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Lecture 1: Groups 

1 Groups 

1.1 Introduction 

The lecturer is Davesh Maulik. These notes are taken by Jakin Ng, Sanjana Das, and Ethan Yang, and 
the note-taking is supervised by Ashay Athalye. Here is some basic information about the class: 

• The text used in this class will be the 3rd edition of Algebra, by Artin.

• The course website is found on Canvas, and the problem sets will be submitted on Gradescope.

• The problem sets will be due every Tuesday at midnight.

Throughout this semester, we will discuss the fundamentals of linear algebra and group theory, which is the 
study of symmetries. In this class, we will mostly study groups derived from geometric objects or vector spaces, 
but in the next course, 18.7021 , more exotic groups will be studied. 

As a review of basic linear algebra, let’s review invertible matrices. 

Defnition 1.1 
An n×n matrixa A is invertible if there exists some other matrix A−1 such that AA−1 = A−1A = I, the 
n×n identity matrix. Equivalently, A is invertible if and only if the determinant det(A) ̸= 0. 

aAn array of numbers (or some other type of object) with n rows and n columns 

Example 1.2 (n = 2)� � � � 
a b d −bLet A = be a 2×2 matrix. Then its inverse A−1 is 1 .ad−bcc d −c a 

Example 1.3 (GLn(R)) 
A main example that will guide our discussion of groupsa is the general linear group, GLn(R), which is
the group of n×n invertible real matrices. 

aThe concept of a group will be feshed out later in this lecture 

Throughout the course, we will be returning to this example to illustrate various concepts that we learn about. 

1.2 Laws of Composition 

With our example in mind, let’s start. 

Guiding Question 
How can we generalize the nice properties of matrices and matrix multiplication in a useful way? 

Given two matrices A, B ∈ GLn(R), there is an operation combining them, in particular matrix multiplication, 
which returns a matrix AB ∈ GLn(R). 2 The matrices under matrix multiplication satisfy several properties:

• Noncommutativity. Matrix multiplication is noncommutative, which means that AB is not necessarily
the same matrix as BA. So the order that they are listed in does matter.

• Associativity. This means that (AB)C = A(BC), which means that the matrices to be multiplied can
be grouped together in diferent confgurations. As a result, we can omit parentheses when writing the
product of more than two matrices.

• Inverse. The product of two invertible matrices is also invertible. In particular,

= B−1A−1(AB)−1 . 
1Algebra 2 
2Since the determinant is multiplicative, det(AB) = det(A) det(B), which is nonzero. 
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Lecture 1: Groups 

Another way to think of matrices is as an operation on a diferent space. Given a matrix A ∈ GLn(R), a function 
or transformation on Rn3 can be associated to it, namely 

TA : Rn −→ Rn 

#» = (x1, · · · , xn) 7−→ A # v »4 .v 

Since A # v is the matrix product, we notice that TAB ( # v ) = TA(TB (
# v )), and so matrix multiplication is the same 

as function composition. 

With this motivation, we can defne the notion of a group. 

»»» 

Defnition 1.4 (Group) 
A group is a set G with a composition (or product) law 

G×G −→ G 

(a, b) 7−→ a · b5 

fulflling the following conditions: 

• Identity. There exists some element e ∈ G such that a · e = e · a = a 

−1• Inverse. For all a ∈ G, there exists b ∈ G, denoted a , such that a · b = b · a = e. 

• Associative. For a, b, c ∈ G, 
(ab)c = a(bc). 

Also denoted ab 

In the defnition, both the frst and second conditions automatically give us a unique inverse and identity. For 
′ ′ ′example, if e and e both satisfy property 1, then e · e = e = e , so they must be the same element. A similar 

argument holds for inverses. 

Why does associativity matter? It allows us to defne the product g1 · g2 · · · · · gn without the parentheses 
indicating which groupings they’re multiplied in. 

Defnition 1.5 
n n −1 −1Let g taken to the power n be the element g = g · · · · · g for n > 0, g = g · · · · · g for n < 0, and e for| {z } | {z } 

n times n times 
n = 0. 

Example 1.6 
Some common groups include: 

Group 
GLn(R)a 

Zb 

C× = C \ {0}c 

Composition Law 
matrix multiplication 

+ 
× 

Identity 
In 

0 
1 

Inverse 
A 7→ A−1 

n 7→ −n 
z 7→ 1 

z 

aThe general linear group 
bThe integers under addition 
cThe complex numbers (except 0) under multiplication 

For the last two groups, there is additional structure: the composition law is commutative. This motivates the 
following defnition. 

Defnition 1.7 
A group G is abelian if a · b = b · a for all a, b ∈ G. Otherwise, G is called nonabelian. 

3Vectors with n entries which are real numbers. 
» #»4The notation A # v refers to the matrix product of A and v , considered as n×n and n×1 matrices. 
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Lecture 1: Groups 

Often, the composition law in an abelian group is denoted + instead of ·. 

1.3 Permutation and Symmetric Groups 

Now, we will look at an extended example of another family of nonabelian groups. 

Defnition 1.8 
Given a set S, a permutation of S is a bijectiona p : S −→ S. 

aA function f : A −→ B is a bijection if for all y ∈ B, there exists a unique x ∈ A such that f(x) = y. Equivalently, it 
must be one-to-one and onto. 

Defnition 1.9 
Let Perm(S) be the set of permutations of S. 

In fact, Perm(S) is a group, where the product rule is function composition.6 

• Identity. The identity function e : x 7−→ x is is the identity element of the group. 

• Inverse. Because p is a bijection, it is invertible. Let p−1(x) be the unique y ∈ S such that p(y) = x. 

• Associativity. Function composition is always associative. 

Like groups of matrices, Perm(S) is a group coming from a set of transformations acting on some object; in 
this case, S. 

Defnition 1.10 
When S = {1, 2, · · · , n}, the permutation group Perm(S) is called the symmetric group, denoted Sn. 

Defnition 1.11 
For a group G, the number of elements in the set G, |G|, is called the order of the group G, denoted |G|
or ord(G). 

The order of the symmetric group is |Sn| = n!7 so the symmetric group Sn is a fnite group. 

For n = 6, consider the two permutations p and q 

i 1 2 3 4 5 6 
p(i) 2 4 5 1 3 6 

i 1 2 3 4 5 6 
q(i) 3 4 5 6 1 2 

, 

where the upper number is mapped to the lower number. 

We can also write these in cycle notation, which is a shorthand way of describing a permutation that does not 
afect what the permutation actually is. In cycle notation, each group of parentheses describes a cycle, where 
the number is mapped to the following number, and it wraps around. 

Example 1.12 (Cycle notation) 
In cycle notation, p is written as (124)(35), where the 6 is omitted. In the frst cycle, 1 maps to 2, 2 maps 
to 4, and 4 maps to 1, and in the second cycle, 3 maps to 5 and 5 maps back to 3.a 

aIn fact, we say that p has cycle type (3, 2), which is the lengths of each cycle. 

6We can check that the composition of two bijections p ◦ q is also a bijection.
7The number of permutations of the numbers 1 through n is n! — there are n possibilities for where 1 maps to, and then n − 1 

for where 2 maps to, and so on to get n(n − 1) · · · (2)(1) = n! 
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8Similarly, q is written as (135)(246). In cycle notation, it is clear that there are multiple ways to write or 
represent the same permutation. For example, p could have been written as (241)(53) instead, but it represents 
the same element p ∈ S6. 

Cycle notation allows us to more easily invert or compose two permutations; we simply have to follow where 
each number maps to. 

Example 1.13 (Inversion) 
The inverse p−1 fips the rows of the table: 

i 2 4 5 1 3 6 
p(i) 1 2 3 4 5 6 

In cycle notation, it reverses the cycles, since each number should be mapped under p−1 to the number 
that maps to it under p: 

p −1 = (421)(53) = (142)(35). 

Example 1.14 (Composition) 
The composition is 

q ◦ p = (143)(26). 

aUnder p, 1 maps to 2, which maps to 4 under q, and so 1 maps to 4 under q ◦ p. Similarly, 4 maps to 3 
and 3 maps back to 1, which gives us the frst cycle. The second cycle is similar. 

aRemember that the rightmost permutation is applied frst, and then the leftmost, and not the other way around, due to 
the notation used for function composition. 

Example 1.15 (Conjugation) 
Another example of composition is 

p −1 ◦ q ◦ p = (126)(345). 

aThis is also known as conjugation of q by p. 

aNotice that under conjugation, q retains its cycle type (3, 3). In fact, this is true for conjugation of any element by any 
other element! 

1.4 Examples of Symmetric Groups 

For n ≥ 3, Sn is always non-abelian. Let’s consider Sn for small n ≤ 3. 

Example 1.16 (S1) 
In this case, S1 only has one element, the identity element, and so it is {e}, the trivial group. 

Example 1.17 (S2) 
For n = 2, the only possibilities are the identity permutation e and the transposition (12). Then S2 = 
{e, (12)}; it has order 2. 

Once n gets larger, the symmetric group becomes more interesting. 
8It has cycle type (3, 3). 
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Example 1.18 (S3) 
The symmetric group on three elements is of order 3! = 6. It must contain the identity e. It can also contain 

2x = (123). Then we also get the element x = (132), but 

3 x = e. 

4 5 2Higher powers are just x = x, x = x , and so on. Now, we can introduce y = (12), which is its own 
inverse, and so 

2 y = e . 

2Taking products gives xy = (13) and x y = (23). So we have all six elements of S3: 

S3 = {e, (123), (132), (12), (13), (23)}. 

2In fact, yx = (23) = x y, so taking products in the other order does not provide any new elements. The 
relation 

2 yx = x y 

holds. In particular, using the boxed relations, we can compute any crazy combination of x and y and 
−1 2 2 2reduce it to one of the elements we listed. For example, xyx y = xyx y = xyyx = xy x = x . 
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2 Subgroups and Cyclic Groups 

2.1 Review 

Last time, we discussed the concept of a group, as well as examples of groups. In particular, a group is a set 
G with an associative composition law G×G −→ G that has an identity as well inverses for each element with 
respect to the composition law ×. 

Our guiding example was that of the group of invertible n×n matrices, known as the general linear group 
(GLn(R) or GLn(C), for matrices over R and C, respectively.) 

Example 2.1 
Let GLn(R) be the group of n×n invertible real matrices. 

• Associativity. Matrix multiplication is associative; that is, (AB)C = A(BC), and so when writing 

  

a product consisting of more than two matrices, it is not necessary to put in parentheses. 

1 · · · 0 
. ..• Identity. The n×n identity matrix is In = . . . , which is the matrix with 1s along the.. . 

  

0 1· · · 
diagonal and 0s everywhere else. It satisfes the property that AI = IA = A for all n×n matrices A. 

• Inverse. By the invertibility condition of GLn, every matrix A ∈ GLn(R) has an inverse matrix A−1 

such that AA−1 = A−1A = In. 

Furthermore, each of these matrices can be seen as a transformation from Rn −→ Rn, taking each vector ⃗v to Av⃗. 
That is, there is a bijective correspondence between matrices A and invertible transformations TA : Rn −→ Rn 

taking TA(v⃗) = Av⃗. 

Another example that showed up was the integers under addition. 

Example 2.2 
The integers Z with the composition law + form a group. Addition is associative. Also, 0 ∈ Z is the additive 
identity, and −a ∈ Z is the inverse of any integer a. 

On the other hand, the natural numbers N under addition would not form a group, because the invertibility 
condition would be violated. 

Lastly, we looked at the symmetric group Sn. 

Example 2.3 
The symmetric group Sn is the permutation group of {1, · · · , n}. 

2.2 Subgroups 

In fact, understanding Sn is important for group theory as a whole because any fnite group "sits inside" Sn in 
a certain way9 , which we will begin to discuss today. 

Guiding Question 
What does it mean for a group to "sit inside" another group? 

If a subset of a group satisfes certain properties, it is known as a subgroup. 
9This is known as Cayley’s Theorem and is discussed further in section 7.1 of Artin. 
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Defnition 2.4 
Given a group (G, ·), a subset H ⊂ G is called a subgroup if it satisfes: 

• Closure. If h1, h2 ∈ H, then h1 · h2 ∈ H. 

• Identity. The identity element e in G is contained in H. 

• Inverse. If h ∈ H, its inverse h−1 is also an element of H. 

As notation, we write H ≤ G to denote that H is a subgroup of G. 

Essentially, these properties consists solely of the necessary properties for H to also be a group under the same 
operation ·, so that it can be considered a subgroup and not just some arbitrary subset. In particular, any 
subgroup H will also be a group with the same operation, independent of the larger group G. 

Example 2.5 
The integers form a subgroup of the rationals under addition: (Z, +) ⊂ (Q, +). 

The rationals are more complicated than the integers, and studying simpler subgroups of a certain group can 
help with understanding the group structure as a whole. 

Example 2.6 
The symmetric group S3 has a three-element subgroup {e, (123), (132)} = {e, x, x2}. 

However, the natural numbers N = {0, 1, 2, · · · } ⊂ (Z, +) are not a subgroup of the integers, since not every 
element has an inverse. 

Example 2.7 
The matrices with determinant 1, called the special linear group, form a subgroup of invertible matrices: 
SLn(R) ⊂ GLn(R). 

The special linear group is closed under matrix multiplication because det(AB) = det(A) det(B). 

2.3 Subgroups of the Integers 

The integers (Z, +) have particularly nice subgroups. 

Theorem 2.8 
aThe subgroups of (Z, +) are {0}, Z, 2Z, · · · . 

aWhere n ∈ Z, nZ consists of the multiples of n, {nx : x ∈ Z}. 

This theorem demonstrates that the condition that a subset H of a group be a subgroup is quite strong, and 
requires quite a bit of structure from H. 

Proof. First, nZ is in fact a subgroup. 

• Closure. For na, nb ∈ nZ, na + nb = n(a + b). 

• Identity. The additive identity is in nZ because 0 = n · 0. 

• Inverse. For na ∈ nZ, its inverse −na = n(−a) is also in nZ. 

Now, suppose S ⊂ Z is a subgroup. Then clearly the identity 0 is an element of S. If there are no more elements 
in S, then S = {0} and the proof is complete. Otherwise, pick some nonzero h ∈ S. Without loss of generality, 
we assume that h > 0 (otherwise, since −h ∈ S as well by the invertibility condition, take −h instead of h.) 
Thus, S contains at least one positive integer; let a be the smallest positive integer in S. 

Then we claim that S = aZ. If a ∈ S, then a + a = 2a ∈ S by closure, which implies that 2a + a = 3a ∈ S, and 
so on. Similarly, −a ∈ S by inverses, and −a + (−a) = −2a ∈ S, and so on, which implies that aZ ⊂ S. 
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Now, take any n ∈ S. By the Euclidean algorithm, n = aq + r for some 0 ≤ r < a. From the subgroup properties, 
n − aq = r ∈ S as well. Since a is the smallest positive integer in S, if r > 0, there would be a contradiction, so 
r = 0. Thus, n = aq, which is an element of aZ. Therefore, S ⊂ aZ. 

From these two inclusions, S = aZ and the proof is complete. 

Corollary 2.9 
Given a, b ∈ Z, consider S = {ai + bj : i, j ∈ Z}. The subset S satisfes all the subgroup conditions, so by 
Theorem 2.8, there is some d such that S = dZ. In fact, d = gcd(a, b). 

Proof. Let e = gcd(a, b). Since a ∈ S, a = dk and b = dℓ for some k, ℓ. Since the d from before divides a and b, 
it must also divide e, by defnition of the greatest common divisor. Also, since d ∈ S, by the defnition of S, 
d = ar + bs for some r and b. Since e divides a and b, e divides both ar and bs and therefore d. 

Thus, d divides e, and e divides d, implying that e = d. So S = gcd(a, b)Z. 

In particular, we have showed that gcd(a, b) can always be written in the form ar + bs for some r, s. 

2.4 Cyclic Groups 

Now, let’s discuss a very important type of subgroup that connects back to the work we did with (Z, +). 

Defnition 2.10 
Let G be a group, and take g ∈ G. Let the cyclic subgroup generated by g be 

−2 −1 0 1 2⟨g⟩ := a{· · · g , g , g = e, g , g , · · · } ≤ G. 

aThe := symbol is usually used by mathematicians to mean "is defned to be." Other people may use ≡ for the same 
purpose. 

a b a+bSince g · g = g , the exponents of the elements of a cyclic subgroup will have a related group structure to 
(Z, +). 

Example 2.11 
The identity element generates the trivial subgroup {e} = ⟨e⟩ of any group G. 

There are also nontrivial cyclic subgroups. 

Example 2.12 
In S3, ⟨(123)⟩ = {e, (123), (132)}. 

Evidently, a cyclic subgroup of any fnite group must also be fnite. 

Example 2.13 
Let C× be the group of nonzero complex numbers under multiplication. Then 2 ∈ C will generate 

⟨2⟩ = {· · · , 1/4, 1/2, 1, 2, 4, · · · .} 

On the other hand, i ∈ C will generate 
⟨i⟩ = {1, i, −1, −i}. 

This example shows that a cyclic subgroup of an infnite group can be either infnite or fnite.10 

10Can you work out the cases for which g ∈ C the cyclic subgroup of C× is fnite or infnite? 
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Guiding Question 
What does a cyclic subgroup look like? Can they be classifed? 

Theorem 2.14 
nLet S = {n ∈ Z : g = e}. Then S is a subgroup of Z, so S = dZ or S = {0}, leading to two cases: 

k• If S = {0}, then ⟨g⟩ is infnite and all the g are distinct. 
2• If S = dZ, then ⟨g⟩ = {e, g, g , · · · , gd−1} ⊂ G, which is fnite. 

Proof. First, S must be shown to actually be a subgroup of Z. 

• Identity. The identity 0 ∈ S because g0 = e. 

a b a+b a b• Closure. If a, b ∈ S, then g = g = e, so g = g g = e · e = e, so a + b ∈ S. 

−a −1• Inverse. If a ∈ S, then g = (ga)−1 = e = e, so a ∈ S. 

a a −b a−bNow, consider the frst case. If g = gb for any a, b, then multiplying on right by g−b gives g · g = g = e. 
Thus, a − b ∈ S, and if S = {0}, then a = b. So any two powers of g can only be equal if they have the same 
exponent, and thus all the gi are distinct and the cyclic group is infnite. 

Consider the second case where S = dZ. Given any n ∈ Z, n = dq + r for 0 ≤ r < d by the Euclidean algorithm. 
Then gn = gdq · gr = gr , which is in {e, g, g2 , · · · , gd−1}. 

Defnition 2.15 
So if d = 0, then ⟨g⟩ is infnite; we say that g has infnite order. Otherwise, if d ̸= 0, then |⟨g⟩| = d and g 
has order d. 

It is also possible to consider more than one element g. 

Defnition 2.16 
Given a subset T ⊂ G, the subgroup generated by T is 

e1 en⟨T ⟩ := {t · · · t | ti ∈ T, ei ∈ Z}.1 n 

Essentially, ⟨T ⟩ consists of all the possible products of elements in T. For example, if T = {t, n}, then 

2 −3 4 5 −1⟨T ⟩ = {· · · , t n t , n t , · · · }. 

