
Lecture 22: The Sylow Theorems 

22 The Sylow Theorems 

22.1 Review 

Last time, we discussed the conjugacy classes of symmetric and alternating groups. 

22.2 Motivation 

The Sylow theorems are a set of related theorems describing the subgroups of prime power order of a given 
fnite group. They are very powerful, since they can apply to any fnite group, and play an important role in 
the theory of fnite groups. 

To motivate the Sylow theorems, recall the following basic theorem. 

Theorem 22.1 
If G is fnite, and H is a subgroup of G, then |H| divides |G|. 

In fact, we can ask if the reverse is also true: given a factor of |G|, is there a subgroup of that size? It turns 
out that it it not true. 

Example 22.2 (Counterexample) 
For G = A4, |G| = 12, but it turns out that there is no subgroup of order 6.a 

aAs an exercise, try showing this using the class equation! 

So there is not always such a subgroup. 

Guiding Question 
Can we add constraints so that some form of reverse of Theorem 22.1 is true? When must there be a 
subgroup of a particular size? 

The next theorem is quite surprising and powerful: it turns out that the reverse is true for prime powers. If 
k kd = p , a prime power dividing |G|, then there must exist a subgroup where |H| = p . 

22.3 The First Sylow Theorem 

The three Sylow theorems, which will be stated in this lecture and proved in the next, formalize and elaborate 
on this idea of studying subgroups of prime power order. 

Note 22.3 
eFor today’s lecture, we use e to denote the largest exponent of p such that p | |G| and we use 1 to denote 

the identity element instead. Also, n will always refer to |G|. 

The frst Sylow theorem states that there is always a prime power order subgroup. 

Theorem 22.4 (Sylow I) 
Given G such that 

e|G| = n = p · m, 

ewhere p is the largest power of p (that is, gcd(p, m) = 1), then there exists a subgroup H ≤ G such that 

e|H| = p . 

Such a subgroup is called a Sylow p-subgroup. It has maximal prime power order within G. 
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Defnition 22.5 
eLet G be a group such that |G| = n = p m such that gcd(p, m) = 1. Then a subgroup H ≤ G such that 

e|G| = p is called a Sylow p−subgroup. 

Let’s see an application of this powerful theorem. 

Example 22.6 
Consider G = S4. Since |S4| = 24 = 8 · 3, Sylow I states that there is a subgroup of order 8. In fact, we can 
take 

H = ⟨(12), (34), (13)(24)⟩. 

Another example is the dihedral group. 

Example 22.7 
For G = D5, we have |D5| = 10 = 2 · 5. So there must be subgroups of size 5 and 2. A subgroup generated 
by a rotation 

⟨ρ2π/5⟩ has order 5. 

A subgroup generated by any refection 

⟨refection⟩ has order 2. 

Looking at this theorem now, it may be hard to appreciate. One reason this theorem is relevant now is that 
the proof is a very nice application of the theory on group actions and orbits. Moreover, this theorem is one 
that applies extremely generally. We have mostly been studying explicit groups such as the dihedral groups or 
symmetric groups in this class, but the Sylow theorems apply to any fnite group. When given an unfamiliar 
group, the Sylow theorems provide footholds and crevices, like in climbing a clif, to start of with and to learn 
more about the groups. Sylow I gives lots of interesting subgroups that play of of each other, depending on 
the diferent factors of the size of the group G. 

We can get a useful corollary for free. 

Corollary 22.8 
If p divides |G|, there exists an element x ∈ G with order p. 

For example, if |G| = 14, it must have at least one element of order 7. 

Proof of Corollary 22.8. eUsing Sylow I, there exists a subgroup H ≤ G such that |H| = p , where e ≥ 1. Pick 
some y ∈ H. Then, 

⟨y⟩ = Cpf , 

esome cyclic group with order dividing p . Taking 

k−1 px = y 

provides an element of order p. 

22.4 The Second Sylow Theorem 
eThe frst Sylow theorem states that a Sylow p-subgroup, a subgroup of maximal size p dividing |G|, exists. In 

fact, we can say a lot more about what these subgroups look like. 
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Theorem 22.9 (Sylow II) 
There are two parts; part a) is what is usually referred to as the second Sylow theorem. 

′(a) Given H ≤ G, where H is a Sylow p-subgroup, any other Sylow p−subgroup H ≤ G is conjugate to 
′ H; i.e. there exists g such that H = gHg−1 . 

d(b) Given any subgroup K ≤ G such that |K| = p , for any Sylow subgroup H, there exists g such that 
gKg−1 ≤ H.a 

aNotice that |K| does not have to be the maximal prime power, and can have order smaller than |H|. Every prime power 
order subgroup, up to conjugation, sits inside a Sylow subgroup. 

