
Lecture 3: Homomorphisms and Isomorphisms 

3 Homomorphisms and Isomorphisms 

3.1 Review 

Last time, we discussed subgroups and cyclic groups. A subgroup of a group is essentially a subset of that 
group that is compatible with the group or multiplicative structure on it. A cyclic subgroup of an element g in 
a group is essentially the subgroup consisting of all the powers of g. 

3.2 Homomorphisms 

Now that we understand a little bit more about groups and their structures, the natural next step is to look at 
maps between groups. 

Guiding Question 
How can we understand groups by considering maps between diferent groups? What kinds of maps can 
provide useful insight into various groups? 

First, we defne a type of map that is compatible with the group structure on both groups. 

Defnition 3.1 
Given groups G and G ′ , a homomorphism between them is a map 

f : G −→ G ′ 

such that: 

• For all a, b ∈ G, f(ab) = f(a)f(b). 

• The identity element is mapped to the identity: f(eG) = eG ′ . 

• Inverses are preserved under the mapping: f(a)−1 = f(a−1) for all a ∈ G. 

Essentially, each of these conditions requires that the map preserve the group structure (multiplication, identity, 
inverse) from the domain G to the codomain G ′ . Either f can be applied to a product, or the product can 

11be taken after f is applied, and it should yield the same element f(ab) = f(a)f(b). In fact, only the frst 
condition is really necessary, and implies the second two.12 

Proposition 3.2 
If f(ab) = f(a)f(b), then f(eG) = eG ′ and f(a)−1 = f(a−1). 

Proof. For the frst part, take f(eG ·eG) = f(eG) = f(eG)·eG ′ by the defnition of eG ′ . Since f is a homomorphism, 
′this will also be equal to f(eG)f(eG). Multiplying on both sides by f(eG)−113 gives f(eG) = eG. 

′The second part is similar. Take a ∈ G. Then f(a) · f(a−1) = f(a · a−1) = f(eG) = eG, and multiplying on the 
left by f(a)−1 gives f(a−1) = f(a)−1 . 

3.3 Examples 

Let’s see some examples. 

Example 3.3 
The determinant det : GLn(R) −→ (R× , ×) is a homomorphism from invertible matrices to the real 
numbers under multiplication, since det(AB) = det(A) det(B). 

11In other words, a homomorphism will commute with multiplication in that they can be applied in either order. This results in 
a commutative diagram. 

12In some way, this shows that the multiplication is the essential part of the group structure, and the identity and inverse 
properties are simply there to make sure nothing is able to go wrong with the multiplication. 

13This must exist by the group property of invertibility. 
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Example 3.4 
z a+b a bThe exponential exp : (C, +) −→ (C× , ×) taking z −→ e is a homomorphism, since e = e e . 

Let the standard basis vectors of Rn be e⃗1 = (1, 0, · · · , 0)t, ⃗e2 = (0, 1, · · · , 0)t , and so on, where e⃗i is the vector 
consisting of a 1 in the ith entry and 0s elsewhere. 

For a permutation p ∈ Sn, let Ap be the permutation matrix taking e⃗i 7−→ e⃗p(i). In particular, the ith column 
of Ap will be e⃗p(i).   

0 0 1 
For example, for p(123), Ap = 1 0 0. 

0 1 0 

Example 3.5 
The mapping 

φ : Sn −→ GLn(R) 
p ∈ Sn 7−→ Ap, 

where Ap is the permutation matrix, is a homomorphism. This is because Ap(Aq(e⃗i)) = Ap(e⃗q(i)) = e⃗p(q(i)), 
and Apq(e⃗i) = e⃗pq(i) = e⃗p(q(i)), which matches, so ApAq = Apq. 

There is also another important homomorphism from Sn to another group. 

Example 3.6 
Let sign = det ◦φ take Sn −→ R× by taking the determinant of the permutation matrix. This mapping 
sign is also a homomorphism, since φ and det are both homomorphisms. 

In fact, sign(p) = ±1. It is always possible to write any permutation as a composition of transpositions14:� � 

p = τ1τ2 · · · τr for transpositions τi. The determinant of a transposition matrix is −1, since det
0 1 

= −1,
1 0 
′ ′ so sign(p) = (−1)r where r is the number of transpositions making up p. In fact, if p = τ1 · · · τr = τ1 · · · τ , r = ss 

modulo 2, since the sign homomorphism can be applied on either side. For example, for S3, e, (123), and (132) 
all have a sign of +1, while (12), (13), and (23), the transpositions, all have a sign of −1. 

