
Lecture 21: Symmetric and Alternating Groups 

21 Conjugacy Classes for Symmetric and Alternating Groups 

21.1 Review 

Recently, we have been discussing the conjugation action of a group on itself. In particular, it is possible to 
decompose a group into its conjugacy classes, which is similar to decomposing a set into its orbits (like we 
were doing last week). 

Last time, we looked at the icosahedral group and saw its class equation and fgured out information based on 
that. 

21.2 Cycle Type 

Today, we will be looking at the conjugacy classes for Sn and An, the symmetric group and the alternating 
group, which consists of even permutations. 

Recall that a permutation σ ∈ Sn can be written in cycle notation. This is a very useful way of writing a 
permutation. 

Example 21.1 (Cycle Notation) 
For example, the permutation (123)(45) takes 1 to 2 to 3 to 1, and 4 to 5 back to 4. 

Given the cycle type, it is easy to defne and fgure out the sign of a permutation. A 1-cycle will have sign 
+1, a 2-cycle will have sign −1, and so on, where a k-cycle will have sign (−1)k−1 . For example, (123)(45) has 
sign −1 = (+1)(−1) = −1, where the signs of each cycle are multiplied. In particular, even permutations are 
permutations that have an even number of even-length cycles.75 

Guiding Question 
What are the conjugacy classes of Sn? 

It turns out that the sign will be a very helpful tool in determining the conjugacy classes. 

Let’s look at an example. 

Example 21.2 
If σ = (123), then for p ∈ Sn, let the conjugate be 

τ = pσp−1 . 

Let’s say p(1) = i, p(2) = j, and p(3) = k. Evaluating the conjugate on i gives 

τ(i) = pσp−1(p(1)) = p(σ(1)) = p(2) = j. 

Similarly, 
τ (j) = p(σ(2)) = p(3) = k. 

It turns that in cycle notation, 
τ = (ijk) = (p(1)p(2)p(3)). 

It is easy to check that τ fxes all the other points. So conjugating a 3-cycle produces another 3-cycle with 
diferent points. 

Consider a more complicated permutation. 
75It’s confusing: an even-length cycle makes a permutation odd. 
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Example 21.3 
For σ = (123)(47) · · · , conjugating by p gives 

(p(1)p(2)p(3))(p(4)p(7)) · · · . 

It turns out that the lengths of the cycles in a permutation don’t change upon conjugation! 

Defnition 21.4 
Given σ ∈ Sn, the cycle type of σ is the number of 1-cycles, 2-cycles, and so on, that show up in the cycle 
notation. 

The cycle type is conjugation-invariant. If τ = pσp−1 , then σ and τ have the same cycle type. For example, 
(47)(123) has cycle type (2, 3). 

In fact, if σ and τ have the same cycle type, then they are conjugate. 

Example 21.5 
Take 

σ = (145)(23) 

and 
τ = (234)(15). 

Simply by matching cycles, we can defne p ∈ Sn taking 1 7−→ 2, 4 7−→ 3, 5 7−→ 4, 2 7−→ 1, and 3 7−→ 5; 
that is, p = (12)(354). This p is constructed to be such that 

pσp−1 = τ.a 

aTry working through this by hand! 

The upshot is this proposition. 

Proposition 21.6 
Two permutations σ and τ are conjugate if and only if σ and τ have the same cycle type. 

21.3 Conjugacy Classes in Sn 

Conjugation in Sn can be understood well by looking at cycles. 

Guiding Question 
What are the conjugacy classes in Sn? 

From our characterization of when two permutations are conjugate, this can certainly be done! Let’s start with 
an example. 

Example 21.7 
For S3, there are three conjugacy classes: cycle type 3, 2 + 1, and 1 + 1 + 1. For example, representatives 
could be (123), (12), and the identity permutation. 

Now, we can do more complicated computations. For instance, we may want to fnd out the size of a given 
conjugacy class. 
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Example 21.8 (Conjugacy classes in S4) 
For a permutation 

x = (1234) ∈ S4, 

the conjugacy class C(x) is all 4−cycles in S4. For each 4-cycle, there are 24 orderings of 1, 2, 3, and 4, and 
each one is overcounted by a factor of 4. For example, 

(1234) = (2341) = (3412) = (4123). 

So there are 
24/4 = 6 

elements in the conjugacy class. 

