
 

 
                 
       

Lecture 1: Groups 

• The text used in this class will be the 3rd edition of Algebra, by Artin.

• The course website is found on Canvas, and the problem sets will be submitted on Gradescope.

• The problem sets will be due every Tuesday at midnight.

Throughout this semester, we will discuss the fundamentals of linear algebra and group theory, which is the 
study of symmetries. In this class, we will mostly study groups derived from geometric objects or vector spaces, 
but in the next course, 18.7021 , more exotic groups will be studied. 

As a review of basic linear algebra, let’s review invertible matrices. 

Defnition 1.1 
An n×n matrixa A is invertible if there exists some other matrix A−1 such that AA−1 = A−1A = I, the 
n×n identity matrix. Equivalently, A is invertible if and only if the determinant det(A) ̸= 0. 

aAn array of numbers (or some other type of object) with n rows and n columns 

Example 1.2 (n = 2)� � � � 
a b d −bLet A = be a 2×2 matrix. Then its inverse A−1 is 1 .ad−bcc d −c a 

Example 1.3 (GLn(R)) 
A main example that will guide our discussion of groupsa is the general linear group, GLn(R), which is
the group of n×n invertible real matrices. 

aThe concept of a group will be feshed out later in this lecture 

Throughout the course, we will be returning to this example to illustrate various concepts that we learn about. 

1.2 Laws of Composition 
With our example in mind, let’s start. 

Guiding Question 
How can we generalize the nice properties of matrices and matrix multiplication in a useful way? 

Given two matrices A, B ∈ GLn(R), there is an operation combining them, in particular matrix multiplication, 
which returns a matrix AB ∈ GLn(R). 2 The matrices under matrix multiplication satisfy several properties:

• Noncommutativity. Matrix multiplication is noncommutative, which means that AB is not necessarily
the same matrix as BA. So the order that they are listed in does matter.

• Associativity. This means that (AB)C = A(BC), which means that the matrices to be multiplied can
be grouped together in diferent confgurations. As a result, we can omit parentheses when writing the
product of more than two matrices.

• Inverse. The product of two invertible matrices is also invertible. In particular,

= B−1A−1(AB)−1 . 
1Algebra 2 
2Since the determinant is multiplicative, det(AB) = det(A) det(B), which is nonzero. 
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Another way to think of matrices is as an operation on a diferent space. Given a matrix A ∈ GLn(R), a function 
or transformation on Rn3 can be associated to it, namely 

TA : Rn −→ Rn 

#» = (x1, · · · , xn) 7−→ A # v »4 .v 

Since A # v is the matrix product, we notice that TAB ( # v ) = TA(TB (
# v )), and so matrix multiplication is the same 

as function composition. 

With this motivation, we can defne the notion of a group. 

»»» 

Defnition 1.4 (Group) 
A group is a set G with a composition (or product) law 

G×G −→ G 
(a, b) 7−→ a · b5 

fulflling the following conditions: 

• Identity. There exists some element e ∈ G such that a · e = e · a = a 
−1• Inverse. For all a ∈ G, there exists b ∈ G, denoted a , such that a · b = b · a = e. 

• Associative. For a, b, c ∈ G, 
(ab)c = a(bc). 

Also denoted ab 

In the defnition, both the frst and second conditions automatically give us a unique inverse and identity. For 
′ ′ ′example, if e and e both satisfy property 1, then e · e = e = e , so they must be the same element. A similar 

argument holds for inverses. 

Why does associativity matter? It allows us to defne the product g1 · g2 · · · · · gn without the parentheses 
indicating which groupings they’re multiplied in. 

Defnition 1.5 
n n −1 −1Let g taken to the power n be the element g = g · · · · · g for n > 0, g = g · · · · · g for n < 0, and e for| {z } | {z } 

n times n times 
n = 0. 

Example 1.6 
Some common groups include: 

Group 
GLn(R)a 

Zb 

C× = C \ {0}c 

Composition Law 
matrix multiplication 

+ 
× 

Identity 
In 
0 
1 

Inverse 
A 7→ A−1 

n 7→ −n 
z 7→ 1 

z 

aThe general linear group 
bThe integers under addition 
cThe complex numbers (except 0) under multiplication 

For the last two groups, there is additional structure: the composition law is commutative. This motivates the 
following defnition. 

Defnition 1.7 
A group G is abelian if a · b = b · a for all a, b ∈ G. Otherwise, G is called nonabelian. 

3Vectors with n entries which are real numbers. 
» #»4The notation A # v refers to the matrix product of A and v , considered as n×n and n×1 matrices. 
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Often, the composition law in an abelian group is denoted + instead of ·. 

1.3 Permutation and Symmetric Groups 
Now, we will look at an extended example of another family of nonabelian groups. 

Defnition 1.8 
Given a set S, a permutation of S is a bijectiona p : S −→ S. 

aA function f : A −→ B is a bijection if for all y ∈ B, there exists a unique x ∈ A such that f(x) = y. Equivalently, it 
must be one-to-one and onto. 