Evidently, conjugating a Sylow subgroup will result in a Sylow subgroup (since they have the same size), and 
Sylow II states that all the Sylow subgroups arise in this way. 

Note that the second part is stronger, since |K| can be a prime power smaller than |H|, and implies the frst 
′part by applying b) to K = H . The second part states that given any prime power subgroup K ≤ G and any 

Sylow subgroup H ≤ G, it is possible to conjugate K to make it land in H. 

Student Question. Is the converse of part a) true? If H is a Sylow p-subgroup, is gHg−1 also a Sylow 
p-subgroup? 

Answer. The converse is essentially automatically true. In order to be a Sylow p-subgroup, the only requirement 
is being a subgroup of a certain size, and conjugating by an element evidently produces a subgroup of the same 
size. The impressive part is that given two arbitrary Sylow p-subgroups, they must in fact be conjugate! 

Sylow II confrms our intuition for refections in dihedral groups. 

Example 22.10 
For D2n, every subgroup of size 2 is generated by a refection, and Sylow II indicates that all the refections 
are conjugate. 

22.5 The Third Sylow Theorem 

The last Sylow theorem indicates the number of these (conjugate) subgroups. 

Theorem 22.11 (Sylow III) 
The number of Sylow p-subgroups of G divides 

n 
m = 

pe 

and is congruent to 1 modulo p. 

This theorem seems kind of weird, but is actually very useful. 

Example 22.12 
Consider D5 and p = 2. The number of Sylow 2−subgroups is 5, which does divide 10/2 and is congruent 
to 1 modulo 2. 

The frst Sylow theorem indicates existence of Sylow subgroups, the second Sylow theorem indicates that all 
Sylow subgroups are related by conjugation, and the third provides strong (and kind of funky) constraints on 
the number of such subgroups. 

22.6 Applications of the Sylow Theorems 

Now, we can look at a few diferent applications of these theorems, and we will see how powerful they are. 
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Example 22.13 
Consider any group G such that 

|G| = 15 = 5 · 3. 

By Sylow III, for p = 5, the number of Sylow 5-groups divides 3 = 15/5, and is equal to 1 mod 5. In 
particular, the only possibility is 

#Sylow 5-groups = 1. 

So there is a unique H ≤ G such that |H| = 5. Since there is only one subgroup of size 5, Sylow II indicates 
that gHg−1 = H. That is, H is normal: the Sylow theorems indicate automatically that there is a normal 
subgroup of size 5. 

For p = 3, Sylow III states that the number of Sylow 3−subgroups divides 5 and is 1 mod 3, so it is also 1. 
Thus, there exists some unique K ⊴ G such that |K| = 3. 

Moreover, H ∩ K = {1}, since H ∼= C5 and K =∼ C3. Nontrivial elements of H have order 5, while elements of 
K have order 3, so they intersect only at the identity. So the Sylow theorems give, for free, nonintersecting 
normal subgroups of size 5 and 3 for every single group of size 15. That is quite impressive! 

76Recall the notion of a product group. 

Defnition 22.14 
The product group H ×K is 

H ×K = {(h, k) : h ∈ H, k ∈ K} 

where 
(h, k) · (h ′ , k ′ ) = (hh ′ , kk ′ ). 

The product group is the group given by coordinate-wise multiplication. We claim that in Example 22.15, a 
group of order 15 must be isomorphic to a product of groups of order 3 and order 5. 

Proposition 22.15 (Example 22.15) 
Where |H| = 5 and |K| = 3, 

(a) the two subgroups commute: for h ∈ H and k ∈ K, hk = kh; 

(b) H ×K ∼= G. 

Once H ×K ∼= G, then we know that any group of order 15 is isomorphic to C5 ×C3. 

Proof. Part b) follows from part a). 

(a) For the frst claim, since K is normal, hkh−1 ∈ K, and thus, multiplying on the right by an element of K, 

hkh−1k−1 ∈ K. 

Similarly, kh−1k−1 ∈ H, since H is normal, but then 

hkh−1k−1 ∈ H. 

Thus, hkh−1k−1 ∈ H ∩ K = {1}, and since the intersection was just 1, so hkh−1k−1 = 1, and so 

hk = kh. 

(b) Consider the mapping 

f : H ×K −→ G 

(h, k) 7−→ hk. 

76This was discussed on the homework. 
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We claim that this is a homomorphism. In particular, 

f((h, k) · (h ′ , k ′ )) = f((hh ′ , kk ′ )) = hh ′ kk ′ = hkh ′ k ′ = f((h, k)) · f((h ′ , k ′ )), 

where the second-to-last step comes from H and K commuting. 

In general, if we take two arbitrary subgroups and take this function, this would not be a group ho-
momorphism! It was extremely important that H and K commute, which is true since they are both 
normal. 

