31 One-Parameter Subgroups

31.1 Review

Last time, we talked about one-parameter subgroups.
Definition 31.1
A one-parameter group in $G L_{n}(\mathbb{C})$ is a differentiable homomorphism $\varphi: \mathbb{R} \longrightarrow G L_{n}(\mathbb{C})$.

For a matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$, the matrix exponential is

$$
e^{A}:=1+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\cdots,
$$

which converges to a matrix in $G L_{n}(\mathbb{C}) .{ }^{97}$ For example, $\varphi_{A}(t)=e^{t A}$ is a one-parameter group. ${ }^{98}$

Example 31.2

If $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, then $A^{n}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ for all $n \geq 1$. Then

$$
e^{A}=\sum_{n \geq 0} \frac{1}{n!} A^{n}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\sum_{n \geq 1}\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
e & 0 \\
0 & 1
\end{array}\right)
$$

Example 31.3

Similarly, for $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), A^{2}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)=A^{3}=\cdots$. Then

$$
e^{A}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

31.2 Properties of the Matrix Exponential

The matrix exponential fulfills several nice properties.

- The product is the exponential of the sum: $e^{s A} e^{t A}=e^{(s+t) A}$. In fact, if $A B=B A$, then $e^{A} e^{B}=e^{A+B}$, but they must commute. ${ }^{99}$
- If $A=\left(\begin{array}{ccc}\lambda_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}\end{array}\right)$, then $e^{A}=\left(\begin{array}{ccc}e_{1}^{\lambda} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e_{n}^{\lambda}\end{array}\right)$.
- If $B=P A P^{-1}$, then $e^{B}=P e^{A} P^{-1}$. This allows us to easily take the matrix exponential of any diagonalizable matrix.

Example 31.4

If $A=\left(\begin{array}{cc}0 & 2 \pi \\ -2 \pi & 0\end{array}\right)$, it has eigenvalues $2 \pi i$ and $-2 \pi i$, so diagonalizing gives $P A P^{-1}=\left(\begin{array}{cc}2 \pi i & 0 \\ 0 & 2 \pi i\end{array}\right)$. Then $P e^{A} P^{-1}=e^{P A P^{-1}}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, since $e^{2 \pi i}=1$. Since e^{A} is conjugate to the identity matrix, e^{A} itself must be the identity matrix.

In particular, $e^{\left(\begin{array}{cc}0 & 2 \pi \\ -2 \pi & 0\end{array}\right)}=e^{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)}$, and so the matrix exponential is not injective, unlike the normal exponential.

[^0]- Defining the derivative of a matrix to be $\frac{d}{d t}\left(\begin{array}{ll}a(t) & b(t) \\ c(t) & d(t)\end{array}\right)=\left(\begin{array}{ll}a^{\prime}(t) & b^{\prime}(t) \\ c^{\prime}(t) & d^{\prime}(t)\end{array}\right)$, the derivative is

$$
\begin{aligned}
\frac{d}{d t}\left(e^{t A}\right) & =\frac{d}{d t}\left(I+t A+\frac{t^{2}}{2} A^{2}+\cdots\right) \\
& ={ }^{100} 0+A+t A^{2}+\frac{t^{2}}{2} A^{3}+\cdots \\
& =A e^{t A}
\end{aligned}
$$

similarly to the normal exponential.

31.3 One-Parameter Subgroups

The matrix exponential is related to one-parameter subgroups in the following manner.
Proposition 31.5
Every one-parameter group in $G L_{n}(\mathbb{C})$ is of the form $\varphi(t)=e^{t A}$ for a unique matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$.

Proof. We prove uniqueness and existence.

- Uniqueness. If $\varphi(t)=e^{t A}$, then $\varphi^{\prime}(t)=A e^{t A}$, so $\varphi^{\prime}(0)=A$. So the coefficient A in the one-parameter subgroup is given by taking the derivative and evaluating at $0 .{ }^{101}$
- Existence. Given $\varphi(t)$, set $A:=\varphi^{\prime}(0) \in \operatorname{Mat}_{n \times n}$. Since φ is a homomorphism, $\varphi(s+t)=\varphi(s) \varphi(t)$ for all s and t. Taking the derivative $\frac{\partial}{\partial s}$,

$$
\varphi^{\prime}(s+t)=\varphi^{\prime}(s) \varphi(t)
$$

Plugging in $s=0$, we get

$$
\varphi^{\prime}(t)=A \varphi(t)
$$

and we also have $\varphi(0)=I_{n}$. Since this is a linear first-order ordinary differential equation with an initial condition, there is a unique solution, which is $\varphi(t)=e^{t A}$.

Definition 31.6

For $G \leq G L_{n}(\mathbb{C})$, a one-parameter group in G is a one-parameter group $\varphi(t)$ in $G L_{n}(\mathbb{C})$ such that $\varphi(t) \in G$ for all $t \in \mathbb{R}$.

For a one-parameter group in $G, \varphi(t)=e^{t A}$ for some $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$ as well.

Guiding Question

Given a group G, what are the one-parameter groups in G ? What is the corresponding set of matrices A for which $e^{t A} \in G$ for all t ?

Let's see an example.

