This is equivalent to 
tAT −tA e = e 

d tAT

for all t.a Taking the derivative , we get AT e = −Ae−tA , and evaluating at t = 0 gives that thedt 
possible A are the ones satisfying 

b{AT = −A}. 

tAT −tA tA)T tA)−1 tA ∈ OnConversely, if AT = −A, then e = e , which is equivalent to (e = (e , and so e when 
AT = −A. So these are the correct matrices A. 

tA)T t(AT ) tA −tAaWriting out the exponential as a sum gives (e = e , and it is clear that the inverse of e is e . 
bIt is also possible to get this simply by the fact that On is Un ∩ GLn(R), and so A must satisfy the same property as for 

the unitary matrices, that A∗ = −A, and for real matrices this condition is the same as AT = −A. 

32.3 The Special Linear Group SLn(C) 
In order to study SLn(C), which is in some sense the frst subgroup of matrices that we ever studied, an 
important identity about the matrix exponential must be established. 

Guiding Question 
What about SLn(C)? 

Lemma 32.4 
For any A ∈ Matn×n(C), 

A trace(A)det e = e . 

��This property is clearly true for diagonal matrices, and from there we hope that this is true for other matrices 
λ1 0 as well. For example, for A = ,
0 λ2 �� 

 

λ1e 0A e = ,λ20 e 

and 
λ1 λ2 λ1+λ2 trace(A)det(e A) = e e = e = e . 

Trying to steamroll through the proof of the lemma becomes very difcult, but fortunately the exponential, 
determinant, and trace all behave well with respect to conjugation. 

Proof. We have 

P AP −1 

det(P AP −1) = det(A), trace(P AP −1) = trace(A), e = PeAP −1 . 

Thus, if the lemma is true for a matrix conjugate to A, it is true for A, and so only one representative from each 
conjugacy class needs to be considered. Then, without loss of generality, we can assume that A is in Jordan 

λ1 · · · ⋆ 
. ..canonical form, and the proof follows identically to the diagonal case. We take A =   to be . . ... . 
0 λn · · ·   

λλk · · · ⋆ e · · · ⋆ 1 1   . .. . ..upper triangular and in Jordan form. Then Ak = , and so eA = , so. . . . . .. .. . . . 
λλk0 · · · 0 · · · en n P 

λi trace(A)det(e A) = e = e . 
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Now we can take a look at SLn(C). 

Example 32.5 
tA ∈ SLn 

tA ∈ SLn 
tA) = 1Consider A ∈ Matn×n(C) such that e (C) for all t ∈ R. Then e (C), and so det(e 

trace(tA)for all t. Therefore, by Lemma 32.4, e = 1, which is equivalent to stating that trace(A) ∈ 2πiZ 
tAfor all t ∈ R, which is possible only if the trace of A is 0. So the one-parameter groups in SLn(C) are e 

where A ∈ Matn×n(C) is traceless.a 

aThe trace is 0. 

These conditions on A can obviously be combined for diferent groups G. The one-parameter groups in SUn 

correspond with the matrices A such that A∗ = −A and trace(A) = 0. 

In particular, the one-parameter groups in SU2 consist of etA where the 2×2 matrix A is skew-symmetric and 
has zero trace. 

2 

Example 32.6 (SU2)� � 

2
3 

For A = 
α β

, these conditions end up givinga that 
γ δ 

2
2 

� � � � � � � � 
ix1 x2 + ix3 i 0 0 1 0 i 

A = = x1 + x2 + x3 . 

2
1 

−x2 + x3 −ix1 0 −i −1 0 i 0 

These are the matrices that showed up when we studied the equator! We have 

A = x1I + x2J + x3K, 

and so A = cv⃗ for v⃗ ∈ E ⊂ SU2. b 

Then 
tA tcv⃗ de = e = cos(tc)I + sin(tc)v⃗c ∈ Long⃗ .v 

Essentially, there is a one-parameter subgroup of SLn for each v⃗ for some vector v⃗ on the equator, where 
tAthe coefcient c in A = cv⃗ determines the speed at which the subgroup is swept out. The image of e 

simply corresponds to the longitude given by v⃗. 

aActually going through the process is slightly tedious and not that informative; try it for yourself if you want to!q
bBecause there is no requirement that x + x + x = 1, A does not actually have to be on the equator, but it is just 

some multiple c of a vector v⃗ on the equator. When c = 1, A is actually on the equator, by the characterization we gave in a 
previous lecture. 

cThis is given by simply writing out the expansion of the matrix exponential as a sum and collecting the terms into a 
Taylor series for cosine and a Taylor series for sine; since v⃗ is on the equator, v⃗ = −1, and so the result is essentially the same 
as the result that eiθ = cos θ + i sin θ. 

dThis is the characterization given in a previous lecture. 