Defnition 2.17 
If ⟨T ⟩ = G, then T generates G.a 

aGiven a group G, what is the smallest set that generates it? Try thinking about this with some of the examples we’ve 
seen in class! 

Example 2.18 
The set {(123), (12)} generates S3. 

Example 2.19 
The invertible matrices GLn(R) are generated by elementary matricesa . 

aThe matrices giving row-reduction operations. 

13 



Lecture 3: Homomorphisms and Isomorphisms 

3 Homomorphisms and Isomorphisms 

3.1 Review 

Last time, we discussed subgroups and cyclic groups. A subgroup of a group is essentially a subset of that 
group that is compatible with the group or multiplicative structure on it. A cyclic subgroup of an element g in 
a group is essentially the subgroup consisting of all the powers of g. 

3.2 Homomorphisms 

Now that we understand a little bit more about groups and their structures, the natural next step is to look at 
maps between groups. 

Guiding Question 
How can we understand groups by considering maps between diferent groups? What kinds of maps can 
provide useful insight into various groups? 

First, we defne a type of map that is compatible with the group structure on both groups. 

Defnition 3.1 
Given groups G and G ′ , a homomorphism between them is a map 

f : G −→ G ′ 

such that: 

• For all a, b ∈ G, f(ab) = f(a)f(b). 

• The identity element is mapped to the identity: f(eG) = eG ′ . 

• Inverses are preserved under the mapping: f(a)−1 = f(a−1) for all a ∈ G. 

Essentially, each of these conditions requires that the map preserve the group structure (multiplication, identity, 
inverse) from the domain G to the codomain G ′ . Either f can be applied to a product, or the product can 

11be taken after f is applied, and it should yield the same element f(ab) = f(a)f(b). In fact, only the frst 
condition is really necessary, and implies the second two.12 

Proposition 3.2 
If f(ab) = f(a)f(b), then f(eG) = eG ′ and f(a)−1 = f(a−1). 

Proof. For the frst part, take f(eG ·eG) = f(eG) = f(eG)·eG ′ by the defnition of eG ′ . Since f is a homomorphism, 
′this will also be equal to f(eG)f(eG). Multiplying on both sides by f(eG)−113 gives f(eG) = eG. 

′The second part is similar. Take a ∈ G. Then f(a) · f(a−1) = f(a · a−1) = f(eG) = eG, and multiplying on the 
left by f(a)−1 gives f(a−1) = f(a)−1 . 

3.3 Examples 

Let’s see some examples. 

Example 3.3 
The determinant det : GLn(R) −→ (R× , ×) is a homomorphism from invertible matrices to the real 
numbers under multiplication, since det(AB) = det(A) det(B). 

11In other words, a homomorphism will commute with multiplication in that they can be applied in either order. This results in 
a commutative diagram. 

12In some way, this shows that the multiplication is the essential part of the group structure, and the identity and inverse 
properties are simply there to make sure nothing is able to go wrong with the multiplication. 

13This must exist by the group property of invertibility. 
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Example 3.4 
z a+b a bThe exponential exp : (C, +) −→ (C× , ×) taking z −→ e is a homomorphism, since e = e e . 

Let the standard basis vectors of Rn be e⃗1 = (1, 0, · · · , 0)t, ⃗e2 = (0, 1, · · · , 0)t , and so on, where e⃗i is the vector 
consisting of a 1 in the ith entry and 0s elsewhere. 

For a permutation p ∈ Sn, let Ap be the permutation matrix taking e⃗i 7−→ e⃗p(i). In particular, the ith column 
of Ap will be e⃗p(i).   

0 0 1 
For example, for p(123), Ap = 1 0 0. 

0 1 0 

Example 3.5 
The mapping 

φ : Sn −→ GLn(R) 
p ∈ Sn 7−→ Ap, 

where Ap is the permutation matrix, is a homomorphism. This is because Ap(Aq(e⃗i)) = Ap(e⃗q(i)) = e⃗p(q(i)), 
and Apq(e⃗i) = e⃗pq(i) = e⃗p(q(i)), which matches, so ApAq = Apq. 

There is also another important homomorphism from Sn to another group. 

Example 3.6 
Let sign = det ◦φ take Sn −→ R× by taking the determinant of the permutation matrix. This mapping 
sign is also a homomorphism, since φ and det are both homomorphisms. 

In fact, sign(p) = ±1. It is always possible to write any permutation as a composition of transpositions14:� � 

p = τ1τ2 · · · τr for transpositions τi. The determinant of a transposition matrix is −1, since det
0 1 

= −1,
1 0 
′ ′ so sign(p) = (−1)r where r is the number of transpositions making up p. In fact, if p = τ1 · · · τr = τ1 · · · τ , r = ss 

modulo 2, since the sign homomorphism can be applied on either side. For example, for S3, e, (123), and (132) 
all have a sign of +1, while (12), (13), and (23), the transpositions, all have a sign of −1. 

Notice that R× = GL1(R), since 1×1 invertible matrices are simply nonzero real numbers. These two examples 
provide a hint as to why homomorphisms are so useful: matrices/linear mappings and GLn are generally well-
understood, so if there is a homomorphism from a group to GLn, the knowledge from GLn can then be used to 
learn more about that particular group. This idea is the core theme of a branch of math called representation 
theory.15 

Example 3.7 
For any G and any x ∈ G, let 

fx : Z −→ G 
n n 7−→ x . 

a+b a bThis is a homomorphism because x = x x , and is related to the cyclic subgroups of G. 

Last time, in class, we studied cyclic subgroups ⟨g⟩ using Z and essentially used this homomorphism. In general, 
homomorphisms allow us to study complicated groups with simpler groups. 

14Permutations that swap two elements and leave all other elements fxed. 
15These examples actually provides the so-called permutation representation and sign representation of Sn. 
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Theorem 3.8 
Let f be a homomorphism from G −→ G ′ . Then im(f)a is a subgroup of G ′ . 

aThe image of f consists of all the elements in G ′ that are mapped to by f. 

This theorem is not surprising; the whole point of a homomorphism is that it plays nicely with the group 
structure, and the whole point of a subgroup is that it also plays nicely with the group structure. 

Example 3.9 
For example, im(fx) from Example 3.7 is ⟨x⟩. 

′ ′ ′ ′Proof. Consider y, y ∈ im(f). Then there exist x, x ∈ G such that y = f(x) and y = f(x ′ ). Then yy = 
f(x)f(x ′ ) = f(xx ′ ) ∈ im(f). The inverse and identity conditions are verifed similarly.16 

Defnition 3.10 
The kernel of f is 

ker(f) := {x ∈ G : f(x) = eG′ }. 

Theorem 3.11 
The kernel of a homomorphism f is also a subgroup. 

′ ′Proof. If x, x ∈ ker(f), then f(xx ′ ) = f(x)f(x ′ ) = eG′ eG′ = eG′ , so xx ∈ ker(f). Also, f(eG) = eG′ so 
−1 eG ∈ ker(f). Lastly, if x ∈ ker(f), then f(x−1) = f(x)−1 = e = eG ′ , so x−1 ∈ ker(f) as well. G ′ 

The image and kernel of each of the previous examples can be seen to be subgroups. The fact that f is a homo-
morphism is imperative to the proofs of either fact, and these two theorems demonstrate that a homomorphism 
does in fact respect the group structure. 

Example 3.12 
Consider det : GLn(R) −→ (R× , ×). Since the determinant for invertible matrices can take on any nonzero 
value, the image of the determinant is all of R× . The kernel of the determinant is SLn(R), the special linear 
group consisting of the n×n matrices with determinant 1. 

Example 3.13 
2πik For exp : (C, +) −→ (C× , ×), the image is all of C× , and the kernel is 2πiZ ⊆ C, since e = 1. 

Example 3.14 
For 

φ : Sn −→ GLn(R) 
p ∈ Sn 7−→ Ap, 

the image is the set of permutation matrices in GLn(R), whereas ker(φ) = {e}, the identity permutation. 

Example 3.15 
The image of the sign homoomorphism sign = det ◦φ is {±1} ∈ R× . The kernel defnes a new group, called 
the alternating group An := ker(sign). 

−116For inverse, consider y ∈ im(f ). Then there exists x such that y = f(x). From the defnition of a homomorphism, y = 
f(x)−1 = f (x−1) ∈ im(f). For identity, f (eG) = eG ′ , so eG ′ ∈ im(f ). 
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For example, A3 = {e, (123), (132)} ⊆ S3. 

Example 3.16 
nThe kernel of fx is {n : x = eG}, which was used in the previous class, and is dZ where d is the order of x 

if it is fnite, and {0} if the order of x is infnite. 

Defnition 3.17 
A mapping f : G −→ G ′ is an isomorphism if it is a bijective homomorphism. 

In some sense, if two groups are isomorphic (that is, if there exists an isomorphism between them), they 
are essentially the same group, because there are the exact same number of elements and the multiplication 
relationships between the elements will be exactly the same. Usually, in group theory, groups are considered 
with respect to the isomorphism classes. 

Example 3.18 
The exponential map from the real numbers under addition onto the positive real numbers under multipli-
cation 

exp : (R, +) −→ (R>0, ×) 

t 7−→ e t 

is an isomorphism. 

Given an isomorphism f : G −→ G ′ , f−1 : G ′ −→ G is also an isomorphism, since f−1(yy ′ ) = f−1(y)f−1(y ′ ). 
If there exists an isomorphism between G and G ′ , this is denoted as G ∼= G ′ . 
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4 Isomorphisms and Cosets 

4.1 Review 

In the last lecture, we learned about subgroups and homomorphisms. 

Defnition 4.1 
We call f : G → G ′ a homomorphism if for all a, b ∈ G, f(a)f(b) = f(ab). 

Defnition 4.2 
The kernel of a homomorphism f is {a ∈ G : f(a) = eG′ }, and the image is the set of elements b = f(a) 
for some a. 

The kernel and image of f are subgroups of G and G ′ , respectively. 

4.2 Isomorphisms 

Homomorphisms are mappings between groups; now, we consider homomorphisms with additional constraints. 

Guiding Question 
What information can we learn about groups using mappings between them? 

Defnition 4.3 
We call f : G → G ′ an isomorphism if f is a bijective homomorphism. 

In some sense, if there exists an isomorphism between two groups, they are the same group; relabeling the 
elements of a group using an isomorphism and using the new product law yields the same products as before 
relabeling. Almost all the time, it is only necessary to consider groups up to isomorphism. 

Example 4.4 
There exists an isomorphism f : Z4 → ⟨i⟩ given by n mod 4 7→ in . In particular, we get 

0 7→ 1 

1 7→ i 

2 7→ −1 

3 7→ −i. 

So the group generated by i, which can be thought of as a rotation of the complex plane by π/2, is essentially 
"the same" as the integers modulo 4. 

Example 4.5 
2More generally, the group generated by g, ⟨g⟩ = {e, g, g , · · · , gd−1}, where d is the order of g, is isomorphic 

to Zd = {0, 1, · · · , d − 1}. If the order of g is infnite, then we have ⟨g⟩ ∼= Z. 

a b a+bHere, the idea that an isomorphism is a "relabeling" of elements makes sense: since g g = g , relabeling 
ig with its exponent i retains the important information in this situation. Thinking of ⟨g⟩ in this way yields 

precisely Zd. 

4.3 Automorphisms 

An important notion is that of an automorphism, which is an isomorphism with more structure. 
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Defnition 4.6 
An isomorphism from G to G is called an automorphism. 

If a homomorphism can be thought of as giving us some sort of "equivalence" between two groups, why do we 
care about automorphisms? We already have an equivalence between G and itself, namely the identity. The 
answer is that while the identity map id : G → G is always an automorphism, more interesting ones exist as 
well! We can understand more about the symmetry and structure of a group using these automorphisms. 

Example 4.7 
A non-trivial automorphism from Z to itself is f : Z → Z taking n 7→ −n. 

From the existence of this nontrivial automorphism, we see that Z has a sort of "refective" symmetry.17 

Example 4.8 (Inverse transpose) 
Another non-trivial automorphism, on the set of invertible matrices, is the inverse transpose 

f : GLn(R) → GLn(R) 
A 7→ (At)−1 

Many other automorphisms exist for GLn(R), 18 since it is a group with lots of structure and symmetry. 

Example 4.9 (Conjugation) 
A very important automorphism is conjugation by a fxed element a ∈ G. We let ϕa : G → G be such that 

ϕa(x) = axa −1 . 

We can check the conditions to show that conjugation by a is an automorphism: 

• Homomorphism. 
−1 −1 −1ϕa(x)ϕa(y) = axa aya = axya = ϕa(xy). 

• Bijection. We have an inverse function ϕa−1 : 

−1 −1ϕa ◦ ϕa = ϕa ◦ ϕa = id. 

Note that if G is abelian, then ϕa = id. 

Any automorphism that can be obtained by conjugation is called an inner automorphism; any group intrin-
sically has inner automorphisms coming from conjugation by each of the elements (we can always fnd these 
automorphisms to work with). Some groups also have outer automorphisms, which are what we call any 
automorphisms that are not inner. For example, on the integers, the only inner automorphism is the identity 
function, since they are abelian.19 

4.4 Cosets 

Throughout this section, we use the notation K := ker(f). 

Guiding Question 
When do two elements of G get mapped to the same element of G ′? When does f(a) = f(b) ∈ G ′? 

Given a subgroup of G, we can fnd "copies" of the subgroup inside G. 

17In particular, this automorphism f corresponds to refection of the number line across 0. 
18For example, just the transpose or just the inverse are automorphisms, and in fact they are commuting automorphisms, since 

the transpose and inverse can be taken in either order. 
−1 −119For an abelian group, axa = aa x = x. 
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Defnition 4.10 
Given H ⊆ G a subgroup, a left coset of H is a subset of the form 

aH := {ax : x ∈ H} 

for some a ∈ G. 

Let’s start with a couple of examples. 

Example 4.11 (Cosets in S3) 
Let’s use our favorite non-abelian group, G = S3 = ⟨(123), (12)⟩ = ⟨x, y⟩, and let our subgroup H be {e, y}. 
Then 

eH = H = {e, y} = yH; 

xH = {x, xy} = xyH; 

and 
2 2 x 2H = {x , x y} = x 2yH. 

We have three diferent cosets, since we can get each coset one of two ways. 

Example 4.12 
If we let G = Z and H = 2Z, we get 

0 + H = 2Z = evens = 2 + H = · · · , 

and 
1 + H = 1 + 2Z = odd integers = 3 + H = · · · . 

In this example, the odd integers are like a "copy" of the even integers, shifted over by 1. From these examples, 
we notice a couple of properties about cosets of a given subgroup. 

Proposition 4.13 
All cosets of H have the same order as H. 

Proof. We can prove this by taking the function fa : H → aH which maps h 7→ ah. This is a bijection because 
20it is invertible; the inverse is fa−1 . 

Proposition 4.14 
aCosets of H form a partition of the group G. 

aA partition of a set S is a subdivision of S into disjoint subsets. 

To prove this, we use the following lemma. 

Lemma 4.15 
Given a coset C ⊂ G of H, take b ∈ C. Then, C = bH. 

Proof. If C is a coset, then C = aH for some a ∈ G. If b ∈ C, then b = ah for some h ∈ H, and a = bh−1 . Then 

bH = {bh ′ : h ′ ∈ H} = {ahh ′ |h ′ ∈ H} ⊆ aH. 

Using a = bh−1 , we can similarly show that aH ⊆ bH, and so aH = bH.21 

−120I can undo any fa in a unique way by multiplying again on the left by a . This is something that breaks down with monoids 
or semigroups or other more complicated structures. 

21So for a given coset C, we can use any of the elements in it as the representative a such that C = aH. 
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Proof. Now, we prove our proposition. 

• Every x ∈ G is in some coset. Take C = xH. Then x ∈ C. 

′• Cosets are disjoint. If not, let C, C be distinct cosets, and take y in their intersection. Then yH = C and 
′ ′ yH = C by Lemma 4.15, and so C = C . 

With this conception of cosets, we have the answer to our question: 

Answer. If f(a) = f(b), then f(a)−1f(b) = eG ′ . In particular, f(a−1b) = eG ′ , so a−1b ∈ K, the kernel of f. 
Then, we have that b ∈ aK, or b = ak where f(k) = eG′ . So f(a) = f(b) if a is in the same left coset of the 
kernel as b. 

4.5 Lagrange’s Theorem 

In fact, thinking about cosets gives us quite a restrictive result on subgroups, known as Lagrange’s Theorem. 

Guiding Question 
What information do we automatically have about subgroups of a given group? 

Defnition 4.16 
The index of H ⊆ G is [G : H], the number of left cosets. 

Theorem 4.17 
We have 

|G| = [G : H]|H|. 

Proof. This is true because each of the cosets have the same number of elements and partition G. 

So we have X X 
|G| = |C| = |H| = [G : H]|H|. 

left cosets C left cosets C 

That is, the order of G is the number of left cosets multiplied by the number of elements in each one (which is 
just |H|). 

Example 4.18 
For S3, we have 6 = 3 · 2. 

From our theorem, we get Lagrange’s Theorem: 

Corollary 4.19 (Lagrange’s Theorem.) 
For H a subgroup of G, |H| is a divisor of |G|. 

We have an important corollary about the structure of cyclic groups. 

Corollary 4.20 
If |G| is a prime p, then G is a cyclic group. 

Proof. Pick x ̸= e ∈ G. Then ⟨x⟩ ⊆ G. Since the order of x cannot be 1, since it is not the identity, the order of 
x has to be p, since p is prime. Therefore, ⟨x⟩ = G, and so G is cyclic, generated by x. 

In general, for x ∈ G, the order of x is the size of ⟨x⟩, which divides G. So the order of any element divides the 
size of the group. 
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5 The Correspondence Theorem 

5.1 Review 

In the last lecture, we learned about cosets and some of their properties. 

Defnition 5.1 
For a group G and a subgroup H ≤ G, we defne the left coset of a to be 

aH := {ah : h ∈ H} ⊆ G. 

The left cosets partition22 G into equally sized sets. This provides a useful corollary about the structure of 
cosets within a group: 

Corollary 5.2 (Counting Formula.) 
Let [G : H] be the number of left cosets of H, which is called the index of H in G. Then |G| = |H|[G : H]. 

5.2 Lagrange’s Theorem 

Using cosets provides some additional information about groups. 

Guiding Question 
What are the possibilities for the structure of a group with order n? 

From the Counting Formula, we immediately obtain Lagrange’s Theorem as a corollary: 

Theorem 5.3 (Lagrange’s Theorem.) 
For H a subgroup of G, |H| is a divisor of |G|. 

Several important corollaries follow as a result. 

Corollary 5.4 
The order of x ∈ G is |⟨x⟩|. Since the order of any subgroup divides the order of |G|, ord(x) also divides |G|. 

Corollary 5.5 
Any group |G| with prime order p is a cyclic group. 