Next, we must check that f is in fact an isomorphism. Since H and K have trivial intersection, hk = 1 
only when h = 1 and k = 1, so the kernel is 

ker(f) = {h, k : hk = 1 ∈ G} 
= {(1, 1)}. 

Since the kernel is trivial, f is injective. In addition, |H ×K| = |G| = 15, and so f must be bijective and 
thus an isomorphism. 

We have shown that any group G of order 15 is 

G ∼= C5 ×C3. 

There is only one group of size 15. In particular, 

C15 = C5 ×C3. 

Student Question. How did we know that H and K were C5 and C3? 

Answer. Any group of prime order is cyclic; we proved this in a previous lecture. 

There is only one group up to isomorphism of order 15. For higher order groups, fnding the number of groups 
up to isomorphism can get tricky. The Sylow theorems make it much easier to start an argument for classifying 
diferent groups, since they can apply to any fnite group. 

For n = 15, there is only one isomorphism class. 

Guiding Question 
For groups such that |G| = pq, a product of two distinct primes, how many isomorphism classes of groups 
are there of size pq? 

Let’s think about n = 10. 

Example 22.16 
Consider a group G such that |G| = 10 = 5 · 2. 

We know already that G is not unique; for example, D5 and C10 both have order 10 but are non-isomorphic. 

Proposition 22.17 
There are two isomorphism classes: G ∼= C5 ×C2, and G ∼= C10. 

Proof. From Sylow III, the number of Sylow 5-groups divides 2 and is 1 modulo 5, so there is only one Sylow 
5-group. So there is a normal subgroup K ⊴ G such that |K| = 5. Let x ∈ K be a generator for K, so that 

K = ⟨x⟩, 

where ord(x) = 5. 
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Take H to be some Sylow 2-group. Let H = ⟨y⟩, where the order of y is 2. Since K is normal and generated by 
x, yxy−1 ∈ K, so 

−1 r yxy = x 

for some exponent 1 ≤ r ≤ 4. Rearranged, we have 

r yx = x y. 

As before, since K has elements of order 5 and H has elements of order 3, the intersection is trivial: 

K ∩ H = {1}. 

iThis implies that the possible x yj are distinct from each other.77 

Therefore, the group G is 
i jG = {x y : 0 ≤ i ≤ 4, 0 ≤ j ≤ 1}, 

where all these elements are distinct. There are 10 such elements, so these elements must be the entire group 
G. The relations 

5 2 x = y = 1 

and 
r yx = x y 

completely determine the group operation! The exponent r entirely controls which group of size 10 we have. 

Which values of r work? Currently, we have that 1 ≤ r ≤ 4, so there are at most four diferent isomorphism 
classes for G. 

• If r = 2, then we would have 
2 2 4 2 4 x = y x = yyx = yx y = x y = x , 

5 2 r 4 3by repeatedly using the relations x = y = 1; yx = x y. Here we have x = x , implying that x = 1. This 
is a contradiction, since x had order 5. So r = 2 is impossible. 

r• In general, if yx = x y, then 
22 r x = y x = · · · = x , 

r −1 2by running through the same calculations as above. So x 
2 

= 1, and we must have r = 1 mod 5. So 
r = 3 is impossible, since 9 is not 1 mod 5. 

• For r = 1, then H and K commute by defnition, and the same analysis as in 22.15 works, and we have 

G = C5 ×C2, 

which turns out to be isomorphic to C10. 

• For r = 4, we recognize these relations: 
G = D5. 

For this example, we used the Sylow theorems to narrow down the possibilities, and simply looked through the 
possibilities to determine the isomorphism classes of groups of order 10. 

For n = 10, because Sylow III did not restrict the number of 2-subgroups to be 1, only the 5-subgroup was 
necessarily normal, and so the analysis was more complicated and subtle than for n = 15. Since for p = 2, there 
could have been 1 or 5 subgroups (both these numbers divide 10/2 = 5 and are congruent to 1 modulo 2), we 
were able to obtain less information about 2−subgroups. 

In general, if |G| = pq, a product of two distinct primes, then 

• if q ≠ 1 mod p, then G = Cp ×Cq = Cpq. 

i−i ′ j−j ′ 77Otherwise, if there are two nondistinct elements, we end up with x y = 1, implying that some element of K is the 
inverse of some element of H, which is not possible with a trivial intersection. 
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• if q = 1 mod p, then G = Cpq or a diferent non-abelian group.78 

To prove this, we follow the same analysis as today. The frst step is to look at the Sylow p−groups and 
the Sylow q−groups. In the frst case, we argue that they are normal and commute, and we can show that 
G ∼= Cp ×Cq . In the second case, using the relations, there end up only being two possibilities for r. 

78For p = 2 and q = 5, the diferent non-abelian group is D5. 
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