32.4 Tangent Vectors 

So far, several examples have been shown, but we would like to see what else we can say more generally about 
one-parameter subgroups. To do so, we will introduce some new tools. 

Guiding Question 
What else can we say about the setsa of matrices A defning one-parameter groups? 

aIn fact, they will be vector spaces 

Since they are given by derivatives at t = 0, corresponding to the identity, the matrices A are "tangent vectors" 
to G ≤ GLn(R) at the identity I. Intuitively, a tangent vector at some point is a vector lying in the tangent 
plane. 
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There are three approaches to rigorously defning tangent vectors. 

1. The approach taken so far is that a tangent vector will be given by a matrix A ∈ Matn×n(R) such that 
102the corresponding one-parameter group etA ∈ G for all t ∈ R. 

2. The second approach is more general, and builds on the idea that a one-parameter group is the trajectory 
of a particle moving in G in a specifc way defned by φ. Instead of taking a path that happens to 
be a homomorphism, take any diferentiable path103 from some interval f : (−ε, ε) −→ GLn(R) such 
that f(0) = I and f(t) ∈ (G) for all t. Then a tangent vector is simply the velocity at time t = 0, 

104f ′ (0) ∈ Matn×n(R). 

It is not obvious, but it turns out that the frst defnition is equivalent to the second defnition, giving the same 
subsets of matrices A as tangent vectors. For the frst defnition, the advantage is that each tangent vector 
corresponds to only one path through the identity, so there is a bijection. The second approach gives lots of 
paths through the identity that have a given velocity vector, but it turns out that it is easier to use it to show 
that the set of tangent vectors actually forms a vector space, called the tangent space.105 

3. Suppose G is defned by polynomial constraints on the matrix entries.106 For example, the constraints 
could be that it is upper triangular; then aij = 0 for all i > j is a bunch of polynomial conditions on the 
matrix entries. Orthogonality can also be phrased as a polynomial condition. 

Then, when working with polynomials, the derivative can be mimicked without actually needing to know 
107analysis. We work with an object R[ε] := R + Rε where ε2 = 0. 

This allows us to defne a derivative without actually taking any limits. For example, for f(x) = x2 + 2x, 
evaluating f on x + ε ∈ R[ε] will give 

f(x + ε) = (x + ε)2 + 2(x + ε) 

= x 2 + 2xε + ε2 + 2x + 2ε 

= x 2 + 2xε + 2x + 2ε 

= (x 2 + 2x) + (2x + 2)ε. 

So with this funky multiplication, any terms of order more than two in ε disappear, and we get f(x+ε)−f(x) = ε 
f ′ (x), even though we haven’t actually defned the derivative from an analysis perspective. 

The upshot is that to fnd A ∈ Matn×n(R), we simply look at A with the property that In + εA, the identity 
matrix perturbed by A, satisfes the same system of equations defning G, but in the sense of the funky 
multiplication of R[ε], where ε2 = 0. We’ll explain this more on Friday. 

102Every matrix A will defne some path in GLn; if the entire path lives in G, then we can think of A as a tangent vector. 
103Any matrix-valued function 
104The idea is that all the paths through the identity will give velocity vectors (with lots of redundancy), which we will consider 

as tangent vectors. 
105There is actually more structure on it, which we will talk about on Friday. 
106This approach is not necessary for this class, but it is fun, so we will do it. 
107Here ε is not some number in R, so it is not actually true that ε must be 0; it is simply a formal construct where we impose the√ 

condition that ε2 = 0. It is similar to the defnition of i = −1; there is no such real number, so we simply defne some number 
satisfying this property. In the same way, we simply defne R[ε] to be R + Rε for some object ε satisfying ε2 = 0. 
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