Proof. Take an element e ̸= x ∈ G. Since the order of x ∈ G divides p, and p is prime, ord(x) = p. Then each 
ix is distinct for 0 ≤ i ≤ p − 1, and since there are only p elements in G, the entire group G is ⟨x⟩, the cyclic 

group generated by x. 

Our result shows that any group of prime order is a cyclic group. In particular, the integers modulo p, Zp, form 
a cyclic group of prime order; that is, any group of prime order p is isomorphic to Zp. 

5.3 Results of the Counting Formula 

Using Lagrange’s Theorem narrows down the possibilities for subgroups. 
22A partition of a set S is a subdivision of the entire set into disjoint subsets. 
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Example 5.6 (Groups of order 4.) 
What are the possibilities (up to isomorphism) for G if |G| = 4? 

First, e must be an element of G. Next, consider the other three elements of G. Each of these must have 
either order 2 or order 4, since those are the divisors of |G| = 4. Then there are two possibilities. 

2 3• Case 1. There exists an element x ∈ G such that ord(x) = 4. Then we know that e ̸= x ̸= x ≠ x , 
and since |G| = 4, these are all the elements of G. (The power x4 is e again.) So G is generated by x, 

aand it is the cyclic group ⟨x⟩ of size 4, and must be isomorphic to Z4 . 

• Case 2. All elements of G have order 2. Then, we can take x ∈ G and y ≠ x ∈ G. They have order 2, 
2 −1so x = e, which implies that x = x−1 and similarly y = y . Also, the element xy also has order 2, 

−1 −1and so xyx y = (xy)(xy) = e, and so x and y commute. Because x and y were chosen arbitrarily, 
any two elements of the group commute, and so it is abelian. 

This group G is isomorphic to the matrix group � � 
±1 0 ≤ GL2(R). 0 ±1 

The non-identity elements each have order 2 and commute with each other. This group is called the 
Klein-four group, and is denoted K4. 

Up to isomorphism, any order 4 group is either Z2 or K4. Note that both of these groups are abelianb; the 
smallest non-abelian group has order 6. 

aWe write Zn to denote the group of integers modulo n. 
bcommutative 

Exercise 5.7 
What are the possible groups of order 6? 

The Counting Formula also provides another important corollary. 

Corollary 5.8 
The size of the group is 

|G| = |ker(f)| · |im(f)|. a 

aIn linear algebra, the analogous result is the rank-nullity theorem. 

Proof. Let f : G → G ′ be a homomorphism, and ker(f) ≤ G be the kernel. For each y ∈ G ′ , the preimage of y 
is 

f−1(y) := {x ∈ G : f(x) = y}, 

which is ∅ if y ∈/ im(f), and a coset of ker(f) otherwise.23 

Then, the number of left cosets of ker(f) is precisely the number of elements in the image of f, since each of 
those elements corresponds to a coset of the kernel. So [G : ker(f)] = |im(f)|, and applying the counting formula 
with ker(f) as our subgroup H gives us 

|G| = |ker(f)| · |im(f)|, 

which is the desired result. 

5.4 Normal Subgroups 

In this section, we learn about normal subgroups. 
′ ′−1)f(x ′ ), 23Pick x ∈ f −1(y). Then we claim that f −1(y) = x ker(f ). Take any x ∈ f −1(y). We have y = f (x) = f (x ′ ) = f (xx 

′ so f (xx′−1) = e and xx′−1 ∈ ker(f ). Thus x ∈ x ker(f ). 
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Guiding Question 
The choice of left cosets seems arbitrary — what are the ramifcations if right cosets are used instead? 

Defnition 5.9 
The right coset of a is 

Ha = {ha : h ∈ H}. 

In fact, all the same results follow if right cosets are used instead of left cosets. First, let’s see an example of 
right cosets: 

Example 5.10 
Let H be the subgroup generated by y ∈ S3. Then the left cosets are 

2 2{e, y}, {x, xy}, {x , x y}, 

and the right cosets are 
2 2{e, y}, {x, x y}, {x , xy}. 

So in fact, right cosets give a diferent partition of S3, but the number and size of the cosets are the same.a 

aWe can think of cosets as "carving up" the group. Using right cosets instead of left cosets is just carving it up in a diferent 
way. 

In particular, there is a bijection between the set of left cosets and the set of right cosets. It maps 

−1C 7→ C−1 = {x : x ∈ C}. 

h−1 −1It is a bijection because (ah)−1 = a , and so aH = Ha−1 . So the index [G : H] is equal to both the 
number of right cosets and the number of left cosets. 

Guiding Question 
For which subsets H ⊆ G do left and right cosets give the same partition of G? In other words, for which 
H is every left coset also a right coset?a 

aIf some left coset xH of an element x is equal to some right coset Hy of a diferent element y, since x ∈ Hy as well, from 
a lemma from last week’s lecture, Hy = Hx, and so in fact the left coset and right coset of the same element x must also be 
equal. So it is sufcient to require that xH = Hx. 

This question motivates the defnition of normal subgroups. 

Defnition 5.11 
If xH = Hx for each x ∈ G, H ⊆ G is called a normal subgroup. Equivalently, the subgroup H is normal 
if and only if it is invariant under conjugation by x; that is, xHx−1 = H. Using the notation from last 
lecturea , a subgroup H is normal if and only if φx(H) = H for all x ∈ G. 

−1aThe function φx takes g 7→ xgx . 

Let’s look at some examples. 

Example 5.12 (Non-normal subgroup) 
From above, the subgroup ⟨y⟩ is not normal in S3. 
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Example 5.13 (Kernel) 
Given a homomorphism f : G → G ′ , the kernel of f is always normal. Take k ∈ ker(f). Then 

f(xkx−1) = f(x)f(k)f(x)−1 = f(k) = eG ′ , 

so φx(ker(f)) = ker(f), and thus ker(f) is a normal subgroup. In fact, in future lectures, we will see that 
all normal subgroups of a given group G arise as the kernel of some homomorphism f : G → G ′ to a group 
G ′ . 

Example 5.14 
In S3, the subgroup ⟨y⟩ is not normal, but ⟨x⟩ is normal. In particular, it is the kernel of the sign 

ahomomorphism sign : S3 → R. 
aA given permutation σ can be written as a product of i transpositions, where i is unique up to parity. The sign 

homomorphism maps σ to (−1)i . 

5.5 The Correspondence Theorem 

Ealier in this lecture, we noticed that homomorphisms give us some information about subgroups. Can we make 
this more concrete? 

Guiding Question 
Let f be a homomorphism from G to G ′ . Is there a relationship between the subgroups of G and the 
subgroups of G ′? 

{subgroups of G} ↔ {subgroups of G ′ } 

Answer. In fact, we see that there is! 

• Given a subgroup of G, a subgroup of G ′ can be produced as follows. Let f with the domain restricted to 
H be denoted as f |H . Then a subgroup H ≤ G maps to im(f |H ) = f(H) ⊆ G ′ , which is a subgroup of G ′ . 

′• Now, given H ≤ G ′ and a subgroup of G can be produced by taking the preimage 

f−1(H ′ ) = {x ∈ G : f(x) ∈ H ′ }. 

Is this subset of G is actually a subgroup? It is! Let’s just check that it’s closed under composition. If 
′ ′ ′ x, y ∈ f−1(H), then f(x), f(y) ∈ H , so f(x)f(y) ∈ H , since H is closed under multiplication. Then 

′ f(xy) ∈ H , so xy ∈ f−1(H). 

′ ′If H = eG′ , then its preimage is the kernel, and if H = G ′ , then the preimage is all of G. In general, the 
preimage is a subgroup somewhere in-between the kernel and the whole domain. 

Are these maps bijective, or inverses of each other? It can be easily seen that they are not; in particular, if 
G is the trivial group and G ′ is some more complicated group with many subgroups, every subgroup of G ′ 

must always still map to the trivial group. It makes sense that these maps are not bijective, since f is not an 
isomorphism, just an arbitrary homomorphism with no more restrictions. 

Two issues arise with these maps that make them non-bijective: 

• Any subgroup of G must map to some subgroup of G ′ that is contained within the image of f, by 
construction, since f(H) ⊆ im(f). 

• The kernel ker(f) = f−1(eG′ ) ⊆ f−1(H ′ ), so any subgroup not contained within the kernel cannot be 
mapped to by any subgroup of G ′ . 

However, these are actually the only issues! If we are willing to put some restrictions on the homomorphism f 
and the types of subgroups we look at, there is actually a bijection between certain subgroups of G and certain 
subgroups of G ′ . 
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In order to make things a little easier for now, we take a surjective homomorphism f : G → G ′ . The frst 
issue then is no longer consequential, because the image is all of G ′ . Now, let’s restrict the subgroups of G to 
subgroups that contain ker(f). Then our maps (as described above) provide a bijection. 

Theorem 5.15 (Correspondence Theorem) 
For a surjective homomorphism f with kernel K, there is a bijective correspondence: 

{subgroups of G containing K} ↔ {subgroups of G ′ }, 

where 

a subset of G, H ⊇ K ⇝ its image f(H) ≤ G ′ 

′ H ≤ G ′ ⇝ its preimage f−1(H ′ ) ≤ G. 

Example 5.16 (Roots of Unity) 
Take 

f 
G = C∗ −→ G ′ = C∗ 

z 7→ z 2 , 

which is a homomorphism because G is abelian. 

The kernel is ker(f) = {±1}. We have a correspondence between R× ⇝ R>0. 

For example, the eighth roots of unity correspond to the fourth roots of unity under this map. 

′ 8H = {e 
2πik } ↭ H = {±1, ±i}. 
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6 Normal Subgroups and Quotient Groups 

6.1 Review 

In the last lecture, we learned about the correspondence theorem. 

Theorem 6.1 (Correspondence Theorem) 
Where f : G → G ′ is a surjectivea homomorphism, and K = ker(f), there is a correspondence 

′ ′ {subgroups H : K ⊆ H ⊆ G} ↭ {subgroups H : {eG ′ } ⊆ H ⊆ G ′ }}, 

′which states that subgroups of G containing the kernel are in bijection with subgroups of H in the image 
of f. 

aIn fact, it is possible to slightly revise the statement of the theorem such that the surjective condition is no longer necessary. 

The correspondence comes from taking 

H 7→ f(H) ⊆ G ′ 

′ {x ∈ G : f(x) ∈ H ′ } = f−1(H ′ ) ←[ H 

From the point of view of understanding subgroups, the correspondence theorem allows us to understand a 
slice of G. If G is a complicated group with many surjective maps onto diferent groups G ′ , we can use the 
correspondence theorem multiple times to understand G, and conversely, if G ′ is a complicated group, we can 
use G to study G ′ . 

Proof. In order to show that this correspondence is a bijection, we check that these are inverses to each other. 

• If K ⊆ H ⊆ G, then we want to show that f−1(f(H)) = H. By defnition, 

f−1(f(H)) = {x ∈ G : f(x) = f(h), h ∈ H}. 

By defnition, H ⊆ f−1(f(H)). Also, if x ∈ f−1(f(H)), then f(x) = f(h) for some h ∈ H. This is true if 
and only if x is in the coset hK; in other words, x = h · k for some k ∈ K. Since K ⊆ H,24 k ∈ H, and so 
x = hk ∈ H. 

• The proof of the other direction is left as an exercise to the reader (it is very much the same idea). 

6.2 Normal Subgroups 

Recall the defnition of a normal subgroup. 

Defnition 6.2 
A subgroup H ⊆ G is normal if xHx−1 = H for all x ∈ G. 

The notation H ≤ G denotes that H is a subgroup, not just a subset, of G. Now, the notation H ⊴ G will 
denote that H is a normal subgroup of G.25 

Example 6.3 (Kernel) 
The kernel ker(f) is always normal. 

Guiding Question 
Given any normal subgroup N ⊴ G, is there always a group homomorphism f : G → G ′ such that 
N = ker(f)? 

Answer: Yes! 

24The theorem is not true if the kernel is not contained in H, so this fact must be used at some point. 
25This notation will not necessarily be used consistently throughout this lecture/class, but it is used in the literature. 
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Let’s look at a quick example frst. 

Example 6.4 (Integers modulo 2) 
If G = Z and H = 2Z, the homomorphism is 

f 
G −→ G ′ = Z2 

n 7→ n mod 2. 

The kernel of f consists of the elements mapping to 0 mod 2; that is, even integers, which is precisely 2Z. 

In the case when N = ker(f), the cosets26 of N are in correspondence with im(f), by the correspondence 
theorem. Since they are in bijective correspondence, the group structure on im(f) can be carried over to the 
set of cosets of N. 

6.3 Quotient Groups 

Now that we’ve defned cosets, we have the following question: 

Guiding Question 
Can we directly defne a group structure on the sets of cosets of N? 

If C1, C2 ⊆ G are cosets, what should C1 · C2 be? The most intuitive defnition would be to take the set of 
products of each of the elements: 

Defnition 6.5 
Let the product structure on the cosets be defned as 

C1 · C2 := {x ∈ G : x = y1 · y2; y1 ∈ C1, y2 ∈ C2}, 

the pairwise product. 

Theorem 6.6 
If C1, C2 are cosets of a normal subgroup N , C1 · C2 is also a coset of N. 

It is crucial that N is normal! 

Example 6.7 
Consider H = {e, y} ⊆ G = S3. Then H is not a normal subgroup. Consider xH = {x, xy}. We have 

2 2xH · xH = {x , x y, xyx = y, xyxy = e}, 

which is not a coset! 

Proof. Let C1 = aN and C2 = bN. 

• The inclusion abN ⊆ C1 · C2 holds because abn = (ae)(bn) ∈ C1 · C2, since ae ∈ C1 and bn ∈ C2. 

26The left and right cosets are the same when N is normal. 
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• Take an1 · bn2 ∈ C1 · C2. Since N is normal, bN = Nb, so n1 · b = b · n3 for some n3 ∈ N. So 

an1 · bn2 = abn3n2 ∈ abN. 

Then C1 · C2 = abN. 

So it is only when N is normal that we do in fact have a product structure on the set of cosets of N ! 

Defnition 6.8 
The quotient group G/N is the set of cosets of a normal subgroup N. The group structure is defned asa 

[C1] · [C2] := [C1 · C2] 

[aN ] · [bN ] := [abN ]. 

The right hand side is a coset because N is a normal subgroup.b 

aThe notation [x] refers to the equivalence class of x under an equivalence relation; in this case, the equivalence relation is 
defned by the partition of G into cosets. 

bThe product can be verifed to be independent of the representatives a and b from the fact that N is normal. 

Theorem 6.9 
The following two statements are true about the quotient group: 

1. The composition law, as defned in Defnition 6.8 does defne a group structure on G/N (all the group 
axioms hold). 

2. There exists a surjective homomorphism 

π : G → G/N 

x 7→ [xN ] 

such that ker(π) = N. 

This is one of the most basic operations we can do on groups! 

Proof. First of all, let’s show that G/N is actually a group. 

• Identity. The identity is [N ] = [eN ]. The product is 

[aN ] · [N ] = [aeN ] = [aN ]. 

• Inverse. We can check that 
[aN ]−1 = [a −1N ]. 

In general, the inverse of a left coset will be a right coset, but because N is normal, they are the same. 

• Associativity. Similarly, associativity of G/N boils down to associativity for G.27 

Now, we can show the second part of the theorem. Take π(x) = [xN ]. It is evidently a surjective map. Then 

π(xy) = [xyN ] = [xN ] · [yN ] = π(x) · π(y). 

Then the kernel is 
ker(π) = {x ∈ G : x ∈ N} = N. 

27The proof is left as an exercise for the reader. 
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Most of the proof of Theorem 6.9 seems very tautological. In fact, most of the action happened earlier on, in 
Thereom 6.5, which showed that the product of two cosets actually was another coset, demonstrating that the 
group structure does makes sense. 

Here is an example of how this theorem is often used. 

Example 6.10 (Quotient Group of SL2(R)) 
Take N = {±I2} ⊴ G = SL2(R). Then, taking the quotient group SL2(R)/{±I2} gives a new group 
P SL2(R). Thus, from an explicitly defned group, in this case SL2(R), we obtain a new, potentially 
interesting or useful group by taking a quotient. 

Another perspective on G/N is that it is similar to modular arithmetic. We have that a ≡ b mod N if 
aN = bN ⊆ G. 28 

6.4 First Isomorphism Theorem 
fSuppose we start of with G −→ G ′ a surjective homomorphism, and assume K = ker(f) is a normal subgroup. 

Given that it is a normal subgroup, we can feed it into this machine that we have created. Then 

π : G → G/K 

is a surjective group homomorphism. So we have started with a surjective group homomorphism and created 
another surjective group homomorphism. But in fact, we have done nothing at all! There exists an isomorphism 

∼¯ → G ′ f : G/K − . 

The diagram 

f 
G ′ G 

π 
f 

G/K 

commutes. 
¯So f = f ◦ π. So up to isomorphism, our original group homomorphism is the same as our new one. This is not 

surprising, because there is a correspondence between cosets of the kernel and points in the image. All we are 
¯saying is that that bijection is compatible with the group structures on both sides. So f([xk]) = f(x). This is 

known as the First Isomorphism Theorem. 

28We placed an equivalence relation on the group, and placed a group structure on the equivalence classes. 
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7 Fields and Vector Spaces 

7.1 Review 

Last time, we learned that we can quotient out a normal subgroup of N to make a new group, G/N. 

7.2 Fields 

Now, we will do a hard pivot to learning linear algebra, and then later we will begin to merge it with group 
theory in diferent ways. In order to defne a vector space, the underlying feld must be specifed. 

Defnition 7.1 
A feld F is a set with the operations (+, ×). It must satisfy that 

• (F, +) is an abelian group with the usual rules, and 

• (F × := F \ {0}, ×) is an abelian group. 

Also, addition and multiplication must distribute over each other.a 

aThere is some compatibility required. 

In essence, a feld is a set with additive and multiplicative group structures that interact in nice ways. 

Example 7.2 
The sets C, R, and Q are felds, but not Z, since it is not invertible under multiplication. 

Since division does not exist in Z, it is not a feld. In fact, Q is essentially obtained from Z by making it into a 
feld by adding division. 

Example 7.2 gives us examples of felds with infnitely many elements, but felds can also be constructed that 
have fnite order. Indeed, there is one for every prime number p. 

Example 7.3 (Fields of prime order) 
For a prime p, 

(Fp = Zp, +, ×) 

is a feld. If a ≠ 0 mod p, then gcd(a, p) = 1 implies that ar + ps = 1, and so ar ≡ 1 mod p, and thus a is 
invertible with multiplicative inverse r−1 . 

However, Z6 is not a feld; for example, 2 mod 6 has no inverse. In general, Zn where n is not a prime is not a 
feld, because there will exist some element that is not relatively prime to n, and it will not be invertible. 

7.3 Vector Spaces 

A vector space, which may be a familiar concept from learning about matrices, can be defned over any feld. 

Defnition 7.4 
A vector space V over a feld F is a set V with some operation + such that (V, +) is an abelian group. 

• We must be able to scale vectors: 

F ×V → V 

(a, ⃗v) 7→ av⃗. 

