
Lecture 11: Proving the Jordan Decomposition Theorem 

11 The Jordan Decomposition 

11.1 Review 

Recall this theorem from last time. 

Theorem 11.1 
#» #»Considering a transformation T : V → V, there must exist a basis v 1, · · · , v n such that the matrix of T 

(in this basis) is 
Ja1 (λ1) 0 · · · 0 

. 

 .  

0 Ja2 (λ2) . 0 
A = ,. .. . . . Jai (λi) 0 

0 0 0 Jan (λn) 

where Jai (λi) are the Jordan blocks. 

  

A special case is when all the ai = 1. Then,  
λ1 · · · 0 
. ..A =  . . ... . 
0 · · · λr 

is a diagonal matrix.35 

11.2 The Jordan Decomposition, Continued 

The characteristic polynomial of the matrix A will be 

pA(t) = (t − λ1)
a1 · · · (t − λr)

ar , 

where it is possible to have repeated λi. As a result, it is not possible to determine the Jordan decomposition 
simply from the characteristic polynomial, since there are diferent ways to take a repeated root and split it up 
into Jordan blocks. (If all the roots of the characteristic polynomial are distinct, the Jordan form is uniquely 
determined.) 

However, the characteristic polynomial does provide some information. For a fxed eigenvalue λ, X 
ai = exponent of (t − λ) in pA(t). 

Jai (λ) 

Example 11.2 (n = 4) 
For example, when n = 4, consider a matrix where pA(t) = t4 . There are multiple possible Jordan forms; 
in particular, it can be split up as 4, 3 + 1, 2 + 2, 2 + 1 + 1, or 1 + 1 + 1 + 1 :   

0 
0 
0 

1 
0 
0 

0 
1 
0 

 
0 
0 

,
1 

  

0 
0 
0 

1 
0 
0 

0 
1 
0 

  , 

  

0 
0 

1 
0 

0 

  ,
1 

  

0 
0 

1 
0 

0 

  , 

  

0 
0 

  . 
0 

0 0 0 0 1 0 0 0 0 

#» 

For a given Jordan block, there is one eigenvector. Fixing λ again, this tells us that 

dim(ker(λI − A)) 

is equal to the number of blocks with λ along the diagonal. 

Up to reordering of the basis vectors, the Jordan decomposition is unique. 
35In the textbook, Artin puts the 1s below the diagonal in a Jordan block. Conventionally, the 1s are above the diagonal, but it 

e 1 moves the 1s from above the diagonal #» #» #»doesn’t make a diference, because reversing the order of the vectors to· · · · · ·e 1, e a e a, 
to below the diagonal. The diference is notational. 
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Example 11.3 
0 1 0 0 
0 0 1 0Take J4(0) = . Under J4(0), each basis vector maps to the next basis vector, and there is 
0 0 0 1 
0 0 0 0 

one chain of length 4: 
e⃗4 7→ e⃗3 7→ e⃗2 7→ e⃗1 7→ ⃗0. 

As a result, applying J4(0) multiple times will eventually send all vectors to zero; that is, in this case, 
J4(0)

4 = 0. 

�0 1 0 0 
0 0 0 0 J2(0) 0On the other hand, consider J2,2(0) = = . 
0 0 0 1 0 J2(0) 
0 0 0 0 

Applying the operator to the basis vectors yields two chains of length 2: 

� 

e⃗2 7→ e⃗1 7→ ⃗0 

  

e⃗4 7→ e⃗3 7→ ⃗0 

In this case as well, the operator will map every vector to zero upon repeated application. 

  

  

  

In general, for λ ̸= 0, (λI − T ) #» » e i is not necessarily zero (it is zero only if # e i is an eigenvector), but for some 

36 
large enough n, 

= 0. »(λI − T )n # e i 

In Example 11.3, there was a chain of length 4 for the frst matrix, while in the second matrix, we had two 
chains of length 2. 

Note 11.4 
The Jordan decomposition theorem is powerful because any square matrix has a Jordan decomposition. 
On the other hand, most matrices are diagonalizable, and any matrix will be ε away from a diagonalizable 
matrix, and the Jordan decomposition is unnecessary. Only in the zero percent of the timea when the 
characteristic polynomial has repeated roots is it necessary. 

aThis concept is feshed out in measure theory. 