Notice that R× = GL1(R), since 1×1 invertible matrices are simply nonzero real numbers. These two examples 
provide a hint as to why homomorphisms are so useful: matrices/linear mappings and GLn are generally well-
understood, so if there is a homomorphism from a group to GLn, the knowledge from GLn can then be used to 
learn more about that particular group. This idea is the core theme of a branch of math called representation 
theory.15 

Example 3.7 
For any G and any x ∈ G, let 

fx : Z −→ G 
n n 7−→ x . 

a+b a bThis is a homomorphism because x = x x , and is related to the cyclic subgroups of G. 

Last time, in class, we studied cyclic subgroups ⟨g⟩ using Z and essentially used this homomorphism. In general, 
homomorphisms allow us to study complicated groups with simpler groups. 

14Permutations that swap two elements and leave all other elements fxed. 
15These examples actually provides the so-called permutation representation and sign representation of Sn. 
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Theorem 3.8 
Let f be a homomorphism from G −→ G ′ . Then im(f)a is a subgroup of G ′ . 

aThe image of f consists of all the elements in G ′ that are mapped to by f. 

This theorem is not surprising; the whole point of a homomorphism is that it plays nicely with the group 
structure, and the whole point of a subgroup is that it also plays nicely with the group structure. 

Example 3.9 
For example, im(fx) from Example 3.7 is ⟨x⟩. 

′ ′ ′ ′Proof. Consider y, y ∈ im(f). Then there exist x, x ∈ G such that y = f(x) and y = f(x ′ ). Then yy = 
f(x)f(x ′ ) = f(xx ′ ) ∈ im(f). The inverse and identity conditions are verifed similarly.16 

Defnition 3.10 
The kernel of f is 

ker(f) := {x ∈ G : f(x) = eG′ }. 

Theorem 3.11 
The kernel of a homomorphism f is also a subgroup. 

′ ′Proof. If x, x ∈ ker(f), then f(xx ′ ) = f(x)f(x ′ ) = eG′ eG′ = eG′ , so xx ∈ ker(f). Also, f(eG) = eG′ so 
−1 eG ∈ ker(f). Lastly, if x ∈ ker(f), then f(x−1) = f(x)−1 = e = eG ′ , so x−1 ∈ ker(f) as well. G ′ 

The image and kernel of each of the previous examples can be seen to be subgroups. The fact that f is a homo-
morphism is imperative to the proofs of either fact, and these two theorems demonstrate that a homomorphism 
does in fact respect the group structure. 

Example 3.12 
Consider det : GLn(R) −→ (R× , ×). Since the determinant for invertible matrices can take on any nonzero 
value, the image of the determinant is all of R× . The kernel of the determinant is SLn(R), the special linear 
group consisting of the n×n matrices with determinant 1. 

Example 3.13 
2πik For exp : (C, +) −→ (C× , ×), the image is all of C× , and the kernel is 2πiZ ⊆ C, since e = 1. 

Example 3.14 
For 

φ : Sn −→ GLn(R) 
p ∈ Sn 7−→ Ap, 

the image is the set of permutation matrices in GLn(R), whereas ker(φ) = {e}, the identity permutation. 

Example 3.15 
The image of the sign homoomorphism sign = det ◦φ is {±1} ∈ R× . The kernel defnes a new group, called 
the alternating group An := ker(sign). 

−116For inverse, consider y ∈ im(f ). Then there exists x such that y = f(x). From the defnition of a homomorphism, y = 
f(x)−1 = f (x−1) ∈ im(f). For identity, f (eG) = eG ′ , so eG ′ ∈ im(f ). 
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For example, A3 = {e, (123), (132)} ⊆ S3. 

Example 3.16 
nThe kernel of fx is {n : x = eG}, which was used in the previous class, and is dZ where d is the order of x 

if it is fnite, and {0} if the order of x is infnite. 

Defnition 3.17 
A mapping f : G −→ G ′ is an isomorphism if it is a bijective homomorphism. 

In some sense, if two groups are isomorphic (that is, if there exists an isomorphism between them), they 
are essentially the same group, because there are the exact same number of elements and the multiplication 
relationships between the elements will be exactly the same. Usually, in group theory, groups are considered 
with respect to the isomorphism classes. 

Example 3.18 
The exponential map from the real numbers under addition onto the positive real numbers under multipli-
cation 

exp : (R, +) −→ (R>0, ×) 

t 7−→ e t 

is an isomorphism. 

Given an isomorphism f : G −→ G ′ , f−1 : G ′ −→ G is also an isomorphism, since f−1(yy ′ ) = f−1(y)f−1(y ′ ). 
If there exists an isomorphism between G and G ′ , this is denoted as G ∼= G ′ . 
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