• Addition and multiplication play nicely and satisfy the usual rules 

(· · · , a(bv⃗) = (ab) · ⃗v, · · · ). 
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Example 7.5 
For a feld F, F n , column vectors with n components (a1, · · · , an)t , form a vector space of dimension n. 

Example 7.6 
If A is an m×n matrix, then 

{v⃗ ∈ F n : Av⃗ = (0, · · · , 0)} 

is a vector space. 

Example 7.7 
For a homogeneous linear ODE, the solutions form a vector space. 

7.4 Bases and Dimension 

A basis of a vector space is a set of vectors providing a way of describing it without having to list every vector 
in the vector space. 

Defnition 7.8 
Given v⃗1, ⃗v2, · · · , v⃗n ∈ V, a linear combination is X 

v⃗ = aiv⃗i 

for ai ∈ F. 

Defnition 7.9 
For S = {v⃗1, ⃗v2, · · · , ⃗vn}, the span X 

Span(S) = {v⃗ ∈ V : v⃗ = aiv⃗i} 

This is similar to generating subgroups using elements of a group G, except using the operations of vector 
spaces. 

Artin likes to use the (nonstandard) notation   � 
v⃗1 · · · 

a1�  . v⃗n  .  := . 
X 

aiv⃗i 

an 

for a linear combination. 

Defnition 7.10 
A set of vectors S spans V if Span(S) = V. a 

aThere is at least one way of writing v⃗ as a linear combination. 

Defnition 7.11 
A set of vectors {v⃗i} is linearly independent if X 

aiv⃗i = ⃗0 

if and only if ai = 0 for all i.a 

aThere is at most one way of writing v⃗ as a linear combination. 

A basis is both linearly independent and spans. 
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Defnition 7.12 
A set of vectors S = { # v 1, · · · , ⃗vn} is a basis if S spans V and is linearly independent. Equivalently, each 
v⃗ ∈ V can be written uniquely as v⃗ = a1v⃗1 + · · · + anv⃗n, where the ai are called the coordinates of v⃗ in 
the basis S. 

» 

The standard basis for R2 is �� � � �� 
1 0 

, . 
0 1 

In general, when we write a vector (a, b)t , it represents the linear combination a(1, 0)t + b(0, 1)t . 

Example 7.13 
Let V = R2 . Then the set �� � � � � �� 

S = 
1 
1 

, 
3 
2 

, 
2 
1 

spans R2 , but is linearly dependent: v 1 − #v 2 +
»#» v 3 

#» = »» #But {0 . 
#

v 1, #» v 2} forms a basis. 

A good choice of basis often makes problems easier. 

#»#»» 

Defnition 7.14 
A vector space V is fnite-dimensional if V = Span({ # v 1, · · · , v n}) for some v i ∈ V.a 

aInfnite-dimensional vector spaces are super interesting, but not studied in this class. Real analysis can be used to study 
them! 

#»» 

Lemma 7.15 
If S = { # v 1, · · · , v r} spans V, and L = {w # 

1, · · · , ws} is linearly independent, then 

1. Removing elements of S gets a basis of V. 

#» 

2. Adding elements of S to L gets another basis of V. 

3. |S| ≥ |L|. 

» 

Corollary 7.16 
If S and L are both bases for V, then |S| = |L|. Any two bases of V contain the same number of vectors. 

Proof. Applying the lemma twice for S and L gives |S| ≥ |L| and |L| ≥ |S|. 

Defnition 7.17 
The dimension of a vector space v is the size of any basis of V. 

Proof of Lemma 7.15. We prove each point separately 

1. If S is not linearly independent, then there are some ai such that 
rX

#»#» 0 . 

#»#» 

ai v i = 
i=1 

Suppose WLOG that an ̸= 0. Then 

v 1 − · −1#» #» v r−1). 

Span(S) = V. This is because if we have a linear 

(−a1 · · − ar−1v r = a » v r−1) ∈ Span( # v 1, · · · ,r 

If we take S ′ #» v r−1}, we have Span(S ′ ) 
combination using the vectors of S, we can use the equation above to turn it into a combination of vectors 
in S ′ . We can repeatedly remove until we have a basis of V. 
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v i ̸∈ Span(L). 
Then L ′ is still linearly independent. We can just keep adding vectors to L so 

#»2. If S ⊂ Span(L), then Span(L) = V so we are done. Otherwise, suppose 
#» 

We can create 
= w1, . . . , ws, 

3. Each # 

»#{ 

» 

#»L ′ v i}. 
that it stays linearly independent but eventually spans V. P

#r 
, v r. Then w⃗j = i=1 aij v i.   
a11 a12 · · · a1s 

»#» Let A be the r×s matrixwj is a linear combination of # v 1, » · · · 

 . . . . A =  . . . .  ... . . 
ar1 ar2 · · · ars 

#» , v r)A. Suppose r < s. Then by row-reduction, there exists some nonzeroP 
» 

Then (w # 
1, » · · · , w⃗s) = ( # v 1, » · · · 

0 . Then#» » This is contradiction, since is0 La. 
## x such that A # x = »» #» = ( # v 1, »vector xiw⃗i · · · , v r)A # x = 

linearly independent, so r ≥ s. 

» 

» 

» 

A linear transformation is a map 
Defnition 7.18 

→T V W: 

## #» ) T (T ( ) + T ( )+ v =v v v21 1 2 

−1We say that is isomorphism if it is bijection is also isomorphism).T (Tan a an 

#» 

such that 
#» 

and 
T (a v ) = aT ( # v ). 

» 

#» 

{ # = v i 

v i ∈ V. 

For a vector space V over a feld F and a set of vectors S 
transformation: 

TS : F n → V X 

∈ V }, we can defne the following linear 

(a1, · · · , an) 7→ ai 

If S is linearly independent, then TS is injective; if Span(S) = V, then TS is surjective, and if TS is a basis, then 
TS is an isomorphism. 
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8 Dimension Formula 

8.1 Review 

Last time, we ended of with the defnition of linear transformations. 

8.2 Matrix of Linear Transformations 

Given a linear transformation T : V → W , we know 

v 1 + · #» » v nT ( # 

for V , the above property tell us that T is completely determined by the 

#T (a1 v n) = a1T ( # v 1) + · · »» ).· + an · + an · 

#»#»Then, given any basis 
values of T ( #» 

v 1, . . . , v n 

v 1), . . . , T ( # v n 
» ). 

» 

#» 

Example 8.1 
Last time, we discussed a linear transformation from column vectors to another vector space. In particular, 

» 

if we have a basis w # 
1, . . . , wm of W , then we can create the following linear transformation: 

n →B F W: 
#» e i 7→ w # 

iX 
(a1, · · · , an) 7→ ai wi, 

» 

where e i is the zero column vector with a 1 in the ith position. This is an isomorphism due to choosing 
wi to be a basis. The inverse map B−1(w # ) = (a1, · · · , an) sends a vector to the coordinates of w # for the 
given basis. 

#»» 

#» 

#» 

» 

#» 

»» 

Example 8.2 
There is a bijection between matrices A ∈ Matm×n(F ) and linear transformations T : F n → F m . For every 
matrix A, it can be mapped to the linear transformation T = A · x . For every transformation T , it can be 
mapped to � � 

A = T ( # e 1) T ( # e 2) · · · T ( # e n) . 

Both the set of matrices and the set of linear transformations are vector spaces, so this defnes an isomorphism 
between two vector spaces. We will switch between these notions frequently. 

∼As a special case, if we have an isomorphism T : F n −→ F m , then this forces m = n and the corresponding 
matrix A must be in GLn(F ). 

From Example 8.1, suppose we have two diferent bases of V and create their corresponding linear transformations 
B and B ′ »» . Let the corresponding bases be { # v 1, . . . , v n} and {w # 

1, . . . , wn 
#» #» } respectively. Then, P := B−1 ◦ B ′ 

Furthermore, B ′ = B ◦ P . These relations defnes a mapping from F n to F n , and we must have P ∈ GLn(F ). 
can be seen by following the arrows in the below diagram: 

F n B V 

P 
B ′ 

»»» 

» 

» 

F n 

We can fgure out the columns of P as well: 

P ( # e i) = B−1(B ′ ( # e i)) = B−1(w # 
i). 

We know B−1(w # 
i) is just the coordinates of 

columns of P −1 by taking the each # » 

» wi for the basis { # v 1, . . . , v n 

v i and writing it in terms of the basis of w # ’s. 

#» #» Similarly, we can fgure out the 

» 

}. 

= (B ′ )−1( # v ). #» » x = B−1( # v ) and x #»′ ∈ V , we can write the coordinates The coordinates are»Given a vector # v 
»»»»related by P # x = x and P −1 # x = x ′ # # ′ by using our expression for P . 
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For any fnite-dimensional vector space, by picking a basis, we can write every vector in terms of coordinates. 
Then, for every transformation T : V → W , we can write it as a matrix A using coordinates. Suppose we have 

→ W and the respective bases are { # v i} and {w # 
i}. »»the coordinate maps B : F n → V and C : F m 

TV W 

B C 

F n A F m 

Following the arrows, we have A := C−1 ◦ T ◦ B ∈ Matm×n(F ). To write down A, we can fnd the ith column 
of A by writing T ( # v i) in terms of the w # ’s.»» 

Example 8.3 
′′ (t) = f(t).Let’s see an example of computing A. Let V be the set of complex functions such that f Let 

′′ (t) = −f(t).W be the set of complex functions such that f We can defne the transformation 

T : V → W 

f(t) 7→ f(it). 

Note that T looks nothing like a matrix right now, but we can turn it into one by picking bases for V and 
tW . One choice of basis is V = Span(e , e−t) and W = Span(cos t, sin t). 

it −itThen, by writing T (et) = e = cos t + i sin t and T (e−t) = e = cos t + −i sin t, we have found the columns 
of A: � � 

1 1 
A = . 

i −i 

itIf we had chosen a diferent basis for W = Span(e , e−it), then our matrix A ′ would just be the identity 
matrix. 

Guiding Question 
We have seen that the same linear transformation leads to diferent A, so can we pick bases so that A “looks 
very nice"? For example, in the previous example, we were able to make A the identity matrix by picking 
a diferent basis. 

We will answer this question at the end of the next section. 

8.3 Dimension Formula 

Note that linear transformations are very similar to group homomorphisms. They are both mappings that 
preserve the structure that we care about. We can defne and prove similar results as the ones we showed for 
group homomorphisms. 

#» 

#» 

» 

»

» 

»

» 

Defnition 8.4 
Given a linear transformation T : V → W , we can defne the kernel and image. 

ker(T ) := { # v | T ( # v ) = 0 } 
im(T ) := {w # | T ( # v )w # for some v ∈ V } 

By similar logic to group homomorphisms, these are vector subspaces of V and W respectively. We also 
defne the nullity and the rank as the dimension of the kernel and image respectively. 

Theorem 8.5 (Dimension formula) 
Given T : V → W , 

dim(ker T ) + dim(im T ) = dim(V ). 

This is somewhat reminiscent of the theorem on groups |G| = |ker(G)||im(G)|. 
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#»Proof. Pick # v 1, . . . , v k as a basis for ker(T ). From a theorem from last class, we can add vectors # v k+1, . . . , v n 

to get a basis for V where n = dim V and k = dim(ker(T )). 

» 

T ( # v i). 

#» 

» 

» 

#» #» #»Let 0 for 1 ≤ i ≤ k.:=wi By the defnition of kernel, wi = We will show that {w # 
k+1, . . . , wn 

» } is a 
basis for im(T ), so that 

rank(T ) = n − k = dim(V ) − dim(ker(T )). 

To prove that it is a basis, we need to show that they are linearly independent and they span im(T ). For the 
span, 

im(T ) = Span(T ( # 

= Span(T ( # 

»

» 

» 

))v 1), . . . , T ( # v n 
» 

))v k+1), . . . , T ( # v n 
» 

#» ).= Span(w # 
k+1, . . . , wn 

For linear independence, we consider the solutions to: 

wk+1 + · 

v k+1 + ·#» 

#» #»»wn 
# 0 .· · + anak+1 = 

This implies that 
#» 

) = 0#»T (ak+1 · · + an v n 

and thus 

#» 

#» 

v k+1 + ·#» 

is a basis for the kernel, there must exist coefcients a1, . . . , ak such that 

v 1 + · 

v ’s form a basis for V . 

#» ∈ ker(T ).· · + anak+1 v n 

#»Since # v 1, . . . , v k 
» 

» + ·v k+1 
# #» #» · + an · + ak · ·ak+1 v n = a1 v k. 

#»However, this forces ai = 0 for all i since the } are linearly»Therefore, {w # 
k+1, . . . , wn 

independent and thus a basis of im(T ). 

#» 

» 

» 

» 

The proof of the dimension formula shows a bit more. Using the same notation as in the proof, take a basis for V 

» 

are also permuted. We extend the basis for im(T ) to a basis for W with the vectors # 

by writing down the coordinates of T ( # v i) with respect to the w’s. 
k + 1 ≤ i ≤ n, T ( # v i) = When 1 ≤ i ≤ k, T ( # v i) = 0. 

»v 1, . . . ,#v ,n 
#» #» This is essentially the same basis, but permuted so that the coordinate vectors to be # v k+1, . . . , » v k. 

#»#»#» wk+1, . . . , wn, u 1, . . . , u r. 
Then we fnd the matrix for T When 

#» Our matrix for T is particularly simple (written in wi. 
block form): � � 

A = 
In−k 

0 
0 
0 

. 

Corollary 8.6 
For any linear transformation, we can write its matrix in the above form for some choice of basis for V and 
W . 

Corollary 8.7 
As a special case, if we already are given a matrix M ∈ Matm×n representing a linear transformation from 
F n → F m , then there exists change of basis matrices P ∈ GLn(F ), Q ∈ GLm(F ) such that Q−1MP is in 
the above form. Pictorially, this looks like: 

F n M F m 

QP 

F n A F m 
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9 Dimension Formula 

9.1 Review 

Last time, we discussed linear transformations between two vector spaces. By picking a basis cleverly, it is 
possible to write the matrix of the linear transformation in a very nice form. For example, given a linear 
transformation M : F n −→ F m , by changing the bases for F n and F m with the invertible matrices P and Q, 
the matrix A will have a very simple form. 

F n M F m 

QP 

F n A F m 

With appropriate bases, � � 

A = Q−1MP = 
Ik 0 

,
0 0 

where A is an m×n matrix with the identity in the top left corner. The frst k columns correspond to the 
image and the last n − k columns correspond to the kernel. As a corollary, it is possible to see the dimension 
formula 

dim im(A) + dim ker(A) = n. 

Corollary 9.1 
Given a matrix M ∈ Matm×n(F ), we have 

rank(M) = rank(MT ). 

Essentially, this corollary states that the dimension of the span of the columns is the same as the dimension of 
the span of the rows, which is surprising! The frst is a subspace of F m , while the second is a subspace of F n , 
but they still have the same dimension. 

Sketch of Proof. This theorem is clearly true for A, since the row-rank and the column-rank are both just k. 
However, since A and M difer by isomorphisms P and Q, the rank of A is the same as the rank of M. Similarly, 
the rank of AT is also equal to the rank of MT . Therefore, 

rank(M) = rank(MT ). 

We are not going to use this often in this course, but this is a fact emphasized in traditional linear algebra 
classes. 

9.2 Linear Operators 

Today, we will specialize the discussion on arbitrary linear transformations to linear operators, which go from 
a vector space to itself. 

Defnition 9.2 
A linear operator is a linear transformation 

T : V −→ V. 

Let’s see some examples. 

Example 9.3 
Let V = R2 . Then, T is the linear transformation that is rotation by angle θ counterclockwise. This goes 
from the vector space to itself. 
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Example 9.4 
Let V = {polynomials of degree ≤ 2}. Then the derivative T (f(t)) = f ′ (t) is a linear operator. 

The frst natural question to ask about linear operators is working out the matrix of the linear transformation 
upon picking a basis. The only diference between this discussion and the discussion on linear transformations 
is that here, the transformation is from a vector space to itself, so once a basis has been picked, both sides have 
a fxed basis. For general linear transformations from a vector space to a diferent vector space, two diferent 
bases can be picked. 

Guiding Question 
What is the matrix of a linear operator on a vector space with a chosen basis? 

Consider a basis 
B : F n −→ V. 

Then T becomes a square matrix A ∈ Matn×n(F ). 

For Example 9.3, picking the basis standard basis gives a rotation matrix: �� � � �� � � 
1 
0 

, 
0 
1 

⇝ A = 
cos θ 
sin θ 

− sin θ 
cos θ 

. 

This is determined by fguring out where the ith basis vector is mapped, which is the ith column. 

For Example 9.4, it is also possible to write down a matrix:   
0 1 0 

{1, t, t2} ⇝ A = 0 0 2 . 
0 0 0 

This should all be reminiscent of the previous section. 

Proposition 9.5 
When working with linear operators T : V −→ V , for V fnite-dimensionala , then 

T is injective ↔ T is surjective ↔ is an isomorphism. 
aIn this class, the implicit assumption will always be that we are working with fnite-dimensional vector spaces 

In fact, this fact is true for maps from a fnite set to itself. Finite-dimensional vector spaces can be infnite, but 
have the same property. 

Proof. Using the dimension formula, 

dim ker T + dim im T = dim V. 

If T is injective, then dim ker T = 0, which is true if and only if dim im T = dim V, which means that T is 
surjective. 

So fnite-dimensional vector spaces behave a lot like fnite sets. 

9.3 Change of Basis 

Now, the next natural question to ask is about changing bases. 

Guiding Question 
What happens to a matrix for T : V −→ V upon changing basis for V ? 
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Specifying a basis for V determines a diagram 

TV V 
.B B 

F n A F m 

A new basis comes from an invertible matrix P ∈ GLn(F ), where the new basis is B ′ = B · P, and determines 
an extended diagram 

TV V 

B B 

A .B ′ F n F n B ′ 

P P 

A ′ F n F n 

There is a new matrix A ′ that represents the same linear transformation T. The diference between this case 
and the general case is that the bases are the same on either side of the transformation, and there is no longer 
the freedom to choose diferent bases for the domain and the codomain. 

The new matrix, by following the arrows on the diagram, is 

A ′ = P −1AP. 

The matrix A ′ is related to A by conjugation by P. 

Defnition 9.6 
A matrix A ′ is similar to A if there exists some P ∈ GLn(F ) such that 

A ′ = P −1AP. 

Similar matrices arise from the same linear operator from a vector space to itself, but with diferent bases 
picked. Again, to emphasize, the diference between today’s case, T : V −→ V , and the case in the last section, 
T : V −→ W , is that in the frst case there is only one base change matrix P, instead of P and Q, since the 
matrix must operate the same on the left and right sides. 

