
Lecture 18: Geometric Application of Stabilizer 

18 Stabilizer 

18.1 Review 

A group action is when a group G acts on a set S by 

G×S −→ S 

and sends 
(g, s) 7−→ gs. 

The orbit of an element in s is all the elements it gets mapped to, 

Os = {gs ∈ S : g ∈ G}, 

and the stabilizer is 
StabG(s) := {g ∈ G : gs = s} ≤ G, 

18.2 Counting Formula 

Figure 1: The partition of S into orbits and theeir corresponding bijections with G/ Stab(si) 

One of the facts we learned about orbits is that they partition S. We further learned that there is a bijection 
between the left cosets of the stabilizer with the orbit. We were then able to write the size of S as X X 

|S| = |Osi | = [G : Stab(si)]. 

18.3 Stabilizers of Products 

Given a group G acting on a set S and an element s ∈ S, we know that |Os| = [G : Stab(s)]. This also means 
that we expect that if we take the stabilizer of two elements in the same orbit, then they should be the same 

′size. Specifcally, we are asking what can we say about the stabilizer of a product. If s = as for a ∈ G, if 
g ∈ Stab(s), then gs = s. Then 

′ aga −1(s ′ ) = aga −1(as) = ag(s) = as = s . 

′In other words, if g stabilizes s, then aga−1 stabilizes s . So the upshot is that 

−1StabG(s ′ ) = a StabG(s)a . 

If StabG(s ′ ) was normal, then the two stabilizers would be the same, but this doesn’t have to be the case. We’ve 
provided a nice bijection to see that the sizes of the two stabilizers must be the same size. 

86 



Lecture 18: Geometric Application of Stabilizer 

18.4 Statement 

Today, we will look at a consequence of these counting formulae. Recall that we were able to study and classify 
fnite and discrete subgroups of isometries in the plane. The special orthogonal group SO3 is the group of 

»rotations ρ(u,θ) in R3 fxing 
# 
0 . What are the fnite subgroups G ≤ SO3? 

In fact, there are not so many! Let’s start with the theorem. 

Theorem 18.1 
If G ≤ SO3, then 

• G ∼= Cn = ⟨ρu,2π/n⟩, or 

• G ∼= Dn = ⟨ρu,2π/n⟩, or 

• G is the group of rotational symmetries of a regular polyhedron. 

Figure 2: The regular polyhedra 

Although there are 5 regular polyhedra, there are only 3 distinct subgroups of symmetries. The dodecahedron 
and icosahedron have the same symmetries, which we denote as I. The cube and octahedron have the same 
symmetries as well, which we denote by O. Finally, the tetrahedron is partnered with itself and we denote its 
symmetries with T . 

As an example to see why some of the symmetries are the same, consider the symmetries of the octahedron. 
We can draw a point on the center of every face in the octahedron. Connecting these points lead to a cube, and 
thus any rotational symmetry of the cube will give a symmetry of the octahedron, and vice versa. A similar 
argument can be applied to the dodecahedron and icosahedron. Trying the argument for a tetrahedron just 
maps to the tetrahedron itself. 

On Wednesday, we worked out that the group of symmetries of a cube has size 24. Similarly, the tetrahedron 
has |T | = 12, and |I| = 60. 
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We will prove this by studying orbits! An non-identity element g ̸= I ∈ G71 is a rotation and thus fxes two 
unit vectors, which are exactly the positive and negative unit vectors on the rotation axis of g. These are called 
the poles of g. Let [

P = {poles of g}. 
g ̸=I 

Lemma 18.2 
If p ∈ P and some g ∈ G, then gp ∈ P also. As a result, we learn that G acts on P. 

′ ′Proof. For p ∈ P, then there exists h ≠ I ∈ G such that hp = p. If p = g(p). Then ghg−1(p ′ ) = p by earlier 
′reasoning. Then ghg−1 ∈ G, and ghg−1 ≠ I since h ≠ I. thus p ∈ P also. 

Example 18.3 
Let G = Cn. Then P = {p, −p} since every rotation will have the same poles. 

Example 18.4 
Let G = O.a Then P = {pole for each vertex, edge, or face}. 

aThe group of symmetries of an octahedron. 

Now, what can we say about stabilizers of these subgroups. let |G| = N. Let’s decompose P into orbits. Then 
P = O1 ∪ O2 ∪ · · · ∪ Ok. Then |Oi| = ni, and Oi = Opi for some pole pi. Then by our relations about the 
number of index of the stabilizer 

N | Stab(pi)| = ri = . 
ni 

Note that the stabilizer group will be a cyclic group. Geometrically, it will just contain the rotations around 
the axis pi. 

18.5 Finding the subgroups 

Let’s write down an auxiliary set. It is the set of poles and group elements paired together. Let 

S := {(g, p), g ≠ I, p is a pole for g}. 

Then we can count the order of S in two diferent ways. 

The order of S is X 
|S| = 2 = 2(N − 1), 

g∈G 
g ̸=I 

since there are two poles for every non-identity element of G. 

