
 

Lecture 25: Orthogonality 

25 Orthogonality 

25.1 Review: Bilinear Forms 

We discussed bilinear forms last time, which was a function that took two vectors as input, and gave a scalar as 
an output. It was linear in both of the inputs. For now, we will only be interested in symmetric bilinear forms 
because they model after the dot product. On real vectors, every bilinear form can be written as: 

» #» #» »⟨ # x , y ⟩ = x T A # y . 

The form is symmetric if and only if A is symmetric. We may also refer to a bilinear form as a ‘pairing’. 

25.2 Hermitian Forms 

When we worked over a complex vector space, we discussed the Hermitian form, the complex version of a 
symmetric bilinear form. However, symmetry did not work as normal. They had a complex conjugate in 

» #» » #» » #» #» » w⟩ = ⟨ # ∗ #their relation: ⟨ # v , w, v ⟩ The standard Hermitian form was defned to be ⟨ # x , y ⟩ = x y . In particular, 
Hermitian forms are not exactly linear. The second term is linear, but when we scale the frst term, we are scaling 
the output by the complex conjugate. The following chart summarizes the comparison between symmetric 
bilinear forms over the reals and Hermitian forms. Although they have subtle diferences, we will study them 
together. 

Field Canonical Example Symmetry Matrix Change of basis 
R dot product ⟨ #» #» » #» v , w⟩ = ⟨ #w, v ⟩ AT = A P T AP 

C Standard Hermitian 
form 

⟨ #» #» » #» v , w⟩ = ⟨ #w, v ⟩ ? ? 

Now we will fgure out what goes in the two remaining entries of the table. In order to fnd the matrix for a 
Hermitian form on V, a vector space over C, the process is analogous to fnding the matrix for a symmetric 

#» form on a vector space over R. First, pick a basis v #» 
1, . . . , vn of V. Then, set A = (aij )i,j=1,··· ,n, where 

= ⟨ #» #» aij v i, v j ⟩. 

If 
#» #» #» v = x1 v 1 + · · · + xn v n 

and 
#» #» #» w = y1 v 1 + · · · + yn v n, 

by using the almost-bilinearity of the Hermitian form and expanding the Hermitian form in the same way that 
bilinearity was used to expand the bilinear form, we get 

» #» #» »⟨ # v , w⟩ = x ∗ A # y , 

where there is a conjugate transpose instead of a transpose. Then, for every entry of the matrix A, 

» #» » #» aij = ⟨ # v i, v j ⟩ = ⟨ # v j , v i⟩ = aji, 

and so A∗ = A. 

Defnition 25.1 
A matrix A is called a Hermitian matrix if A∗ = A. 

The upshot is that giving a Hermitian form is essentially equivalent to providing a Hermitian matrix on Cn : 

Hermitian form on Cn ←→ Hermitian matrix A90 

Similarly, one can show that the change of basis formula is given by A ′ = P ∗AP. 

90Use the standard basis of Cn , e1, · · · , en. 
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Example 25.2 (n = 2) 
For a Hermitian matrix � � 

A = 
5 

2 − 2i 
2 + 2i 

3 
, 

the associated Hermitian form is 

⟨ #» x , #» y ⟩ = x⃗ ∗ Ay⃗ 

= 5x1y1 + 3x2y2 + (2 + 2i)x1y2 + (2 − 2i)x2y1, 

simply by evaluating the matrix product. 

In particular, when x⃗ = y⃗, then the Hermitian inner product is actually a real number! The Hermitian 
inner product of x⃗ with itself is 

⟨x⃗, ⃗x⟩ = 5|x1|2 + 3|x2|2 + Re((2 + 2i)(x1x2)) ∈ R. 

It turns out Hermitian matrices have very nice properties compared to random complex matrices. Let’s see one 
of them now. 

Claim 25.3. A Hermitian matrix always has real eigenvalues. 

Proof. An eigenvalue λ ∈ C of a Hermitian matrix A satisfes 

Av⃗ = λv⃗ 

for some v⃗ ∈ Cn . By the Hermitian property, 
v ∗ Av ∈ R, 

but because it is an eigenvector, this is equal to 

∗ v ∗ λv = λ(v v), 

∗where v v is a nonzero real number. Thus, 
v ∗Av 

λ = ∈ R.∗ vv 

Not only is the eigenvalue real, λ can be obtained by comparing the value of the Hermitian form to the value of 
the standard Hermitian form. 

From now on, we will study symmetric bilinear forms on the real numbers and Hermitian forms on the complex 
numbers in parallel. They have very similar properties. One idea that carries over is orthogonal matrices. 

Example 25.4 
Consider R equipped with the standard dot product. Let M ∈ Matn×n(R). Recall that we had several ways 
of describing that M was orthogonal. The following properties are all equivalent: 

M is orthogonal ⇐⇒ Mx⃗ · My⃗ = x⃗ · y⃗ 

⇐⇒ MT M = In ( 
1 if i = j

» #» » #» ⇐⇒ for column vectors v # 
i, vj of M , ⟨v # 

i, vj ⟩ = 
0 otherwise. 

The last condition says that the columns of M are orthonormal. 

A similar type of matrix can be defned for C with the standard Hermitian form. 
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Defnition 25.5 
Let V = Cn . The matrix M is called unitary if it satisfes any of the following equivalent conditions. 

M is unitary ⇐⇒ ⟨Mx⃗, My⃗⟩ = ⟨x⃗, ⃗y⟩ 
⇐⇒ M ∗ M = In; M

−1 = M ∗ 

1 if i = j
» #» #»∗ #» ⇐⇒ for column vectors v # 
i, vj of M , vi vj = 

0 otherwise. 