As an result, given a vector space V and an operator T : V −→ V, it is possible to defne the determinant of T 
without having to specify a basis. The vector space V might be a vector space without a canonical basis, but it is 
still possible to defne the determinant. Picking any basis of V produces a square matrix A, and the determinant 
would then be det(T ) = det(A). In fact, from the base change formula, it is clear that the determinant does not 
depend on which basis is used! From a diferent basis, 

det(A ′ ) = det(P −1AP ) = det(P )−1 det(A) det(P ) = det(A), 

since the determinant is multiplicative. As a result, it is possible to defne the determinant of T independently 
of the choice of basis29 , and so det(T ) has a meaning outside of a particular basis. For example, on Rn , the 
determinant represents a "volume," which is independent of the particular choice of basis. Here, we are saying 
that even for felds like fnite felds, where "volume" may not make sense, the determinant still has some intrinsic 
meaning. 

9.4 Eigenvectors, Eigenvalues, and Diagonalizable Matrices 

Our discussion leads to the following question, which is the same as last class, but for linear operators. 

Guiding Question 
How nice can we make A by changing basis of V ? 

Last class, it was possible to make the matrix extremely nice, since we could pick a basis for the domain and 
for the codomain. Now, let’s see an example for when the domain is the same vector space as the codomain. 

29It doesn’t depend on which basis was chosen, so any basis works 
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Example 9.7 
Let V = R2 . Consider � � 

2 3 
A = . 

3 2 

We see that � � � � � � 
1 5 1 

A = = 5 
1 5 1 

and � � � � � � 
−1 1 −1 

A = = −1 . 
1 −1 1 

The operator is scaling the vector (1, 1) and fipping the vector (−1, 1), and the transformation on any other 
vector will be a combination of these two moves, scaling and fipping. In particular, taking � � 

1 −1 
P = ,

1 1 

which has the frst vector as the frst column and the second vector as the second column, gives � � 
5 0 

A ′ = P −1AP = . 
0 −1 

In the new basis, it is possible to make the matrix diagonal! Making the matrix diagonal makes it possible to see 
how it operates, which is stretching by 5 in one direction, and fipping in the other direction (both independently 
of the other direction). 

In general, we will really want to be able to make matrices diagonal, since it allows us to see what it is doing in 
the direction of each basis vector, independently of the other directions (as there are 0s in the matrix elsewhere). 
This gold standard type of vector will be called an eigenvector. 

Defnition 9.8 
A vector v ̸= 0 is an eigenvector if 

Tv = λv 

for some λ ∈ F, and λ is called an eigenvalue. 

When an operator is applied to a vector, the result is proportional to the vector. The operator maintains the 
direction of the vector, and just scales it. Obviously, scaling an eigenvector by some nonzero scalar also results 
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in another eigenvector. 

Example 9.9 � � � � 

For Example 9.7, the vector 1 
1 

is an eigenvector with eigenvalue 5, and 
−1 
1 

is an eigenvector with 

eigenvalue -1. 

This example is special because not only are there eigenvectors, there are enough to form a basis. 

Defnition 9.10 
A basis {v1, · · · , vn} of V where each vi is an eigenvector; that is, 

Tvi = λivi, 

then the basis is called an eigenbasis. 

In an eigenbasis, the matrix for T is   
λ1 · · · 0  . . . 

. . . 
. .  ,. 

0 · · · λn 

which is diagonal with λi in the (i, i)th entry. 

Diagonal matrices are extremely nice. In general, it is very hard to take matrices to high powers, but for 
diagonal matrices, each entry is simply raised to that power. 

Defnition 9.11 
If a linear operator has an eigenbasis T, it is called diagonalizable. 

An equivalent defnition holds for matrices. 

Defnition 9.12 
Given a matrix A, if there exists some invertible P such that 

P −1AP = D 

for some diagonal matrix D, then A is called diagonalizable. 

That is, A is diagonalizable if it is similar to a diagonal matrix. 

The key concept is that an eigenbasis provides the directions in which the operator T behaves nicely by simply 
scaling or fipping a vector in that direction. 

9.5 Finding Eigenvalues and Eigenvectors 

Unfortunately, not every matrix is diagonalizable, but the focus for the next few classes will be fnding eigen-
vectors, eigenvalues, and eigenbases, assuming that a matrix is diagonalizable. 

Guiding Question 
How do we fnd eigenvectors, eigenvalues, and eigenbases? 

• Step 1. Perhaps unintuitively, the frst step is to fnd possible eigenvalues! Given a matrix A ∈ Matn×n(F ) 
in some less good basis, we want to fnd eigenvectors that form a better basis that is an eigenbasis, so 
that A will be diagonal and have a nicer form. 

Suppose λ is an eigenvalue for A. Then there exists some nonzero v such that 

Av = λv, 
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by defnition. (There may be lots of v, and in fact scaling any v will produce another eigenvector, but for 
a given λ we just want to know if there is a v at all.) We know that 

λv = λInv, 

so this is equivalent to 
(λIn − A)v = 0 

for some v. That is, the kernel is nontrivial: 

ker(λIn − A) ̸= {⃗0}. 

This is equivalent to 
λIn − A is not invertible, 

which happens if and only if 
det(λIn − A) = 0. 

This is not bad at all! The determinant is a formula that we can just calculate. 

So in fact, we want to look for λ such that the equation 

det(λIn − A) = 0 . 

holds. It is customary in this context to replace t with λ, and so with t as the variable, we have 

p(t) := det(tIn − A), 

which is a polynomial of degree n in t called the characteristic polynomial. 

Example 9.13 
Given 

A = 

� 
2 
3 

� 
3 

,
2 

we have the characteristic polynomial � 
t − 2 −3 

� 

pA(t) = det = (t − 2)(t − 2) − (−3)(−3) = t2 − 4t − 5.−3 t − 2 

In general, where A = (aij ), we have   
t − a11 · · · ⋆ 

pA(t) = det  
. . . 

. . . 
. . . 

 n = t + · · · , 
⋆ · · · t − ann 

which is a degree n polynomial in t. 

If A ′ is similar to A, then they have the same characteristic polynomial, since the determinant is basis-
invariant. 

Proposition 9.14 
Given λ ∈ F, λ is an eigenvalue for A if and only if pA(λ) = 0; that is, if and only if λ is a root of 
pA(t). 

For example, for our earlier example, the eigenvalues would be −1 and 5, since t2 − 4t − 5 = (t + 1)(t − 5). 

As a caveat, if F is an arbitrary feld, there may not be any roots. For example, a rotation matrix over 
R does not have any real eigenvalues. However, if F = C, there will always be n roots (not necessarily 
distinct), and so there will always be eigenvalues. 

• Step 2. For each eigenvalue, fnd the associated eigenvectors. For each λ, we want to take a vector in 
ker(λIn − A), which by assumption is a nonzero subspace. Using Gaussian elimination or row operations, 
we can mechanically compute a basis for ker(λIn − A), although we will not spend a lot of time on this. 

43 



Lecture 9: Eigenvectors, Eigenvalues, and Diagonalizable Matrices 

Example 9.15 
For λ = 5, we have � � 

3 −3 
5 · I2 − A = ,−3 3 

and the kernel is �� �� 

ker = Span 
1 

. 
1 

We will say more about this next lecture! 
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10 Eigenbases and the Jordan Form 

Change of basis is a powerful tool, and often, we would like to work in as natural a basis as possible. 

Guiding Question 
Given a linear operator, how can we fnd a basis in which the matrix is as nice as possible? 

10.1 Review 

Last time, we learned about eigenvectors and eigenvalues of linear operators, or more concretely, matrices, on 
vector spaces. An eigenvector is a (nonzero) vector sent to itself, up to scaling, under the linear operator, and 
its associated eigenvalue is the scaling factor; that is, if Av⃗ = λv⃗ for some scalar λ, v⃗ is an eigenvector with 
associated eigenvalue λ.   

λ1 · · · 0 If there exists an eigenbasis30, then in that basis, the linear operator P −1AP 31 will simply become  0 
. . . 

 ,0 
0 · · · λn 

since each basis vector v⃗i is sent to λiv⃗i. So having an eigenbasis is equivalent to the matrix A being similar to 
a diagonal matrix. 

In order to concretely fnd the eigenvectors, it is easier to frst fnd the eigenvalues, which are the roots of 
the characteristic polynomial pA(t) = det (tIn − A). Each root λ of pA has at least one corresponding 
eigenvector. The eigenvectors for λ are precisely the nonzero vectors in ker(λIn − A). 

10.2 The Characteristic Polynomial 
Let’s start with an example. 

Example 10.1� � 

If A = 
a b , then pA(t) = t2 − (a + d)t + (ad − bc). 
c d 

In general, for an n×n matrix, 

pA(t) = tn − (a11 + · · · + ann)t
n−1 + (−1)n det(A). 

The coefcient of tn−1 is the sum of the entries on the diagonal, called the trace of A. 

Because the characteristic polynomial can be written as a determinant, it can be defned for general linear 
operators without specifying a basis, and so each of the coefcients are basis-independent. In particular, we get 
that 

Tr(P −1AP ) = Tr(A). 

Guiding Question 
What can go wrong when hunting for an eigenbasis? How can we fx this? 

Example 10.2 � � 
cos θ − sin θOver the real numbers R, take A = . The characteristic polynomial is pA(t) = t2−2 cos θ+1,
sin θ cos θ 

which has no real roots (unless θ = π.) Geometrically, that makes sense, because under a rotation by θ ̸= kπ, 
every vector will end up pointing an a diferent direction than it initially was, so there should be no real 
eigenvectors. 

Over a general feld F, it is certainly possible for the characteristic polynomial not to have any roots at all; in 
order to fx this issue, we work over a feld like C, 32 where every degree n polynomial always has n roots (with 

30A basis consisting of eigenvectors 
31This comes from the change of basis formula 
32Fields where every non-constant polynomial has roots are called algebraically closed. 
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multiplicity). So pA(t) = (t − λ1) · · · (t − λn), where the λi can repeat. For the rest of the lecture, we will only 
consider linear operators on vector spaces over C, which takes care of the frst obstacle of fnding eigenvalues. 

However, even over C, not every linear operator has an eigenbasis. 

Example 10.3� � 

Consider A =
0 1 . The characteristic polynomial is pA(t) = t2 , so if A were similar to some diagonal
0 0 

matrix, it would be similar to the zero matrix; this would mean that A would be the zero matrix, and thus 
A cannot be diagonalizable. 

In other words, pA(t) only has one root, 0, so any eigenvector would be in ker(0I2 − A) = Span(e⃗1). So 
there is only a one-dimensional space of eigenvectors, which is not enough to create an eigenbasis. 

In some sense, which we will make precise later on in this lecture, this is the most important counterexample 
for why linear operators can be nondiagonalizable. 

Proposition 10.4 
Given an n×n matrix A, eigenvectors v⃗1, · · · , ⃗vk, and distinct eigenvalues λ1, · · · , λk, the vectors v⃗i are all 
linearly independent. 

Proof. Let’s prove this by induction. 

Base Case. If k = 1, by the defnition of an eigenvector, v⃗k ̸= 0 so {v⃗i} is linearly independent. 

Inductive Hypothesis. Suppose the proposition is true for k − 1. 

Inductive Step. Now, suppose the proposition is not true for k. Then there exist coefcients ai such that X 
aiv⃗i = 0. 

Applying A to both sides, we get X 
aiλiv⃗i = 0, 

which is another linear relation between the k vectors. Subtracting k times the frst relation from the second 
one results in the linear relation 

i=Xk−1X 
ai(λi − λk) = ai(λi − λk) = 0. 

i=0 

Since in the last term λk − λk = 0, while λi − λk ≠ 0 for i ̸= k since the λi are distinct, we obtain a linear 
relation between v⃗1, · · · , ⃗vk−1, which is a contradiction of the inductive hypothesis. Thus, {vi}i=0,··· ,k is linearly 
independent. 

Corollary 10.5 
Consider a matrix A. If the characteristic polynomial is 

pA(t) = (t − λ1) · · · (t − λn) 

where each λi is distinct, A will have an eigenbasis and will thus be diagonalizable. 

Proof. Each eigenvalue must have at least one eigenvector. Taking v⃗1, · · · , ⃗vn to be eigenvectors for λ1, · · · , λn. 
Since there are n eigenvectors, which is the same as the dimension of the vector space, and by Proposition 10.4 
they are linearly independent, they form an eigenbasis and A is diagonalizable. 

If there are repeated roots, then there will not necessarily be enough eigenvectors to form a basis. Luckily for 
us, it is usually true that a matrix will be diagonalizable.33 

33More concretely, the space of n×n square matrices can be thought of as a metric space, and the non-diagonalizable matrices 
will be a set of measure zero. In particular, the diagonalizable matrices are dense in the space of all square matrices. Intuitively, 
given a non-diagonalizable matrix, perturbing the entries by a little bit will perturb the roots a little bit, making them non-distinct. 
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In general, pA(t) = (t − λ1)
e1 · · · (t − λk)

ek , where the λi are distinct. Let Vλi = ker(λiI − A). Any vector 
v ∈ Vλi is an eigenvector with eigenvalue λi. We know that for each i, dim Vλi ≥ 1. Using our proposition, given 
a basis for each subspace Vλi , if there are enough to get n total vectors, combining all the bases would give an 
eigenbasis for A, since they would all be linearly independent.34 

10.3 Jordan Form �� 

Keeping in mind the matrix A =
0 1 , we have the following question. 
0 0 

Guiding Question 
If a matrix is not diagonalizable, what is nicest form it can take on under a change of basis? 

Let’s see a class of matrices that always have the issue of repeated eigenvalues. 

Defnition 10.6 
Given a ≥ 1 and λ ∈ F, let the Jordan block be an a×a matrix   

λ 1 · · · 0 

Ja(λ) = 

 

0 

0 

λ 
. . . 

. . . 

. . . 

 

. . . 

1 
0 0 · · · λ 

awith λ on the diagonal and 1s above each λ. 
aThe notation here is a little diferent from the textbook. 

Example 10.7 
For λ = 1, 2, 3, we get ��� λ 

λ , 
0 

  
� λ 

1 
, 0 

λ 
0 

1 
λ 
0 

 0 
1 . 
λ 

For Ja(λ), the characteristic polynomial is (t − λ)a , and when a > 1, the only eigenvalue is e⃗1 so it will not be 
diagonalizable. Although this these Jordan blocks are very specifc matrices, in some sense they are exactly the 
sources of all the problems. 

Example 10.8 (J4(0))  
0 1 0 0 

The matrix J4(0) = 
 
0 
0 

0 
0 

1 
0 

0 . 
1 

Applying it to the basis vectors gives a "chain of vectors" 

0 0 0 0 

e⃗4 7→ e⃗3 7→ e⃗2 7→ e⃗1 7→ 0, 

where each basis vector is mapped to the next. 

This leads us to the main theorem. 
34Computationally, it is simple to fnd basis vectors, and in a more computational class we would go further in-depth on fnding 

these. 
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Theorem 10.9 (Jordan Decomposition Theorem) 
Given a linear operator T : V −→ V, where dim V = n, there exists a basis v⃗1, · · · , ⃗vn, there exist pairs 
(a1, λ1), · · · , (ar, λr) such that the matrix of T in this basis is a block diagonal matrix   

Ja1 (λ1) 

Ja2 (λ2) 
. . . 

, 


Jar (λr) 

where all other entries are 0. 

While it is not possible to diagonalize every linear operator, it is possible to write them as a block diagonal 
matrix with Jordan blocks on the diagonal. Additioanlly, these Jordan blocks are unique up to rearrangement. 
This block diagonal matrix is called the Jordan decomposition of the linear operator T. 

Student Question. Do the ai correspond to the exponents of the roots? 

Answer. Not quite, as we will see promptly. 

Let’s continue with some examples. 

  

  

Example 10.10 (n = 4) 
λ1 1 0 0 
0 λ1 1 0If we have a1 = 4, then the Jordan decomposition will look like . If a1 = 3 and a2 = 1, 

 
2, a2 1, and a3 1, we would have , and for a1, a2, a3, a4 1, we would just 

0 0 λ1 1   0 0 0 λ1  
λ1 1 0 λ1 1 
0then it will look like 
0 

 
λ1 

0 
1 
λ1 

 
. For a1 = 2 and a2 = 2, we have 

0 λ1 

λ2 

. 
1 

Where 

λ2   0 λ2 

λ1 1 
0 λ1

  

a1 = = = = 
λ2 

λ3 

λ1 
 λ 2 get , which is really just a diagonal matrix. 

λ3 

λ4 

Essentially, every matrix is similar to some Jordan decomposition matrix, where it is diagonalizable if and only 
if each ai = 1. 

The characteristic polynomial of T will be (t − λ1)
a1 · · · (t − λr)

ar . These exponents ai are not quite the same 
as the exponents ei from before, since the λi in the characteristic polynomial of T can repeat. However, for 
eigenvalues equal to λj , the sum of all the exponents will in fact be ej . 

From the characteristic polynomial of a matrix, it is not possible to precisely fgure out the Jordan decomposition, 
but it does provide some amount of information. Next class, we will continue seeing what information we get 
from the Jordan Decomposition Theorem. 
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11 The Jordan Decomposition 

11.1 Review 

Recall this theorem from last time. 

Theorem 11.1 
#» #»Considering a transformation T : V → V, there must exist a basis v 1, · · · , v n such that the matrix of T 

(in this basis) is 
Ja1 (λ1) 0 · · · 0 

. 

 .  

0 Ja2 (λ2) . 0 
A = ,. .. . . . Jai (λi) 0 

0 0 0 Jan (λn) 

where Jai (λi) are the Jordan blocks. 

  

A special case is when all the ai = 1. Then,  
λ1 · · · 0 
. ..A =  . . ... . 
0 · · · λr 

is a diagonal matrix.35 

11.2 The Jordan Decomposition, Continued 

The characteristic polynomial of the matrix A will be 

pA(t) = (t − λ1)
a1 · · · (t − λr)

ar , 

where it is possible to have repeated λi. As a result, it is not possible to determine the Jordan decomposition 
simply from the characteristic polynomial, since there are diferent ways to take a repeated root and split it up 
into Jordan blocks. (If all the roots of the characteristic polynomial are distinct, the Jordan form is uniquely 
determined.) 

However, the characteristic polynomial does provide some information. For a fxed eigenvalue λ, X 
ai = exponent of (t − λ) in pA(t). 

Jai (λ) 

Example 11.2 (n = 4) 
For example, when n = 4, consider a matrix where pA(t) = t4 . There are multiple possible Jordan forms; 
in particular, it can be split up as 4, 3 + 1, 2 + 2, 2 + 1 + 1, or 1 + 1 + 1 + 1 :   

0 
0 
0 

1 
0 
0 

0 
1 
0 

 
0 
0 

,
1 

  

0 
0 
0 

1 
0 
0 

0 
1 
0 

  , 

  

0 
0 

1 
0 

0 

  ,
1 

  

0 
0 

1 
0 

0 

  , 

  

0 
0 

  . 
0 

0 0 0 0 1 0 0 0 0 

#» 

For a given Jordan block, there is one eigenvector. Fixing λ again, this tells us that 

dim(ker(λI − A)) 

is equal to the number of blocks with λ along the diagonal. 