11.3 Proof of Jordan Decomposition Theorem 

The proof of the Jordan decomposition theorem is quite involved and relatively tricky, so the important part for 
the rest of class is understanding the style of proof, rather than the exact details. This proof will break down 
the theorem inductively into smaller and smaller pieces. 

Let’s start with a couple of defnitions that will help us with the proof. 

Defnition 11.5 
Given a vector space V and a linear transformation T : V → V, a subspace W ⊆ V is called T -invariant if 
T (w⃗ ) ∈ W for all w⃗ ∈ W. 

For example, if the vector space V is the space of polynomials of degree at most 3, and the subspace W is the 
space of polynomials of degree at most 2, W will be T −invariant under the linear operator T that is taking the 
derivative. 

36A vector that is killed not necessarily immediately but eventually by λI − T is known as a generalized eigenvector; there is 
a question about them on the problem set. 
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Defnition 11.6 
′ ′Given a vector space V and two subspaces W, W ⊆ V, we say that V is the direct sum of W and W , 

′notated V = W ⊕ W , if every v⃗ ∈ V can be written uniquely as 

′ v⃗ = w⃗ + w⃗ , 

′ ′where w⃗ ∈ W and w⃗ ∈ W . 

For example, if V = R3 , every vector can be written as the sum of some vector in the z−direction and some 
vector lying in the xy−plane. 

Equivalently, there must exist a basis 
′ ′ {w⃗1, · · · , w⃗r, w⃗1, · · · , w⃗ }r 

′ ′ ′of V such that {w⃗1, · · · , w⃗r} is a basis of W and {w⃗1, · · · , w⃗ } is a basis of W . This is also sometimes called ar 
splitting of V, since V has been split up into two subspaces. 

Theorem 11.7 
′ ′ ′ aIf dim W + dim W = dim V, and W ∩ W = {⃗0}, then it must be the case that V = W ⊕ W . 

aThis can be proved using the characterization in terms of bases, and is related to a homework problem. 

Defnition 11.8 
′Given a splitting V = W ⊕ W and a linear operator T : V → V, we say that this splitting is T -invariant if 

′ W and W are T −invariant. 

′In a basis for W and W , the matrix for T must be block-diagonal; that is, of the form � � 
⋆ 0 
0 ⋆ 

′where each ⋆ is some matrix; this is because vectors in W or W will be mapped back to other vectors in W or 
′ W . 

Conversely, if T is block diagonal in some basis, it automatically provides a T -invariant splitting of V. The span 
of the collection of basis vectors in the frst block becomes a T -invariant subspace W and the second one becomes 
′ W . Essentially, these defnitions provide a characterization of linear transformations being block-diagonal, 

without having to pick a basis. 

Now, we can fnally start proving the Jordan Decomposition Theorem. Roughly, the proof follows an induction 
argument on the dimension of V , where a vector space is split up into two smaller dimensional T -invariant 
subspaces for the operator T , both of which will then have Jordan decompositions by the inductive hypothesis, 
which will provide the Jordan decomposition of the original vector space. Essentially, we want to break it down 
to the case of a singular eigenvalue, considering matrices that look like those in Example 11.3, relying on the 
fact that repeatedly applying these operators will eventually take any vector to zero. 

Defnition 11.9 
aA linear transformation T is nilpotent if there exists some m ≥ 0 such that T m = 0. 

aThe Jordan block Jm(0) is nilpotent with exponent m. 

Proof. This proof has several steps. 

• Step 0. Over complex vector spaces, there will always exist an eigenvalue, so let λ be some eigenvalue 
of T. Because λI is already diagonal, we can replace T with T − λI, so that 0 can be assumed to be one 
of the eigenvalues. Essentially, if the Jordan decomposition theorem is true for T − λI, by adding the 
diagonal matrix λI, the Jordan decomposition theorem will become true for T. 

• Step 1. 