Alternatively, where the stabilizer is Z(x), then 

|G||C(x)| = . 
|Z(x)| 

Since conjugation is essentially "relabeling" the numbers in the original permutation, replacing 1 with p(1), 
2 with p(2), and so on, the elements in the stabilizer should relabel the numbers 1 through n in such a way 
that the permutation is still the same. For instance, relabeling (1234) to (2341) gives the same permutation 
x. In this case, because there are 4 diferent starting points to the cycle, there are 4 permutations p ∈ Z(x) 
that stabilize x. So again, 

|G| 24 |C(x)| = = = 6. 
|Z(x)| 4 

Essentially, the redundancy in cycle notation gives us diferent ways to write the same permutation, and 
dividing out by this redundancy (the stabilizer) gives the size of the conjugacy class. 

Cycle notation also simplifes these computations for larger symmetric groups. 

Example 21.9 (Conjugacy Class in S13) 
Consider 

x = (123)(456)(78910)(11)(12)(13) ∈ S13. 

What is the stabilizer Z(x) of x? For the 4-cycles, there are 4 choices for where to start the cycle. Any 
reordering of 12, 11, and 13 doesn’t change the fact that 12, 11, and 13 are fxed; there are 3! ways to order 
the 1-cycles. 

For the 3-cycles, there are 3 starting points each, but the 3-cycle (123) could also be mapped to (456), so 
there are 2! ways to order the two 3-cycles, and 3 starting points each. 

In general, if there are k ℓ−cycles, there are ℓ starting points for each cycle, and k! ways to order them. So 

|Z(x)| = 2! · 3 · 3 · 4 · 3! · 1 · 1 · 1 = 432. 

Then, 
13! |C(x)| = . 
432 

So fnding the sizes of conjugacy classes is really just doing some combinatorics for the size of stabilizer. Given 
the size of the stabilizer, since we know the size of the entire group, |Sn| = n!, dividing by |Z(x)| directly gives 
|C(x)|, without having to compute every permutation in the conjugacy class. 

21.4 Class Equation for S4 

Now, we can work out the class equation for S4 without too much pain. 
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Example 21.10 (Class Equation for S4) 
The order of S4 is |S4| = 4! = 24. Then, there are only fve possible cycle types, listed on the left column of 
the table. These are the diferent ways to sum to 4. 

cycle type |Z(x)| |C(x)|
4 4 6 

3 + 1 3 8 
2 + 1 + 1 2 · 2! = 4 6 

2 + 2 2! · 2 · 2= 8 3 
1 + 1 + 1 + 1 24 1. 

The size of the stabilizer for cycle type 4 is 4, as we worked out already. For 3, there are three possible 
places to start the cycle, so there are three permutations fxing the cycle type. For 2 + 1 + 1, there are 2 
ways to pick a starting point for the 2-cycle and 2! = 4 ways to order the 1-cycles, which gives 4 total. The 
rest of the middle row follows similarly. 

We have 
|C(x)| = |G|/|Z(x)|, 

so the right row, the size of the conjugacy class, is found by dividing |G| = 24 by the middle row, the size 
of the stabilizer. 

The class equation then says 
24 = 1 + 3 + 6 + 8 + 6. 

What about the alternating group? The conjugacy classes for A4 can also be determined. 

Example 21.11 (Conjugacy classes for A4) 
What are the conjugacy classes for A4? 

The alternating group A4 is a subgroup of S4. In fact it is the kernel of the sign homomorphism, so it is a 
normal subgroup. In particular, a normal subgroup is fxed under conjugation, so A4 is the union of conjugacy 
classes. Using the defnition of the sign, the cycle types 3 + 1, 2 + 2, and 1 + 1 + 1 + 1 all correspond to the 
elements in A4. Then, taking the sizes of the corresponding conjugacy classes, we have 

|A4| = 12 = 1 + 3 + 8, 

but since 8 is not a factor of 12, this is actually not the class equation for A4. 

What’s going wrong? If an element σ is conjugate to another element τ in A4, it is a diferent notion than 
being σ being conjugate to τ in S4! In particular, σ and τ can be conjugate in S4, since we need τ = pσp−1 for 
p ∈ S4, without being conjugate in A4, since we require that τ = qσq−1 for q ∈ A4. If it is possible to fnd two 
elements conjugate by an odd permutation but not an even permutation, then they will be conjugate in S4 but 
not A4. 