Up to reordering of the basis vectors, the Jordan decomposition is unique. 
35In the textbook, Artin puts the 1s below the diagonal in a Jordan block. Conventionally, the 1s are above the diagonal, but it 

e 1 moves the 1s from above the diagonal #» #» #»doesn’t make a diference, because reversing the order of the vectors to· · · · · ·e 1, e a e a, 
to below the diagonal. The diference is notational. 
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Example 11.3 
0 1 0 0 
0 0 1 0Take J4(0) = . Under J4(0), each basis vector maps to the next basis vector, and there is 
0 0 0 1 
0 0 0 0 

one chain of length 4: 
e⃗4 7→ e⃗3 7→ e⃗2 7→ e⃗1 7→ ⃗0. 

As a result, applying J4(0) multiple times will eventually send all vectors to zero; that is, in this case, 
J4(0)

4 = 0. 

�0 1 0 0 
0 0 0 0 J2(0) 0On the other hand, consider J2,2(0) = = . 
0 0 0 1 0 J2(0) 
0 0 0 0 

Applying the operator to the basis vectors yields two chains of length 2: 

� 

e⃗2 7→ e⃗1 7→ ⃗0 

  

e⃗4 7→ e⃗3 7→ ⃗0 

In this case as well, the operator will map every vector to zero upon repeated application. 

  

  

  

In general, for λ ̸= 0, (λI − T ) #» » e i is not necessarily zero (it is zero only if # e i is an eigenvector), but for some 

36 
large enough n, 

= 0. »(λI − T )n # e i 

In Example 11.3, there was a chain of length 4 for the frst matrix, while in the second matrix, we had two 
chains of length 2. 

Note 11.4 
The Jordan decomposition theorem is powerful because any square matrix has a Jordan decomposition. 
On the other hand, most matrices are diagonalizable, and any matrix will be ε away from a diagonalizable 
matrix, and the Jordan decomposition is unnecessary. Only in the zero percent of the timea when the 
characteristic polynomial has repeated roots is it necessary. 

aThis concept is feshed out in measure theory. 

11.3 Proof of Jordan Decomposition Theorem 

The proof of the Jordan decomposition theorem is quite involved and relatively tricky, so the important part for 
the rest of class is understanding the style of proof, rather than the exact details. This proof will break down 
the theorem inductively into smaller and smaller pieces. 

Let’s start with a couple of defnitions that will help us with the proof. 

Defnition 11.5 
Given a vector space V and a linear transformation T : V → V, a subspace W ⊆ V is called T -invariant if 
T (w⃗ ) ∈ W for all w⃗ ∈ W. 

For example, if the vector space V is the space of polynomials of degree at most 3, and the subspace W is the 
space of polynomials of degree at most 2, W will be T −invariant under the linear operator T that is taking the 
derivative. 

36A vector that is killed not necessarily immediately but eventually by λI − T is known as a generalized eigenvector; there is 
a question about them on the problem set. 
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Defnition 11.6 
′ ′Given a vector space V and two subspaces W, W ⊆ V, we say that V is the direct sum of W and W , 

′notated V = W ⊕ W , if every v⃗ ∈ V can be written uniquely as 

′ v⃗ = w⃗ + w⃗ , 

′ ′where w⃗ ∈ W and w⃗ ∈ W . 

For example, if V = R3 , every vector can be written as the sum of some vector in the z−direction and some 
vector lying in the xy−plane. 

Equivalently, there must exist a basis 
′ ′ {w⃗1, · · · , w⃗r, w⃗1, · · · , w⃗ }r 

′ ′ ′of V such that {w⃗1, · · · , w⃗r} is a basis of W and {w⃗1, · · · , w⃗ } is a basis of W . This is also sometimes called ar 
splitting of V, since V has been split up into two subspaces. 

Theorem 11.7 
′ ′ ′ aIf dim W + dim W = dim V, and W ∩ W = {⃗0}, then it must be the case that V = W ⊕ W . 

aThis can be proved using the characterization in terms of bases, and is related to a homework problem. 

Defnition 11.8 
′Given a splitting V = W ⊕ W and a linear operator T : V → V, we say that this splitting is T -invariant if 

′ W and W are T −invariant. 

′In a basis for W and W , the matrix for T must be block-diagonal; that is, of the form � � 
⋆ 0 
0 ⋆ 

′where each ⋆ is some matrix; this is because vectors in W or W will be mapped back to other vectors in W or 
′ W . 

Conversely, if T is block diagonal in some basis, it automatically provides a T -invariant splitting of V. The span 
of the collection of basis vectors in the frst block becomes a T -invariant subspace W and the second one becomes 
′ W . Essentially, these defnitions provide a characterization of linear transformations being block-diagonal, 

without having to pick a basis. 

Now, we can fnally start proving the Jordan Decomposition Theorem. Roughly, the proof follows an induction 
argument on the dimension of V , where a vector space is split up into two smaller dimensional T -invariant 
subspaces for the operator T , both of which will then have Jordan decompositions by the inductive hypothesis, 
which will provide the Jordan decomposition of the original vector space. Essentially, we want to break it down 
to the case of a singular eigenvalue, considering matrices that look like those in Example 11.3, relying on the 
fact that repeatedly applying these operators will eventually take any vector to zero. 

Defnition 11.9 
aA linear transformation T is nilpotent if there exists some m ≥ 0 such that T m = 0. 

aThe Jordan block Jm(0) is nilpotent with exponent m. 

Proof. This proof has several steps. 

• Step 0. Over complex vector spaces, there will always exist an eigenvalue, so let λ be some eigenvalue 
of T. Because λI is already diagonal, we can replace T with T − λI, so that 0 can be assumed to be one 
of the eigenvalues. Essentially, if the Jordan decomposition theorem is true for T − λI, by adding the 
diagonal matrix λI, the Jordan decomposition theorem will become true for T. 

• Step 1. 
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Rough Sketch.After this simplifcation, we will zero in37 on the 0 eigenvalue. We show that there exists 
a T −invariant splitting V = W ⊕ U such that 

T : W → W 
w 

is nilpotent and 
T : U → U 

u 

is invertible. For a nilpotent operator, the only possible eigenvalues are 038 , while for an invertible operator, 
there are only nonzero eigenvalues39 , so this splitting separates out the eigenvectors will eigenvalue λ = 0. 

By assumption, there exists a zero eigenvalue, and so dim W ≥ 1, and then dim U ⪇ n. Since dim U < n, 
by the inductive hypothesis, there is a Jordan decomposition for U. However, since dim W could be equal 
to n (dim U could be 0), the inductive hypothesis does not apply and so we must still show that there is 
a Jordan decomposition for nilpotent operators. 

Full Proof. Now, we still need to show that this splitting exists. Consider the vector space V ; TV = im T 
lies inside of V (it cannot possibly take V to a higher-dimensional space), and so we obtain the chain 

V ⊃ TV ⊃ T (TV ) ⊃ T (T (T (V )) ⊃ · · · . 

The dimension can only drop fnitely many times40 , since T i(V ) cannot have negative dimension, so there 
exists some stable dimension m between dim T and 0 such that 

= T m+1V = T m+2VT mV = · · · . 

Let 
U := T mV = im(T m) and W = ker(T m). 

First, T is nilpotent on W because W = ker(T m), so (T |W )
m = 0, which is the defnition of being nilpotent. 

Also, T |U is invertible because U = im(T |U ), so T |U is surjective from U to itself, which implies that it is 
invertible. Lastly, W ∩ U = {v ∈ U : T m = 0}, by defnition, which is precisely the zero vector, because 
T is invertible on U so it maps only the zero vector to the zero vector. Using the rank-nullity theorem, 
dim ker T m + dim im T m = dim V, so by Theorem 11.7, W ⊕ U is in fact a splitting. 

• Step 2. Now, we prove that if T is nilpotent, it has a Jordan decomposition. We have a vector space V, 
a linear operator T : V −→ V, and some m such that T m = 0. 

To do so, we will fnd by induction on the dimension a basis of V for which T acts in "chains" as in 
Example 11.3. Let W = im T ⊊ V. By induction, there exists such a basis {e⃗i} for W where T acts in 
chains. 

v⃗1 

e⃗3 v⃗2 

e⃗2 e⃗5 v⃗3 

e⃗1 e⃗4 e⃗6 u⃗1 u⃗2 u⃗3 

0 0 0 0 0 0 

37Ha ha 
38Consider a nilpotent operator A. Then there is some n such that An = 0. If v is an eigenvector for A with eigenvalue λ, 

Anv = λnv = 0, so λn = 0 and thus λ must also be zero. 
39Assume 0 is an eigenvalue of an invertible operator A, corresponding to an eigenvector v. Then Av = 0 for some nonzero v; 

then both the vector 0 and the vector v map to 0 and thus A is not one-to-one or invertible. 
40In fact, this argument relies on the fact that V is fnite-dimensional! 
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For each chain, we insert a preimage v⃗i of the top vector in each chain, where the v⃗i are not vectors in W 
but rather vectors that map to vectors in W. These exist since W is the image of T , and so every vector 
in W is the image of some other vector under T. Additionally, we add vectors in ker T , u⃗i, which all map 
to zero since they are in the kernel. This produces a bunch of chains for V , starting for a bunch of chains 
for W. 

We claim that B = {e⃗i}∪{v⃗j }∪{u⃗k} is a basis for V. It is linearly independent because applying T to any 
linear dependence would give a dependence between basis vectors of W (since T (v⃗i) = e⃗j and T (u⃗k) = 0.) 
Also, where c is the number of chains, the number of vectors in B is dim(W ) + dim(ker(T )) − c + c, which 
is precisely the dimension of V, and thus B is in fact a basis. 

For this particular example illustrated in the fgure, the Jordan blocks for W have size 3, 2, and 1, and 
for V these are extended to size 4, 3, and 2, along with three more blocks of size 1. 

The schematic of the argument is more important than the exact argument itself, but we still have to do the 
whole thing. :) 
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Lecture 12: Orthonormal Matrices 

12 Orthogonal Matrices 

In this lecture, we start formally studying the symmetry of shapes, combining group theory with linear algebra. 
The matrices considered will be over R, the feld of real numbers, rather than C. 

12.1 Dot Products and Orthogonal Matrices 

Recall the following defnitions. 

Defnition 12.1 PnTGiven column vectors x, y ∈ Rn , the dot product is defned as x · y = x y = The length of a√ i=1 xiyi. 
vector v is |v| = v · v. 

The dot product is defned algebraically, but also carries geometric information about two vectors: 

x · y = |x||y| cos θ. 

Moreover, if x · y = 0, then x and y will be perpendicular vectors in Rn . 

To start out with, consider bases for which the pairwise dot products are as simple as possible. 

Defnition 12.2 √
A basis {v1, · · · , vn} is called orthonormal if |vi| = 1 and vi · vj = 0 for i ̸= j. That is, since |vi| = vi · vi, 

vi · vj = δij , 

where δij denotes the Kronecker delta.a 

aThe Kronecker delta δij is equal to 0 if i ̸= j and 1 if i = j. 

Now, Rn not only has a vector space structure, but it also has some extra structure provided by the dot product. √ 
Since |v| = v · v, the dot product produces some notion of "length" or "distance." 

Guiding Question 
What kinds of matrices interact well with this notion of distance? 

Orthogonal matrices are those preserving the dot product. 

Defnition 12.3 
A matrix A ∈ GLn(R) is orthogonal if Av · Aw = v · w for all vectors v and w. 

In particular, taking v = w means that lengths are preserved by orthogonal matrices. There are many equivalent 
characterizations for orthogonal matrices. 

Theorem 12.4 
The following conditions are all equivalent: 

1. The matrix A is orthogonal. 

2. For all vectors v ∈ Rn , |Av| = |v|. That is, A preserves lengths. 

3. For an n-dimensional matrix A, AT A = In. 

4. The columns of A form an orthonormal basis.a 

aSince AT also satisfes the third condition, this means that the rows of A, which are the columns of AT , will also form an 
orthonormal basis. 

Proof. All the conditions will end up equivalent. 
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√ √ 
• Condition (1) implies (2). Because A preserves dot products, |Av| = Av · Av = v · v = |v|, and so A 

also preserves lengths. 

• Condition (2) implies (1) because 

1 � � 
Av · Aw = |Av + Aw|2 − |Av|2 − |Aw|2 

2 
1 � � 

= |v + w|2 − |v|2 − |w|2 

2 
= v · w. 

Namely, dot products can be written in terms of lengths, and lengths can be written in terms of dot 
products, so preserving one is equivalent to preserving the other. 

• Condition (1) states that Av · Aw = v · w; unwinding the dot product in terms of matrix multiplication, 
Tthis equation is vT AT Aw = v w for all v, w ∈ Rn . Evidently, (3) implies (1), since if AT A = In, 

vT AT Aw = vT w. 

TBy calculation, it can be seen that for ei and ej the ith and jth standard basis vectors, e Mej = Mij ,i 
which is the (i, j)th component of the matrix M. If (1) is true, taking v = ei and w = ej over all i and j 
gives us that the (i, j)th component of AT A is 1 when i = j and 0 otherwise. 

• Condition (4) is equivalent to (3) from simply computing the matrix product: the (i, j)th entry of AT A is 
the dot product of the ith column of A with the jth column of A, which is 1 when i = j and 0 otherwise. 

Orthogonal matrices preserve lengths, as well as preserving angles up to sign. In general, a set of matrices 
satisfying some well-behaved properties of a set of matrices generally form a subgroup, and this principle does 
hold true in the case of orthogonal matrices. 

Proposition 12.5 
The orthogonal matrices form a subgroup On of GLn. 

Proof. Using condition (3), if for two orthogonal matrices A and B, AT A = BT B = In, it is clear that 
(AB)T AB = BT AT AB = BT B = In. The other subgroup properties are not difcult to verify. 

12.2 The Special Orthogonal Group 

Given an orthogonal matrix A, AT A = In, and so det(AT A) = det(AT ) det(A) = det(A)2 = det(In) = 1. As a 
result, det(A) = ±1. The determinant is a homomorphism from det : GLn −→ R, and the restriction to On is a 
homomorphism det : On −→ {±1}. The kernel forms a subgroup of On. 

Defnition 12.6 (Special Orthogonal Group) 
The orthogonal matrices with determinant 1 form a subgroup SOn ⊂ On ⊂ GLn called the special 
orthogonal group. 

Because the determinant is surjective41 , the kernel, SOn, is an index 2 subgroup inside of On. The two cosets 
are SOn itself and all the matrices with determinant −1. 

To gain some intuition for orthogonal matrices, we will look at some examples! For n = 1, the orthogonal group 
has two elements, [1] and [−1], which is not too interesting. 

12.3 Orthogonal Matrices in Two Dimensions 

What are the orthogonal matrices in two dimensions? 

41For example, the identity matrix is always orthogonal and has determinant 1, and the diagonal matrix with −1 in the frst row 
and column and 1 down the rest of the diagonal is also orthogonal and has determinant −1. 
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Example 12.7 (O2) 
Describing an element of O2 is equivalent to writing down an orthonormal basis {v1, v2} of R2 . Evidently, � � 

cos θ 
v1 must be a unit vector, which can always be described as v1 = for some angle θ. Then v2 must 

sin θ � � � � 
− sin θ sin θalso have length 1 and be perpendicular to v1. There are two choices, v2 = or . This 
cos θ − cos θ 

characterizes all 2×2 orthogonal matrices: �� � � �� 
cos θ − sin θ cos θ sin θ 

O2 = , . 
sin θ cos θ sin θ − cos θ 

In particular, the frst type of matrix has determinant 1, and forms the subgroup SOn, and the second has 
determinant −1 and forms its the non-trivial coset. Geometrically, the frst type of matrix in O2 are rotations� � 

cos θ sin θby θ around the origin. The matrices of the second type, A = , have characteristic polynomial 
sin θ − cos θ 

pA(t) = t2 − 1 = (t + 1)(t − 1). Thus, they have distinct eigenvalues ±1, in contrast to rotation matrices, which 
do not have any real eigenvalues. Because the eigenvalues are distinct, there is an eigenbasis {v⃗+, v⃗−}. 
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Theorem 12.8 
The matrices of the second type are refections across a line through the origin at an angle of θ/2. 

Proof. Consider the line L = Span(v⃗+); since v⃗+ is an eigenvector with eigenvalue 1, A fxes this line. Notice 
that 

v⃗+ · v⃗− = A v⃗+ · A v⃗− = v⃗+ · (−v⃗−), 

where the frst equality comes from the fact that A is orthogonal, and the second comes from the eigenvalues 1 
and −1 of v+ and v−. The only possibility is v⃗+ · v⃗− = 0, so the two eigenvectors are orthogonal. Writing out 
any other vector in terms of the eigenvectors, Av is precisely the refection across L. 

As expected, rotations and refections preserve distance, and in fact they make up all the 2×2 orthogonal 
matrices. A fun fact that comes from this analysis is that the composition of two refections over diferent lines 
will be a rotation, since the product of determinants will be (−1) · (−1) = 1. Orthogonal matrices can be thought 
of either geometrically or algebraically! 

12.4 Orthogonal Matrices in Three Dimensions 

In two dimensions, SO2 consists of rotation matrices. It turns out that in three dimensions, SO3 also consists 
of rotation matrices. 
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In particular, a rotation in R3 is characterized by the axis of the rotation, which is a unit vector u⃗ ∈ R3 , and 
the angle of the rotation, which is some θ ∈ R. The plane 

⊥ u = {v ∈ R3 : u · v = 0} 

consists of all the vectors in R3 that are perpendicular to R3 . 

Defnition 12.9 
The rotation operator with spin labels u and θ is ρ(u,θ), the linear operator ρ : R3 −→ R3 such that 
ρ(u) = u and ρ| ⊥ is the rotation by θ counterclockwise with respect to the direction that u points in.a 

u 

⊥aSince every vector in R3 is a linear combination of u and some vector in u , the rotation operator is described completely 
by these conditions. 

There is some redundancy in this description; for example, ρ(u,θ) = ρ(−u,−θ). 

Theorem 12.10 
The rotation operators are exactly SO3. 

From geometric intuition, this result is not very surprising, since rotations preserve distance.42 

Proof. First, we show that all the rotation matrices are in SO3, and then we show that all matrices in SO3 are 
rotation matrices. 

• We frst show that all of these rotation matrices belong to SO3. Let {v, w} be an orthonormal basis for 
⊥the plane u , and let P be a 3 × 3 matrix with columns (u, v, w). Since v and w are orthogonal to each 

other, and u is orthogonal to both v and w, P ∈ O3. Conjugating a rotation matrix by P demonstrates 
the action of ρ(u,θ) with respect to the basis (u, v, w). Since u is fxed by the rotation matrix, the frst 
column is (1, 0, 0)t , and since the plane u⊥ is being rotated by θ, the rest of the matrix M is given by the 
form of a 2×2 rotation matrix. That is,   

1 0 0 
P −1ρ(u,θ)P = 0 cos θ − sin θ = M, 

0 sin θ cos θ 

which is in SO3. Since ρ(u,θ) = PMP −1 , and since P, P −1 ∈ O3 and M ∈ SO3, the rotation matrix ρ(u,θ) 

is also in O3. Taking the determinant of both sides43 demonstrates that ρ(u,θ) ∈ SO3. 