51 



��
��

Lecture 11: Proving the Jordan Decomposition Theorem 

Rough Sketch.After this simplifcation, we will zero in37 on the 0 eigenvalue. We show that there exists 
a T −invariant splitting V = W ⊕ U such that 

T : W → W 
w 

is nilpotent and 
T : U → U 

u 

is invertible. For a nilpotent operator, the only possible eigenvalues are 038 , while for an invertible operator, 
there are only nonzero eigenvalues39 , so this splitting separates out the eigenvectors will eigenvalue λ = 0. 

By assumption, there exists a zero eigenvalue, and so dim W ≥ 1, and then dim U ⪇ n. Since dim U < n, 
by the inductive hypothesis, there is a Jordan decomposition for U. However, since dim W could be equal 
to n (dim U could be 0), the inductive hypothesis does not apply and so we must still show that there is 
a Jordan decomposition for nilpotent operators. 

Full Proof. Now, we still need to show that this splitting exists. Consider the vector space V ; TV = im T 
lies inside of V (it cannot possibly take V to a higher-dimensional space), and so we obtain the chain 

V ⊃ TV ⊃ T (TV ) ⊃ T (T (T (V )) ⊃ · · · . 

The dimension can only drop fnitely many times40 , since T i(V ) cannot have negative dimension, so there 
exists some stable dimension m between dim T and 0 such that 

= T m+1V = T m+2VT mV = · · · . 

Let 
U := T mV = im(T m) and W = ker(T m). 

First, T is nilpotent on W because W = ker(T m), so (T |W )
m = 0, which is the defnition of being nilpotent. 

Also, T |U is invertible because U = im(T |U ), so T |U is surjective from U to itself, which implies that it is 
invertible. Lastly, W ∩ U = {v ∈ U : T m = 0}, by defnition, which is precisely the zero vector, because 
T is invertible on U so it maps only the zero vector to the zero vector. Using the rank-nullity theorem, 
dim ker T m + dim im T m = dim V, so by Theorem 11.7, W ⊕ U is in fact a splitting. 

• Step 2. Now, we prove that if T is nilpotent, it has a Jordan decomposition. We have a vector space V, 
a linear operator T : V −→ V, and some m such that T m = 0. 

To do so, we will fnd by induction on the dimension a basis of V for which T acts in "chains" as in 
Example 11.3. Let W = im T ⊊ V. By induction, there exists such a basis {e⃗i} for W where T acts in 
chains. 

v⃗1 

e⃗3 v⃗2 

e⃗2 e⃗5 v⃗3 

e⃗1 e⃗4 e⃗6 u⃗1 u⃗2 u⃗3 

0 0 0 0 0 0 

37Ha ha 
38Consider a nilpotent operator A. Then there is some n such that An = 0. If v is an eigenvector for A with eigenvalue λ, 

Anv = λnv = 0, so λn = 0 and thus λ must also be zero. 
39Assume 0 is an eigenvalue of an invertible operator A, corresponding to an eigenvector v. Then Av = 0 for some nonzero v; 

then both the vector 0 and the vector v map to 0 and thus A is not one-to-one or invertible. 
40In fact, this argument relies on the fact that V is fnite-dimensional! 
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For each chain, we insert a preimage v⃗i of the top vector in each chain, where the v⃗i are not vectors in W 
but rather vectors that map to vectors in W. These exist since W is the image of T , and so every vector 
in W is the image of some other vector under T. Additionally, we add vectors in ker T , u⃗i, which all map 
to zero since they are in the kernel. This produces a bunch of chains for V , starting for a bunch of chains 
for W. 

We claim that B = {e⃗i}∪{v⃗j }∪{u⃗k} is a basis for V. It is linearly independent because applying T to any 
linear dependence would give a dependence between basis vectors of W (since T (v⃗i) = e⃗j and T (u⃗k) = 0.) 
Also, where c is the number of chains, the number of vectors in B is dim(W ) + dim(ker(T )) − c + c, which 
is precisely the dimension of V, and thus B is in fact a basis. 

For this particular example illustrated in the fgure, the Jordan blocks for W have size 3, 2, and 1, and 
for V these are extended to size 4, 3, and 2, along with three more blocks of size 1. 

The schematic of the argument is more important than the exact argument itself, but we still have to do the 
whole thing. :) 
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