Additionally, since we have k orbits, 

k kX X X N |S| = | Stab(p)| − 1 = ni(ri − 1) = (ri − 1). 
ri 

p∈P i=1 i=1 

Every pole in the same orbit has the same stabilizer size, so we can group them together. Now, we have that 

kX N 
(ri − 1) = 2(N − 1). 

rii=1 

Dividing by N, � � � � � � 
1 1 1 2 

1 − + 1 − + · · · + 1 − = 2 − . 
r1 r2 rk N 

71We use I for the identity here 
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1Each of these quantities 1 − is between 1/2 and 1, since r1 must be at least two (by the defnition of a pole.) r1� � 
So 1 − r 

1 
1 
∈ 1

2 , 1 . 

2In addition 2 − ∈ [1, 2). So k = 2 or 3, since this is the only way the counting formula works out from ourN 
bounds. In fact, this works out for examples 18.3 and 18.4. For G = Cn, we have two orbits, and for G = O we 
have three orbits, even though it is much more complicated. 

For k = 2, when there are two orbits, 
1 1 2 

1 − + 1 − = 2 − , 
r1 r2 N 

and so 
1 1 2 

+ = . 
r1 r2 N 

But since r1, r2 ≤ N, 
2 1 1 2 ≤ + = . 
N r1 r2 N 

We have r1 = r2 = N, and n1 = n2 = 1. Each of the poles is fxed by the entire group. Then G is a fnite 
subgroup of SO2, and thus G = CN , a cyclic subgroup. 

For the three-orbit case, the numerics of the problem is also extremely constraining. When k = 3, the equation 
is 

1 1 1 2 
1 − + 1 − + 1 − = 2 − , 

r1 r2 r3 N 

and equivalently 
1 1 1 2 

+ + = 1 + . 
r1 r2 r3 N 

Without loss of generality, let r1 ≤ r2 ≤ r3. It is necessary for r1 = 2, or else the LHS72 would be ≤ 1. If r2 ≥ 4, 
then r3 ≥ 4 as well, and again the LHS would be ≤ 1. So r2 = 2 or 3. Finally, if r2 = 3, then r3 cannot be ≥ 6, 
again from the numerics of the problem. So r3 = 3, 4, or 5. 

In total, the cases are 

• Case 1. (2, 2, r) : r = N/2. In this case, we still have an infnite family. 

• Case 2. (2, 3, 3). We can solve for N to get N = 12. This corresponds to the tetrahedral group T. 

• Case 3: (2, 3, 4). N = 24. This corresponds to the octahedral group O. 

• Case 4: (2, 3, 5). N = 60. This corresponds to the icosahedral group I. 

We can really strongly limit the possibilities of a group G. We got this by counting a set S in two diferent 
ways, and playing around with the numbers and fractions. 

We aren’t done; we still have to show that these cases actually correspond to the groups. In each of these cases, 
we have three orbits, and those correspond to edges, faces, and vertices of these regular polyhedra. The pole 
for any vertex can be rotated to the pole for any other vertex. We’ll do the argument for the octahedral group 
and it will be similar for the remaining polyhedra. 

18.6 The Octahedral Group 
72left hand side 
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Example 18.5 (Octahedral group) 
Let’s take (2, 3, 4) and argue that this group must be symmetries of a cube or an octahedron. For 4, 
n3 = 6. So the stabilizer has size 4 and the orbit has size 6. Let’s try to fgure out what the orbit looks like. 
It contains six vectors inside R3 , so we can simply see the possible confgurations. 

Drawing the frst vector is easy; we just pick wherever we want for p. Then −p has to be in the same orbit 
as well because StabG(−p) has the same order as StabG(p), but we only have one orbit with stabilizer size 
4. What does the stabilizer group look like? Geometrically, it’s rotations around p and must have size 4, so 
we have Stabg(p) = C4. 

Now, let’s try to fgure out the other 4 poles in our orbit. Suppose we draw q such that p and q are not 
perpendicular. For any q in the orbit, −q is also in the orbit. We have determined that rotations by π/2 
around p are in our group, so those rotations of q should also be in our orbit. However, this gives us 4 
vectors for rotations of q and 4 vectors for rotations of −q, and this is too many. This picture was wrong 
because q was not drawn perpendicular to p. If we drew q perpendicular, then rotating q by 90 degrees 
gives us an orbit of size 6. 

Whatever the group G is, it fxes the collection of vectors that we drew. In particular, it fxes the octahedron 
obtained by taking the convex hull of the vectors and thus G ≤ O. But the octahedral group has size 24a 

and this group also has size 24, so |G| = |O| = 24 implies that G = O. 

awe worked this out in class on Wednesday 

We can repeat this for all the cases to fnish the proof, but it isn’t too important. The key lesson is how we 
were able to use the counting formulas and orbit decomposition of the set to really constrain the possibilities in 
these ways. A lot of the challenge was just fnding the right set to act on; in this case it was the poles. 
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