• To show the other direction, an element A ∈ SO3 must be shown to be rotation around some axis u, 
which has to be some eigenvector with eigenvalue λ = 1. There exists such an eigenvector if and only if 1 
is a root of the characteristic polynomial of A, which is precisely when det(I − A) = 0. 

42And orientation 
43det(PMP −1) = det(P ) det(M) det(P )−1 = det(M ) = 1 
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Since det(AT ) = 1, det(A − I) = det(AT (A − I)). Using the fact that A is orthogonal, this is det(I − AT ). 
Taking the transpose, this is det(I − A). Since the matrices are 3×3, det(I − A) = (−1)3 det(A − I). 
Combining these, 

det(A − I) = det(AT (A − I)) 

= det(I − AT ) 

= det(I − A) 

= (−1)3 det(A − I), 

implying that det(A − I) = 0. Therefore, there does exist an eigenvector of eigenvalue 1 for A, which can 
be scaled to be a unit vector u. 

⊥We extend u to an orthonormal basis P = (u, v, w) by picking an orthonormal basis for u . Consider 
taking A in this basis. The frst column is (1, 0, 0)t , since u is an eigenvector, and the frst row is (1, 0, 0) 
because the columns are orthogonal. Then, the bottom right submatrix is an element of SO2 by taking 
the determinant. So 

P −1AP 

 
1 

= 0 
0 

0 
cos 
sin 

 
0 

− sin , 
cos 

and we are done. 
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Lecture 13: Isometries 

13 Isometries 

13.1 Review 

Last time, we discussed the orthogonal matrices On, which are matrices which preserve the dot product, which 
is a measure of length. We found that if we looked at the orthogonal matrices which had determinant 1, SOn, 
they actually turned out to be rotations in 2-space and 3-space! The rest of the orthogonal matrices O3 can be 
obtained from SO3 by multiplying a rotation matrix by   

−1  1  ; 
1 

the result will be a refection over some axis. As a result, all length-preserving 3×3 matrices are rotations or 
refections. 

13.2 Isometries 

Without any prior knowledge, we might assume that there are many diferent types of length-preserving mappings, 
called isometries. We found that for linear mappings, the isometries were the orthogonal matrices, and two or 
three dimensions, they were rotations or refection. What are the possibilities for isometries that are not linear? 

Guiding Question 
Orthogonal matrices are the linear mappings that preserve distance. What are the other possibilities for 
distance-preserving mappings that are not necessarily linear? 

An isometry from Rn to Rn is a length-preserving mapping. 

Defnition 13.1 
A function f : Rn −→ Rn is an isometry if 

|f(u) − f(v)| = |u − v| 

for all u, v ∈ Rn . 

Let’s take a look at two key examples. 

» 

Rn 

#» 

Example 13.2 
For a matrix A ∈ On, the linear transformation 

−→ Rn 

x 7→ A # x 

is an isometry. 

#» 
» 

t #» 

Rn 

#» 

» 

Example 13.3 
aTranslation by a vector # v ∈ Rn is an isometry: 

b−→ Rn 

x 7→ # x + b 

aThis is not a linear transformation! 

How crazy can an isometry be? The answer, fortunately or unfortunately, is not very. In fact, these two 
examples and their compositions turn out to be the only isometries. 
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Theorem 13.4 
#» #» 

» »Every isometry f is of the form t #» ◦ A, for A ∈ On and b ∈ Rn . So f( # x ) = A # x + b .b 

Despite the fact that preserving distance does not appear to be a very strong condition on f , it turns out that 
it is equivalent to the very strong condition that it basically has to be linear, combined with a shift. It boils 
down to the following lemma. What form do the isometries that fx the origin take? The answer is that they 
must be linear. 

Lemma 13.5 
If f : Rn → Rn is an isometry such that f(0) = 0, it must be a linear transformation.a 

aIt must respect the additive and scalar multiplicative structure on Rn . 

Proof. We must show that f preserves sums and scalar products. First, we see that a dot product can be 
»written in terms of # 
0 and distances: 

1 � #» #» � 
| ## u » · # v » = u » − 0 |2 + | # v » − 0 |2 − | # u » − # v »|2 . 

2 

As a result, the following equation also holds: 

1 � #» #» � 
» » » » » »f( # u ) · f( # v ) = |f( # u ) − f( 0 )|2 + |f( # v ) − f( 0 )|2 − |f( # u ) − f( # v )|2 . 

2 

Because f is an isometry, |a − b| = |f(a) − f(b)|. Setting f(0) = 0 gives the equation u⃗ · ⃗v = f(u⃗) · f(v⃗), so it 
must be the case that since f preserves lengths, f also preserves the dot product. 

» #» #»• The sum can be expressed using a dot product again. For # z = x + y , 

» » » » » »( # z − # x − # y ) · ( # z − # x − # y ) = 0, 

and so 
#» #» #» #» #» #» » #» » #» » #» z · z + x · x + y · y − 2 # x · z − 2 # y · z + 2 # x · y = 0. 

Now, since we know that addition is determined in some complicated way from dot product, since f fxes 
the dot product, it must fx addition as well. 44 So f(z) = f(x) + f(y). 

• A similar reasoning gives us the scaling product: f(cx) = cf(x). 

Despite the fact that the only piece of information is that f preserves distances and maps the origin to itself, it 
is enough to play around algebraically to fnd out that f must be linear. This rules out lots of crazy functions 
that you could imagine could be isometries. 

Proof of Theorem 13.4. Now, we can prove the original theorem. Given f : Rn −→ Rn , there is some vector 
b ∈ Rn such that f(0) = b. Then t−b ◦ f is an isometry that fxes 0. Thus, there is some linear transformation 
A such that t−b ◦ f = A, and this implies that f = tb ◦ A, since tb is the inverse of t−b. From the defnition of 
an isometry, it is easily seen that the composition of two isometries is an isometry. 

Given that isometries are all of the same restrictive form, it is not surprising that they form a group. 
44If we had some other crazy invented operation determined from the dot product, f must also fx that! 

61 



Lecture 13: Isometries 

Defnition 13.6 
The group of isometries is 

#» 

f 

which is potentially itself. 

» 

aMn := {isometries Rn −→ Rn} ⊆ Perm(Rn). 

aAny bijective function the in since it each in exactly inR R R Rn n n npermutes vectors vector to vector on maps one, , 

»+t # = t # 
b ′ 

. Orthogonal
b ′

», +), form a subgroup of Mn, since t # 

matrices On also form a subgroup of Mn. 

Note that the composition of an orthogonal matrix with a translation is 

A ◦ t #» 

Clearly, translations, which are isomorphic to (Rn 
b b + 

= t #» ◦ A,b A b 

since 
A(x + b) = Ax + Ab. 

In particular, a translation and an orthogonal matrix do not commute with each other. 

Consider the projection 

π :Mn −→ On 

tb ◦ A 7−→ A. 

It is a group homomorphism, since 

(tb ◦ A) ◦ (tb′ ◦ A ′ ) = tb+Ab′ ◦ AA ′ . 

Also, π is surjective, and the kernel is ker(π), which are translations. Thus, the subgroup of translations is 
normal inside Mn. 

13.3 Isometries in 2-space 

Now that we have an understanding of isometries in general, let’s narrow it down to an analysis in two dimensions. 

Guiding Question 
For n = 2, what do isometries look like? 

The following defnition is an intuitive extension of the idea of orientation for linear mappings. 

Defnition 13.7 
An isometry x 7→ Ax+b is orientation-preserving if det(A) = 1, and orientation-reversing if det(A) = 
−1. 

In two dimensions, isometries can be classifed into one of four types. 
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Theorem 13.8 
Every isometry on R2 is 

1. Translation 

a2. Rotation around a point p 

3. Refection across a line L b 

4. Glide refection — frst, refect across a line L, then translate by some vector b parallel to Lc 

aIt is no longer required that p is the origin, since the isometry does not have to be a linear transformation 
bAgain, the line L may or may not pass through 0; the isometry is not necessarily linear. 
cWe will see diagrams next week which have glide refections in their symmetry group! 

The frst two are orientation-preserving; the last two are orientation-reversing. 

By composing with translations, it is possible to essentially change coordinate systems. For example, consider 
rotations and refections. Let f be an isometry, say a rotation around the origin. Then, 

tpft−p 

45is a new isometry that fxes p, instead of the origin, since it is applying f but after shifting coordinates by p. 

Similarly, letting f be a refection across any line, we can represent it in new coordinates as a refection across 
a line through the origin. 

Proof. We split the proof up into two cases depending on whether f is orientation-preserving or reversing. 

• Case I. Consider an orientation-preserving isometry f(x) = Aθx + b. 

1. If Aθ = I2, the identity, then f = tb, which is possibility 1 in the theorem. 

2. Otherwise, if Aθ ̸= I2, we want to fnd a fxed point p such that f(p) = p. Since Aθ has no fxed 
vectors, pA(1) ̸= 0, and so Aθ − I2 has a trivial kernel, and so A − I2 is invertible. Then the equation 

(A − I2)p = −b 

has a unique solution p = (A − I2)−1(−b), and then 

f(p) = Ap + b = p. 

So 
t−pAtp = Aθ, 

45When we apply t−p, we shift p to 0, then we use f to rotate around 0, and lastly use tp to shift 0 back to p. 
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since it fxes 0. This corresponds to the second possibility: rotation around a point p. 

• Case II. 

Let f be an orientation-reversing isometry. Then f = tb ◦ A, where A is refection across a line L. First, 
change the origin to b/2. Then 

t−b/2ftb/2 = t−b/2tbAtb/2 = tb/2tAb/2A = tmA, 

b+Abwhere m = . Since b and Ab are refections over a line L, m, the average, must lie on that line. 2 

3. If m = 0, it is a refection. 

4. If m ̸= 0, it is a glide refection. 46 

Again, the same idea from Case I applies. Shifting to a new coordinate system gives us either a refection 
or a glide refection. 

46In our proof, we try to be slicker about it, but if we are uncomfortable with that, we know f is just Ax + b, and we could 
simply crunch through lots of sines and cosines to force f into one of the four forms in Theorem 13.8. 

64 



Lecture 14: Finite and Discrete Groups of Isometries 

14 Symmetry Groups 

So far, in this class, we’ve covered groups and linear algebra. Now, we are looking at groups of symmetries that 
preserve extra forms of structure. 

14.1 Review 

Last week, we looked at the orthogonal matrices. 

Defnition 14.1 
The orthogonal matrices On are matrices that preserve distance. It is the set 

T : Rn −→ Rn : |Tv| = |v| for all v ∈ Rn . 

Defnition 14.2 
The set Mn of isometries from Rn to itself is 

{f : Rn −→ Rn : |f(u) − f(v)| = |u − v|}. 

The orthogonal matrices are the subset of isometries that are linear transformations. In class, we showed that 
every isometry f is of the form f(x) = Ax + b where A ∈ On and b ∈ Rn . 

Then, we looked at O2, the orthogonal matrices in two dimensions. There are two possibilities for a transformation 
in O2. 

47• Rotations around 0: these have determinant 1 and are called SO2. 
»• Refections across a line through 
# 
0 : these have determinant -1 

Then the isometries of two-dimensional space, M2, also ft into several categories.48 

• Translations 

• Rotations around p 

• Refections across a line 

• A glide refection49 

14.2 Examples of Symmetry Groups 

Now, we want to add some additional structure to preserve. 

Guiding Question 
What isometries of R2 fx some shape inside R2? 

We call the group of such isometries symmetry groups for that shape. Let’s start with a couple examples of 
shapes and their symmetry groups. 

47The special orthogonal group 
48This is quite surprising, since a priori, an isometry could take many diferent forms. 
49A refection in addition to a parallel translation 
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Example 14.3 
2πFor a regular pentagon, the group of symmetries are rotations by multiples of , and refections across5 

alines. This group of symmetries is what we would call discrete. 

aThis will be formalized later on. 

Next, we look at a group that is not discrete. 

Example 14.4 
For a circle centered at the origin, every rotation or refection will fx it, and so its symmetry group is all 
of O2. This group of symmetries is not discrete. 

We can also look at infnitely large shapes. 

Example 14.5 
For a triangular lattice, certain translations, refections over lines, rotations, and glide refections all preserve 
it. It is a discrete symmetry group. 

14.3 Discrete Subgroups of R 

From our examples, we see that some symmetry groups are “discrete" and some are not. 

Guiding Question 
How can the notion of a discrete group be formalized? 

We can start with an easier notion, which is a discrete group inside (R, +). 

Defnition 14.6 
A group G ≤ (R, +) is discrete if there exists ε > 0 such that any g ∈ G such that g ≠ 0 satisfes |g| > ε. 
Equivalently, for a, b ∈ G and a ̸= b, then it must be true that |a − b| > ε for a discrete group. 

The discreteness tells us some important information about G. 

Theorem 14.7 
If G ≤ (R, +) is discrete, then G = {0} or G = Zα for some real number α > 0. 
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This theorem is very similar to the theorem we had about subgroups of Z, where we showed they were either 
trivial or of the form kZ. 

Proof. Assume that G ̸= {0}. Then there is some smallest positive element α ∈ G. To see why it is possible to 
fnd a smallest element, we start by taking any g > 0 in G. By discreteness, in the interval from [0, g], we have 
at most g/ε elements of G inside of the interval. We can then pick the smallest one because the set is fnite. 

We now claim that G = Zα. Why is this true? If 2α < x < 3α for some x ∈ G, then 0 < x − 2α < α, where 
x − 2α ∈ G, which is a contradiction. 50 

14.4 Finite subgroups of O2 

So what are all the fnite subgroups of O2? Let’s frst try to create some examples to get some intuition about 
them. 

Example 14.8 
Let x be a rotation by 2π . Then Cn = ⟨x⟩a , the cyclic group of order n, is generated by x, and is a fnite n 
subgroup of O2. 

n−1}a{1, x, · · · , x

Another possible fnite subgroup can be created by expanding Cn a little bit. 

Example 14.9 
#» −1 2 nLet y be a refection across a line ℓ through 0 . Notice that the relations yx = x y, y = e, and x = e 

a1 xa2 ya3 i jhold, and so any product y · · · can be written as x y , where 0 ≤ i < n and 0 ≤ j < 2. Then the 
group generated by x and y is 

2 n−1 2 n−1Dn := ⟨x, y⟩ = {e, x, x , · · · , x , y, xy, x y, · · · , x y}, 

which is called the dihedral group. It has order 2n. 

For n ≥ 3, Dn is the group of symmetries of a regular n−gon.51 The dihedral group for n = 1 is D1 =∼ C2 and 
for n = 2, D2 =∼ C2 ×C2. For n = 3, D3 =∼ S3, and larger dihedral groups can also be studied. 

Now, we have two families of fnite subgroups of On, the cyclic groups of rotations, and the dihedral groups. It 
turns out that these are actually all the fnite subgroups of O2. This provides yet another classifcation theorem. 

Let’s start with a simpler version. 

Theorem 14.10 
If a subgroup H ≤ SO2 is fnite, then H is isomorphic to Cn for some n. 

� � 

Proof. Let ρθ be 
cos θ 
sin θ 

− sin θ 
cos θ 

. Then let 

S = {θ ∈ R such that ρθ ∈ H}. 

Under the homomorphism π : θ 7→ ρθ, S = π−1(H). Since S is a preimage, we know that S is a subgroup of 
(R, +). 

If H is fnite, then S must be discrete, and so by Theorem 14.7, S is Zα for some α. Also, 2π ∈ S because a 
rotation by 2π is the identity in H, and so α = 2π . So H = Cn. n 

50The discreteness guarantees that we can fnd a smallest positive element! This is defnitely not the case for R in general (it is a 
fundamental property of R that there is no smallest positive element.) 

51In general, if x is a rotation by an angle that is not a rational multiple of 2π, then we do not get a rational group. We would 
get a non-discrete subgroup of SO2. 
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Theorem 14.11 
Any fnite subgroup of O2 is isomorphic to Cn or Dn. 

Now, we can prove Theorem 15.2. 

Proof. There are two cases: 

• Case I. If G ⊆ SO2, by the above theorem, G ∼= Cn for some n. 

• Case II. If G is not a subset of SO2,, then take the restriction of the determinant function on O2 to G. 
It takes 

det
G −→ {±1}. 

By the assumption that G isn’t a subset of SO2, this is surjective. Let 

det
H = ker(G −→ {±1}). 

Then, H ⊴ G is a normal subgroup of index 2. So det−1({−1}) is a nontrivial coset of H, and so it is Hr 
for some r ∈ G such that det(r) = −1. Then r must be a refection across some line ℓ.52 Then, it is clear 

2πρby defnition that H ≤ SO2, and so H = Cn for some n, and it is generated by some x = , and then n 
we have � � 

2πρ 
G = , r ∼= Dn. 

n 

14.5 More Discrete Subgroups 

Next, what are the fnite or discrete subgroups of M2? Let’s start with a couple of defnitions. 

Defnition 14.12 
A subgroup G ≤ O2 is discrete if there exists some ε > 0 such that all nontrivial rotations in G have angle 
θ such that |θ| > ε.a 

aHere, discrete implies fnite, which implies that it is Cn or Dn. 

Defnition 14.13 
A subgroup G ≤ M2 is discrete if there exists some ε > 0 such that all translations in G are by vectors b 
with |b| > ε, and all rotations in G have angle θ such that |θ| > ε. 

This ends up being quite a strong constraint on what the discrete subgroups look like, even though there could 
be lots of diferent possibilities. We’ll talk about this more next time. 

52Note that we have many options for ℓ because any r ∈ Hr generates Hr. In particular, these are all the rotations of ℓ. 
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15 Finite and Discrete Subgroups, Continued 

15.1 Review 

Last time, we began studying certain subgroups of M2. The group of isometries of R2 is precisely 

#» 

M2 = {t #» ◦ A : b ∈ R2, A ∈ O2},b 

where O2 is the group of orthogonal matrices. 

Guiding Question 
What are the fnite subgroups of O2?a 

aThe discrete subgroups of O2 turn out to be the same as the fnite subgroups, either Cn or Dn (we omit the proof, as it 
is in the homework.) 

One way in which subgroups of M2 naturally arise is with symmetries of plane fgures. 

Example 15.1 
For the following two plane fgures, they both have discrete symmetries including translations, rotations, 
and glide refections. 

Last time, we looked at fnite subgroups of the orthogonal matrices G ⊆ O2. We found the following theorem 
which greatly restricts the possibilities for such subgroups: 

Theorem 15.2 
Any fnite subgroup G ⊆ O2 is either 

• G ∼= Cn = ⟨ρ2π/n⟩, the cyclic group generated by a rotation by 2π/n; or 

• G ∼= Dn = ⟨ρ2π/n, r⟩ which is the group Cn with an extra refection r. 

The elements of the form ρ2π/n, which are rotations by 2π/n, are orientation-preserving, while elements of the 
form ρ2π/nr, which are refections over certain lines through the origin, are orientation-reversing. 