Example 31.7 (Diagonal Matrices)

Let

$$
G=\left\{\left(\begin{array}{ccc}
\lambda_{1} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}
\end{array}\right)\right\} \leq G L_{n}(\mathbb{C})
$$

where $\lambda_{i} \neq 0$. The one-parameter groups in G are determined by the matrices A such that $e^{t A} \in G$ for all $t \in \mathbb{R}$. Here, $e^{t A} \in G$ for all $t \in \mathbb{R}$ if and only if A is diagonal.

[^1]
Proof. If

$$
\varphi(t)=e^{t A}=\left(\begin{array}{ccc}
\lambda_{1}(t) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}(t)
\end{array}\right)
$$

then $\varphi^{\prime}(t)=\left(\begin{array}{ccc}\lambda_{1}^{\prime}(t) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}^{\prime}(t)\end{array}\right)$. Then

$$
A=\varphi^{\prime}(0)=\left(\begin{array}{ccc}
\lambda_{1}^{\prime}(0) & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_{n}^{\prime}(0)
\end{array}\right)
$$

must be diagonal.
If $A=\left(\begin{array}{ccc}a_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & a_{n}\end{array}\right)$ is diagonal, then $t A$ is diagonal, and so $e^{t A}=\left(\begin{array}{ccc}e^{t a_{1}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{t a_{n}}\end{array}\right) \in G$. So every diagonal matrix A does correspond to a one-parameter subgroup in G.

We can also do the same with upper triangular invertible matrices.
Example 31.8 (Upper Triangular Matrices)
Let $G=\left\{\left(\begin{array}{ccc}c_{11} & \cdots & c_{1 n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c_{n n}\end{array}\right)\right\} \leq G L_{n}(\mathbb{C})$, where $c_{i i} \neq 0$ for all i. Then $e^{t A} \in G$ for all $t \in \mathbb{R}$ if and only if

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & \star \\
\vdots & \ddots & \vdots \\
0 & \cdots & a_{n n}
\end{array}\right)
$$

Proof. If $\varphi(t)$ is upper triangular, then $A=\varphi^{\prime}(0)=\left(\begin{array}{ccc}c_{11}^{\prime}(0) & \cdots & c_{1 n}^{\prime}(0) \\ \vdots & \ddots & \vdots \\ 0 & \cdots & c_{n n}^{\prime}(0)\end{array}\right)$ must also be upper triangular.
Also, if A is upper triangular, so is A^{n} for all n, and thus so is $e^{t A}$. So the image of φ is in G.

Problem 31.9

For

$$
G=\left(\begin{array}{ccc}
1 & \cdots & \star \\
\vdots & \ddots & \vdots \\
0 & \cdots & 1
\end{array}\right) \leq G L_{n}(\mathbb{C})
$$

what are the corresponding matrices A ? ${ }^{a}$

$$
{ }^{a} \text { The answer is that } A \text { is of the form }\left(\begin{array}{ccc}
0 & \cdots & \star \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right) \text {. }
$$

We can also look at the one-parameter groups for unitary matrices.
Example 31.10 (Unitary Matrices)
For $U_{n}=\left\{M^{*}=M^{-1}\right\} \leq G L_{n}(\mathbb{C}), e^{t A} \in U_{n}$ if and only if $A^{*}=-A$ is skew-Hermitian for some matrix $A \in \operatorname{Mat}_{n \times n}(\mathbb{C})$.

Proof. We have

$$
\left(e^{A}\right)^{*}=\left(I+A+\frac{A^{2}}{2!}+\cdots\right)^{*}=I^{*}+A^{*}+\frac{\left(A^{*}\right)^{2}}{2!}+\cdots=e^{\left(A^{*}\right)} .
$$

If $e^{t A}$ is unitary, then $\left(e^{t A}\right)^{*}=\left(e^{t A}\right)^{-1}$, so $e^{t A^{*}}=e^{-t A}$. Differentiating gives $A^{*} e^{t A^{*}}=-A e^{-t A}$, and taking $t=0$ gives $A^{*}=-A$.

Conversely, if $A^{*}=-A$, then $\left(e^{t A}\right)^{*}=e^{t A^{*}}=e^{-t A}=\left(e^{t A}\right)^{-1}$, and so $e^{t A} \in U_{n}$ for all t.

MIT OpenCourseWare
https://ocw.mit.edu

Resource: Algebra I Student Notes

Fall 2021
Instructor: Davesh Maulik
Notes taken by Jakin Ng, Sanjana Das, and Ethan Yang

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{97}$ With the metric $\|M\|=\max _{i, j}\left|m_{i j}\right|$, every entry converges.
 ${ }^{98}$ It is called a one-parameter "subgroup," but it does not have to be injective; it can wrap around.
 ${ }^{99}$ The key fact here is that $\frac{1}{n!}(A+B)^{n}=\sum_{k+\ell=n} \frac{A^{k}}{k!} \frac{B^{\ell}}{\ell!}$ when $A B=B A$; matrix multiplication is not commutative so it is not always true.

[^1]: ${ }^{101}$ Thinking of φ as a trajectory, A is essentially the velocity of the particle when it is passing through the identity.