( 

What you can do in one world is very parallel to what you can do in the other world. 

25.3 Orthogonality 

Consider V real with ⟨·, ·⟩ symmetric, or V complex with ⟨·, ·⟩ Hermitian. 

Defnition 25.6 
A vector v⃗ is orthogonal to w⃗ if ⟨v⃗, w⃗⟩ = 0. Also, for W ⊂ V, a vector v⃗ ⊥ aW if ⟨v⃗, w⃗⟩ = 0 for all w⃗ ∈ W. 

aThis is the symbol representing orthogonality 

If ⟨·, ·⟩ is not the standard inner product, this idea of "orthogonality" does not necessarily correspond with 
geometric intuition. 

  

  

Example 25.7 
−1 0 0 0 1 
0 1 0 0 0Let A = , and v⃗ = . Then ⟨v⃗, v⃗⟩ = 0, so v⃗ is orthogonal to itself. 
0 0 1 0 0 

  

0 0 0 1 1 

  

This form comes up a lot when studying special relativity, but does not necessarily correspond to our geometric 
intuition of what "orthogonality" means. One thing that we do a lot of in the geometric world is that we take 
a subspace W and then look at the vectors that are orthogonal to it. 

Defnition 25.8 
For a subspace W ⊂ V, the orthogonal complement is 

W ⊥ = {v⃗ ∈ V such that v⃗ ⊥ W }. 

Example 25.9 
Consider V = R3 , and W as a plane. Then W ⊥ is a line perpendicular to W . 

In this case, W ⊥ is a complement to W, and R3 = W ⊕ W ⊥ . 

In general, there are many possible complements, or ways to extend a basis of a subspace to the whole vector 
space, but the dot product picks out a specifc one. 

Guiding Question 
For a general bilinear form, when can we decompose V into the sum of a subpace and its orthogonal 
complement? 

It is possible to some extent, but we need to be careful. For example, v⃗ ≠ 0 can be perpendicular to all of V. In 
′ ′ ⊥particular, taking A = [0], v⃗ ⊥ v⃗ for any v⃗, v⃗ ∈ V. Thus, for any v⃗, v⃗ = V. 
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Defnition 25.10 
The null space is 

N = {v⃗ ∈ V ⊥: v⃗ = V } ⊆ V. 

If A = In, the null space is N = {⃗0}, but when A = 0, the null space is N = V. 

Defnition 25.11 
Given a vector space V and a bilinear form ⟨·, ·⟩, if N = {⃗0}, (V, ⟨·, ·⟩) is called non-degenerate. 

Given the matrix of a form, how is it possible to tell whether the bilinear form is non-degenerate? 

Proposition 25.12 
A form on a vector space (V, ⟨·, ·⟩) is non-degenerate if and only if the matrix of the form, A, is invertible, 
which is when det A ̸= 0. 

So when A = In, it is non-degenerate, but when A = 0, it is extremely degenerate. In matrix form, v ∈ N if 
∗/T A #»and only if w⃗ v = 091 for all w⃗ ∈ V , which is equivalent to saying that Av⃗ = ⃗0, and so v⃗ ∈ ker A. 

Consider the restriction of the form to W, ⟨·, ·⟩|W : W ×W → R or C. It can happen that ⟨·, ·⟩|W can be 
degenerate, even if ⟨·, ·⟩ is non-degenerate. 

Example 25.13   
−1 0 0 0  
0Let V = R4 . The matrix from before, A = 
0 

1 
0 

0 
1 

0 
, is non-degenerate but a bit weird since it had 

0 
0 0 0 1  

1 
0 

that property that a vector could be orthogonal to itself. However, let v = and consider 
0 
1 

W = Span(v). 

Then, 

W ×W −→ R 

⟨av⃗, av⃗⟩ = 0, 

and the restriction of the form to W is identically zero and is degenerate. 

Given a vector space V, a form ⟨·, ·⟩, and a subspace W ⊂ V, the restriction of the form ⟨·, ·⟩|W is non-degenerate 
′if and only if for all non-zero w⃗ ∈ W, there exists some w⃗ ̸= w⃗ such that ⟨w,⃗ w⃗ ′ ⟩ ̸= 0. In particular, this is 

equivalent to saying that W ∩ W ⊥ = {⃗0}, by the defnition of W ⊥ . If there were a vector both in W and W ⊥ , it 
′would not be possible to fnd such a w⃗ , since the inner product with w⃗ would always be zero since it is in W ⊥ . 

Theorem 25.14 
If ⟨·, ·⟩|W is non-degenerate, then V = W ⊕ W ⊥ is a direct sum of W and its orthogonal space. 

As a reminder, there are several equivalent ways of thinking about the direct sum. If V = W ⊕ W ⊥ , then the 
following are all true 

′ ′1. If w1, · · · , wk is a basis for W, and w1, · · · , wj is a basis for W ⊥ , then gluing them together gets a basis 
′ ′ {w1, · · · , wk, w · · · , w } for V. 1, j 

2. Every v⃗ ∈ V can be written uniquely as v⃗ = w⃗ + ⃗u where w⃗ ∈ W and u⃗ ∈ W ⊥ . 

91Depending on whether we consider R or C, we take either the conjugate transpose or the transpose. 
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3. The intersection is W ∩ W ⊥ = {⃗0} and V = W + W ⊥ . 

These are all diferent ways of talking about the way V has been split here. It is not always the case that W 
and W ⊥ direct sum to V. Once the non-degeneracy condition has been encoded into the restriction of the form 
to W, a splitting can be found. 
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