Defnition 1.9 
Let Perm(S) be the set of permutations of S. 

In fact, Perm(S) is a group, where the product rule is function composition.6 

• Identity. The identity function e : x 7−→ x is is the identity element of the group. 

• Inverse. Because p is a bijection, it is invertible. Let p−1(x) be the unique y ∈ S such that p(y) = x. 

• Associativity. Function composition is always associative. 

Like groups of matrices, Perm(S) is a group coming from a set of transformations acting on some object; in 
this case, S. 

Defnition 1.10 
When S = {1, 2, · · · , n}, the permutation group Perm(S) is called the symmetric group, denoted Sn. 

Defnition 1.11 
For a group G, the number of elements in the set G, |G|, is called the order of the group G, denoted |G|
or ord(G). 

The order of the symmetric group is |Sn| = n!7 so the symmetric group Sn is a fnite group. 

For n = 6, consider the two permutations p and q 

i 1 2 3 4 5 6 
p(i) 2 4 5 1 3 6 

i 1 2 3 4 5 6 
q(i) 3 4 5 6 1 2 , 

where the upper number is mapped to the lower number. 

We can also write these in cycle notation, which is a shorthand way of describing a permutation that does not 
afect what the permutation actually is. In cycle notation, each group of parentheses describes a cycle, where 
the number is mapped to the following number, and it wraps around. 

Example 1.12 (Cycle notation) 
In cycle notation, p is written as (124)(35), where the 6 is omitted. In the frst cycle, 1 maps to 2, 2 maps 
to 4, and 4 maps to 1, and in the second cycle, 3 maps to 5 and 5 maps back to 3.a 

aIn fact, we say that p has cycle type (3, 2), which is the lengths of each cycle. 

6We can check that the composition of two bijections p ◦ q is also a bijection.
7The number of permutations of the numbers 1 through n is n! — there are n possibilities for where 1 maps to, and then n − 1 

for where 2 maps to, and so on to get n(n − 1) · · · (2)(1) = n! 
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8Similarly, q is written as (135)(246). In cycle notation, it is clear that there are multiple ways to write or 
represent the same permutation. For example, p could have been written as (241)(53) instead, but it represents 
the same element p ∈ S6. 

Cycle notation allows us to more easily invert or compose two permutations; we simply have to follow where 
each number maps to. 

Example 1.13 (Inversion) 
The inverse p−1 fips the rows of the table: 

i 2 4 5 1 3 6 
p(i) 1 2 3 4 5 6 

In cycle notation, it reverses the cycles, since each number should be mapped under p−1 to the number 
that maps to it under p: 

p −1 = (421)(53) = (142)(35). 

Example 1.14 (Composition) 
The composition is 

q ◦ p = (143)(26). 
aUnder p, 1 maps to 2, which maps to 4 under q, and so 1 maps to 4 under q ◦ p. Similarly, 4 maps to 3 

and 3 maps back to 1, which gives us the frst cycle. The second cycle is similar. 
aRemember that the rightmost permutation is applied frst, and then the leftmost, and not the other way around, due to 

the notation used for function composition. 

Example 1.15 (Conjugation) 
Another example of composition is 

p −1 ◦ q ◦ p = (126)(345). 
aThis is also known as conjugation of q by p. 

aNotice that under conjugation, q retains its cycle type (3, 3). In fact, this is true for conjugation of any element by any 
other element! 

1.4 Examples of Symmetric Groups 
For n ≥ 3, Sn is always non-abelian. Let’s consider Sn for small n ≤ 3. 

Example 1.16 (S1) 
In this case, S1 only has one element, the identity element, and so it is {e}, the trivial group. 

Example 1.17 (S2) 
For n = 2, the only possibilities are the identity permutation e and the transposition (12). Then S2 = 
{e, (12)}; it has order 2. 

Once n gets larger, the symmetric group becomes more interesting. 
8It has cycle type (3, 3). 
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Example 1.18 (S3) 
The symmetric group on three elements is of order 3! = 6. It must contain the identity e. It can also contain 

2x = (123). Then we also get the element x = (132), but 

3 x = e. 

4 5 2Higher powers are just x = x, x = x , and so on. Now, we can introduce y = (12), which is its own 
inverse, and so 

2 y = e . 

2Taking products gives xy = (13) and x y = (23). So we have all six elements of S3: 

S3 = {e, (123), (132), (12), (13), (23)}. 

2In fact, yx = (23) = x y, so taking products in the other order does not provide any new elements. The 
relation 

2 yx = x y 

holds. In particular, using the boxed relations, we can compute any crazy combination of x and y and 
−1 2 2 2reduce it to one of the elements we listed. For example, xyx y = xyx y = xyyx = xy x = x . 
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