Consider x ∈ An ≤ Sn. The conjugacy class of x in An is 

−1CA(x) = {y ∈ A : y = pxp , p ∈ An}, 

the subset of elements in An conjugate to x by some even permutation, which is a subset of 

−1CS (x) = {y ∈ An : y = pxp , p ∈ Sn}. 

Similarly, the stabilizer for A is a subgroup of the stabilizer for S. 

ZA(x) = {p ∈ An : px = xp} ≤ ZS (x) = {p ∈ Sn : px = xp}. 

Using the counting formula, 
1 |CA(x)| · |ZA(x)| = |An| = |Sn|,
2 

so 
1 |CA(x)| · |ZA(x)| = |CS (x)| · |ZS (x)|. 
2 
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The product difers by a factor of 2 for An and Sn. Additionally, |ZA(x)| is a factor of |ZS (x)|, as it is a 
subgroup. 

Our analysis leads us to two possibilities: 
1• Case 1. In this case, |CA(x)| = |CS (x)| and |ZA(x)| = |ZS (x)|. Here, the conjugacy class stays the same2 

size, but only half of the permutations that stabilize them are even and in An. 

1• Case 2. In this case, |CA(x)| = |CS (x)| and |ZA(x)| = |ZS (x)|. So the size of the conjugacy class is split 2 
in half when going from Sn to An, and only half of them are conjugate by even permutations. Since the 
sizes of the stabilizers of x are the same, every p ∈ Sn such that px = xp is even, and lives inside of An. 

In our example, 8 must split, since it does not divide 12, and 1 and 3 cannot split because when they are split, 
they are split into halves, and they are odd numbers. Thus, the class equation for A4 must be, by simple 
numerics, 

|A4| = 12 = 1 + 3 + 4 + 4. 

In the 8 = 4 + 4 case, x = (123), and this is the case where the conjugacy class does split, which means the 
stabilizer group does not get any smaller. Thus, every p such that px = xp is even. This is what it means for 
the stabilizer group not to get any smaller! 

Example 21.12 
What happens for S5? What about A5? 

For S5, the class equation looks like 

120 = 1 + 10 + 15 + 20 + 20 + 30 + 24 . 

The even classes have size 1, 15, 20, and 24. We currently have 

|A5| = 60 = 1 + 15 + 20 + 24, 

which is not the class equation. Clearly, 1 and 15 do not split, since they are odd. Since 24 is not a factor of 
60 (but 24/2 = 12 is), it must split. 

The question remains if 20 splits into 10 + 10 or not. We can show directly that there is an odd permutation 
that commutes with it, and so it cannot split. So the class equation is 

60 = 1 + 15 + 20 + 12 + 12 . 

These examples demonstrate that after our analysis of cycle types in symmetric and alternating groups, deter-
mining the class equation is not so much algebra and more counting and combinatorics. 

21.5 Student Question 

Student Question. Why do we care about An? Does it show up as the symmetry group of some object? 

Answer. Since we are working with low numbers and dimensions, there are lots of coincidences where the 
groups that show up will be the same as each other, even if they aren’t actually related in a general way for 
higher dimensions. In fact, A4 shows up in the symmetry group of the tetrahedron, and we had A5 show up as 
the symmetry group of the icosahedron. But in general, An is (maybe? Davesh said he didn’t really know/hadn’t 
thought about it) not necessarily the symmetry group of some higher-dimensional geometric object. But in 18.702 
we will study the symmetries of equations (Galois frst studied these) instead of geometric objects, and it is very 
easy to write down equations that have An or Sn as (part of) their symmetry groups. In fact, group theory 
evolved at the same time as studying symmetries of non-geometric objects evolved (Galois again?) 

The reason why we care about An is this idea that simple groups are "building blocks" in some sense, and An 

for n = 5 and higher is simple, and in fact it is essentially the only (interesting?) simple normal subgroup of 
Sn. So if we care about Sn then we automatically care about An, since An is a "building block" of Sn. 

In general, people like to break down problems into studying the simple subgroups of certain groups, and then 
studying the ways in which the simple groups can combine into the larger groups, in order to understand the 
larger group as a whole. 

105 



Lecture 21: Symmetric and Alternating Groups 

There are lots of ways of combining groups that get pretty complicated, and this is defnitely something a lot of 
people are working on. The two ways of combining groups that get their own names are the "direct product" 
and the "semidirect product," which is a slightly more nonabelian way of combining groups. In this case, getting 
from An to Sn is just a semidirect product in some way. 
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