15.2 Finite Subgroups of M2 

Now that we have found the fnite and discrete subgroups of O2, we bring our attention to fnite subgroups 
G ⊆ M2. 

Guiding Question 
What are the fnite subgroups of M2? Do we get more subgroups now that we have more elements? 

In fact, there are no new fnite subgroups obtained from allowing G to be in M2 instead of O2. 

Theorem 15.3 
Any fnite subgroup G ⊆ M2 is also isomorphic to Cn or Dn. 
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Proof. In order to show that G is isomorphic to Cn or Dn, it is enough to fnd s0 ∈ R2 such that g(s0) = s0 for 
all g ∈ G. Then, by changing coordinates such that s0 is the new origin53 , G fxes the origin (formerly s0) and 
so G ⊆ O2. As a result, by applying Theorem 15.2, G must in fact be isomorphic to Cn or Dn. 

• Step 1. First, we fnd some fnite set S fxed by every element g: we require that gS = S for all g ∈ G. 
For any p ∈ R2 , let 

: g ∈ G}54S = {g(p) ∈ R2 . 

′Then, for any element s ∈ S, it is equal to s = g ′ (p) for some g ∈ G, by the defnition of S. In addition, 
for any g ∈ G, the action of g on s is 

g(s) = g(g ′ (p ′ )) = (gg ′ )(p) ∈ S, 

again by how S is defned. So 
gS = S. 

• Step 2. Intuitively, to fnd s0, we would take the average, or the center of mass, of all the points. For 
example, for the set of rotations ⟨2π/3⟩, S would be 3 equidistant points, and the center of the equilateral 
triangle would be fxed by such rotations. From this intuition, we can apply the following averaging trick. 
This is where G being fnite is required, as we wouldn’t be able to take the average otherwise. 

Where S = {s1, · · · , sn}, let 
1 

s0 = (s1 + · · · + sn) 
n 

be the average of all the elements in S. For any isometry f = tb ◦ A, � � 
1 

f(s0) = tb (As1 + · · · + Asn) 
n 

1 
= ((As1 + b) + · · · + (Asn + b)) 

n 
1 

= (f(s1) + · · · + f(sn)), 
n 

since A is a linear operator. 

As a result, for any g ∈ G, 

1 
g(s0) = (g(s1) + · · · + g(sn)) 

n 
1 

= (s1 + · · · + sn) 
n 

= s0, 

since g permutes the elements in S. 

So we see that G does fx s0, and by changing coordinates so that s0 is the origin, G must in fact be 
isomorphic to Cn or Dn. 

15.3 Discrete Subgroups of M2 

No new fnite subgroups are obtained by taking elements in M2 instead of O2; what if we take discrete subgroups55 

instead of fnite subgroups? 

Guiding Question 
What about discrete subgroups of M2? 

The defnition of discreteness in M2 combines the two defnitions for the rotations and translations. 
53We take t−s0 Gts0 
54This is called the orbit of p, since it is all the points that p can reach by some transformation in G, or all the points that p 

orbits to. 
55We will formalize the notion of discreteness in M2 now! 
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Defnition 15.4 
A group G ⊆ M2 is discrete if there exists some ε > 0 such that any translation in G has distance ≥ ε and 
any rotation in G has angle ≥ ε.a 

aIn fact, for discreteness, it would make more sense to require two diferent ε1 and ε2 for translations and rotations, just 
to ensure that there are not continuously many translations and rotations. In this case, we can simply acquire the ε for this 
defnition by taking the minimum of the two; then any translation in G has distance ≥ ε1 ≥ ε and any rotation has angle 
≥ ε2 ≥ ε. 

15.3.1 Discrete Subgroups of R2 

As a warmup, let’s consider the copy of the plane inside M2, (R2 , +) ⊆ M2, consisting of the translations tb. 
What are the discrete subgroups of (R2 , +)? The result and argument is similar to the discrete subgroups of 
(R, +) that we covered last week. 

Theorem 15.5 
If G ⊆ R2 is discrete, then 

1. G = {0}; or 

2. there exists some α⃗ ∈ R2 such that G = Zα⃗ ; or 

3. there exist linearly independent vectors a⃗, b⃗ ∈ R2 such that G = Za⃗ + Z⃗b. This is called a lattice inside 
R2 . 

Proof. First pick any α̂ ̸= 0 ∈ G. The intersection G ∩ Rα̂ must be discrete, so there is some smallest length 
vector in G ∩ Rα̂; call it α. Then if G ∩ Rα̂ = G, then G ∩ Rα̂ = Zα, and we are done. 

Otherwise, pick β ∈ G such that β ∈/ Rα, minimizing the distance from β to Rα. There exists such a β because 
in any bounded region of R2 , there can only be fnitely many points of G; then we can simply pick the point in 
G closest to Rα. 

Claim: G = Zα + Zβ. If this were not true, then there would exist a point γ ∈ G that is not on the lattice 
formed by α and β. Thus, by shifting by α and β, the parallelogram with sides α and β would contain a point 
closer to Rα, violating the minimality of β. 
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15.3.2 Back to Discrete Subgroups of M2! 

Now that we have considered the translations in M2, which are isomorphic to the plane R2 , we can move on to 
the entire M2. 

Guiding Question 
How can we study discrete groups G ⊆ M2? 

Recall that there exists a projection π from M2 to O2, where R2 , the group of translations, is the kernel. The 
projection takes 

π 
,→ 56M2ker(π) = R2 −→ O2 

t #» ◦ A 7→ A.b 

The restriction of π to G takes π|G : G −→ O2. The kernel L = ker(π|G) consists of the translations in G. Under 
this map, the image of G is a subgroup G := π(G) ⊆ O2, known as the point group of G. The projection takes 

π|G
ker(π|G) = L ⊆ G −−→ G. 

Example 15.6 
For this infnite plane fgure, the group of translations L in the symmetry group G is a rectangular lattice. 

»The point group G contains rotation by π around 
# 
0 and refection across ℓ; as a result, G is isomorphic to 

D2. 

As we can see in the example, by using the projection π, each G can be decomposed into a discrete point group 
G isomorphic to Cn or Dn, and a discrete group L ⊆ R2 , classifed in Theorem 15.5. In fact, we can constrain 
the possibilities even more! The following proposition is a start. 

Proposition 15.7 
Every A ∈ G maps L to L. 

Proof. Next time! 
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16 Discrete Groups 

16.1 Review 

Last time, we looked at discrete57 subgroups G ≤ M2. Then, we looked at a projection π: 

π
ker(π) = (R2 , +) ⊂ M2 −→ O2, 

tb ◦ A 7→ A; 

essentially, it gets rid of the translation part of an isometry. 

We can restrict π to G to get a mapping 
π|G

G −−→ O2, 

and we call the kernel, 
L := ker(π|G), 

and it consists of all the translations in G. 

The image of G in O2, denoted G := π(G), is called the point group of G. For some element g ∈ G, its image 
g := π(g) ∈ G only "remembers" the angle of rotation or the slope of the refection line. 

If G is discrete, it is either Cn or Dn, which we proved earlier. 

If L ⊆ R2 is discrete, then we obtained three possible cases. 

(i) L = {0}; 

(ii) L = Zα where α ̸= 0; 

(iii) L = Zα + Zβ, where α, β are linearly independent.58 

16.2 Examples for L and G 

For a given plane fgure, it is actually not difcult to see what L and G are! For the translation subgroup 
L, since it must either be the identity translation, Zα, or a lattice, it is possible to simply eyeball which 
translations preserve the fgure. Let’s consider the following plane fgures. Later in this lecture, we will discuss 
the possibilities for G; it consists of the (untranslated) rotations and refections preserving a fgure. 

57The translations and rotations that cannot be arbitrarily small 
58When you look at two vectors and everything you generate from them, it’s called a lattice. 
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Example 16.1 (A) 
For this frst fgure, say fgure A, the translation subgroup L is a rectangular lattice generated by two 
translation vectors, to the right and upward. Also, G is D2, since it contains a refection as well as rotation 
by π. 

Example 16.2 (B) 
For fgure B, the translation subgroup is trivial, consisting of 0. Also, G is C3, since there cannot be any 
refections but rotation by 2π/3 or 4π/3 around the center both preserve the fgure. 

Example 16.3 (C) 
For fgure C, the translation subgroup is generated by one vector, so L = Zα where α = (1, 0). Also, G is 
D1, since there is a refection (corresponding to a glide refection in G) and no rotations possible. 
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Example 16.4 (D) 
For fgure D, the translation subgroup is a triangular lattice generated by two vectors at an angle of π/3 to 
each other.a The point group is G = D6, since rotation at a lattice point by any multiple of π/3 preserves 
the fgure, as well as refection. 

aOr two vectors at an angle of 2π/3. 

16.3 Crystallographic Restriction 

Now that we have decomposed studying G into studying groups we understand better, L, a subgroup of 
translations, and G ⊆, the point group, we can actually constrain G further! 

Recall that 

• The translation subgroup L ⊆ (R2 , +)59 must be one of three possibilities, which we get from studying 
discrete subgroups of R2; 

• G must be Cn or Dn, which we get from studying discrete subgroups of O2. 

Now that we understand the components L and G separately, we want to use this knowledge to understand G 
better. 

Guiding Question 
How do L and G interact with each other? 

Example 16.5 
Consider our earlier example 16.4. In this case, any element of the point group D6 preserved the triangular 
lattice. 

In fact, G acts on L for any discrete group G ⊆ M2; this is a very strong constraint on how G and L interact. 

Theorem 16.6 
For the point group G ≤ O2 of some discrete subgroup G of M2, and the translation subgroup L ⊂ R2 , the 
group G must map L to itself. 

For any element A ∈ G and b ∈ L, the image of b under the action of A is 

b 7→ Ab ∈ L. 

We already know that O2 and thus G acts on the plane R2 and therefore L. The surprising part is that under 
the action of any element of G, an element of L is actually mapped to another element in L! 

Proof. Since A ∈ G, it is the image of an element of G, say tc⃗ ◦ A ∈ G for some c⃗ ∈ R2 . Then, b⃗ ∈ L, so t⃗  ∈ G.b 
The key observation in this proof is that L = ker(π|G) is the kernel of a homomorphism! Thus, the subgroup 
L ⊴ G is actually normal, so conjugating an element of L by anything in G stays in L. 

Then for t⃗  ∈ L,b 
(tc⃗ ◦ A) · t⃗  · (tc⃗ ◦ A)−1 ∈ Lb 

also. As isometries in M2, we know how to manipulate these products, and so expanding out this expression 
gives us 

−1tc⃗ · A · t⃗  · A−1 · t = tc⃗t · A · A−1 · t−c⃗b c⃗ Ab⃗ 

= tc⃗tA⃗t−c⃗b 

= t ∈ L.Ab⃗ 

59The translation subgroup L is sometimes written ambiguously in one of two equivalent ways; an element of L can either be 
the translation t⃗  ∈ L considered as an element in G, or simply the vector b⃗ ∈ L considered as an element in R2 . So L could be 

b 
considered either as a subgroup of G or of R2 . 
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Thus, conjugating t⃗  ∈ L by t⃗ ◦ A gives t ∈ L. Using the identifcation of L with R2 , Ab⃗ ∈ L ⊂ R2 , and sob c Ab⃗ 

every A ∈ G takes vectors b⃗ in L to other vectors in L, preserving the translation subgroup. 

Student Question. We’re studying discrete groups, which are groups with the requirement that the translations 
or rotations can’t be arbitrarily small. Are we also requiring that they have to be groups preserving a given 
diagram, or can they be any discrete groups of isometries? 

Answer. Earlier on in this lecture, we saw some examples of discrete groups G that came from the symmetry 
groups of certain diagrams, but what we are actually doing is simply looking at groups G with the condition 
that the rotations and translations must be arbitarily small60 , and classifying them; mathematically, there is no 
requirement that they come from pictures. 

However, the way that these discrete groups actually show up and the way that we fnd them is by drawing these 
kinds of pictures; this is one of the main reasons why we care about them! In fact, for every discrete subgroup 
G ⊆ M2, there will be some picture that produces the group G as its symmetry group. The pictures in this 
lecture are mainly so that there are concrete examples to look at and think about. 

In Section 16.2, each of the examples has a symmetry group G consisting of the isometries of the plane sending 
the picture to itself.61 For example, in Example 16.2, rotation by 120 degrees preserves the "triangle," while 5 
degrees does not, so ρ2π/3 ∈ G, whereas ρπ/36 ∈/ G. 

Theorem 16.6 states that the point group G, which is a diferent group from G, actually preserves L ⊆ R2 , the 
translation group. 

In Example 16.4, L is generated by 
Z(1, 0)t + Z(1/2, 3/2)t , 

the two sides of an equilateral triangle, and the point group is D6. Any element of D6 will send an element of 
L to a diferent element in L. 

In fact, when L is a lattice, preservation by some point group G is a strong constraint on the possible angles 
that show up in the lattice; only certain angles are allowed. Given G, most lattices are not preserved by every 
element. Thus, the theorem constrains G and L together — not on each of them separately, but on how they 
interact. 

The groups that show up this way are often called crystallographic groups. 62 They are well-studied; in fact, 
there are only fnitely many. 

Theorem 16.7 (Crystallographic Restriction) 
a Let L ̸= {0}. Then G = Cn or Dn, where n = 1, 2, 3, 4, or 6. 

aThe theorem name comes from the fact that it restricts the possible crystallographic groups. 

Although we could imagine that there are lots of possibilities for G and L, the fact that G preserves L constrains 
the possible point groups to fnitely many, and there are also only certain choices of L allowed for a given n. 

Proof. The group G is a discrete subgroup of O2, and so it is Cn or Dn for some integer n. 

Since L is discrete, there is a (non-unique) shortest nonzero vector α ̸= 0. Consider a rotation ρ = ρθ ∈ G. The 
result of rotating α by θ is another vector in L, and since rotations are length-preserving, ρθα is also a vector of 
shortest length. Since both vectors are in L, ρα − α is also in L.63 If θ is too small, ρα − α will have a shorter 
length, and there will be a contradiction. 

In particular, if θ < 2π/6, ρα − α is shorter than α, so θ ≥ 2π/6. Since Cn and Dn contain ρ2π/n, it must be 
the case that n ≤ 6. 

60These are called discrete groups 
61Not each point individually is sent to itself; the picture as a whole is sent to an identical copy of itself. 
62Especially when L is a lattice, and there are two diferent directions to translate. 
63Since L is a subgroup, it is closed under addition/subtraction. 
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A similar argument holds to rule out n = 5. The vector α + ρ4π/5α will be shorter than any α, which is also a 
contradiction.64 

So n = 1, 2, 3, 4, or 6. 

Actually, for Cn or Dn where n = 1, 2, 3, 4, or 6, it is possible to constrain the translation subgroups L that can 
simultaneously show up. 

For instance, when L is a lattice,65 there are only 17 possible symmetry groups G that can occur. When L is 0, 
G can be Cn or Dn for any arbitrary n, but allowing nontrivial translations constrains G signifcantly. 

Student Question. How much does constraining G and L constrain the actual symmetry group G itself? 

Answer. Finding G from G and L is precisely the same as fguring out the 17 plane symmetry groups,66 and 
is precisely the last step! We will do one example now. 

Let’s consider a specifc group G and try to fgure out what the actual symmetry group G can be! 
64This question is equivalent to the feasibility of tiling the plane with a regular pentagon, and in fact that is not possible! 
65When L is a lattice, it is two-dimensional, and it is Za⃗ + Z⃗b for generating vectors a⃗ and b⃗. It is also possible for L to be Za⃗, 

which is one-dimensional. 
66These are called wallpaper groups, since wallpapers are 2-dimensional patterns that usually have nontrivial symmetry groups. 
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Example 16.8 (C4) 
π|GSuppose G = C4. a Then L ⊂ G −−→ C4, and the index [G : L] = 4. b 

Also, ρ = ρπ/2 ∈ G is a generator of G. Where α is some shortest-length vector in L, it’s possible to showc 

that ρα and α do generate L. Thus, 
L = Zα + Z(ρα), 

a square lattice. 

Also, there exists some rotation ρ ∈ G giving π(ρ) = ρ. Then ρ is in fact a rotation by π/2 around some 
other point, which we will call the origin.d The group G contains L, of index 4, as well as some rotation by 
π/2, ρ.e 

Thus, G is "generated" by L and ρ, and must consist of everything of the form 

G = {tv ◦ ρi : v⃗ ∈ L, i = 0, 1, 2, 3}. 

Also, ρtv = tρv ◦ ρ, so the group multiplication can be written down, and G is completely determined by 
knowing that G was C4; this is 1 out of the 17 wallpaper groups! 

aRotations by 90 degrees, but no refections. 
bThe index [G : ker(π|G)] = [G : L] is equal to the size of the image under π|G, which is G = C4. 
cThere is a more involved argument there, but it is not super relevant here. 
dIn the discussion of the four kinds of isometries in M2, the elements which were mapped to rotations were in fact rotations 

around some point. 
eThe rotation ρ is ρ, lifted to be in G, and it is an element of G not in L which generates the quotient, C4. 

Student Question. Can you explain where ρ came from? Why is it a rotation? 

Answer. By defnition, G is the image of G under π : M2 → O2 taking tb ◦ A 7→ A. Then there are four 
possibilities for elements in M2: translation, rotations, refections, and glide refections. The frst two are 
orientation-preserving, and the last two are orientation-reversing. Refections and glide refections map to 
refections in O2 

67 under π, translations will map to the identity, and rotations will map to rotations (around 
the origin). So ρ has an image of ρ, which is a rotation, and thus ρ is a rotation around some point. 

If ρ, the element in G, were a refection instead of a rotation, the preimage in G could have been either a 
refection or a glide refection, so when the point group G = Dn, one of the dihedral groups, instead of Cn, the 
analysis is more subtle. In fact, there might not be any refections in G at all. (In Example 16.3, there were no 
refections, only glide refections.) 

Example 16.9 
If r = π(r) where r, then r = π(tb ◦ rℓ), where b is some zeroa or nonzerob vector parallel to the line ℓ. 
Does this mean there are uncountably many possibilities for b and therefore r? In fact, b is constrained a 
bit more: tbrℓtbrℓ = t2b, so 2b ∈ L. Thus, there are two possible situations: 

• The vector is in the lattice: b ∈ L; 

• The vector b is halfway between two lattice points, as in Example 16.1. 
arefection 
bglide refection 

From these two examples, we see that given some G, of which there are fnitely many, and working through the 
information that is present, there aren’t too many possibilities for G, and in fact there are fnitely many — 17 

67Refections across lines through the origin 
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in total. 
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17 Group Actions 

Today, we will discuss group operations or actions68 on a set. 

Guiding Question 
How can a group be seen as a group of transformations? 

17.1 Review 

Last time, we fnished talking about (discrete) subgroups of isometries of the plane. Finite subgroups of M2 are 
isomorphic to Cn or Dn, and there are only fnitely many isomorphism classes of infnite discrete subgroups of 

69M2. 

It is also possible to go up a dimension and classify discrete subgroups of isometries of R3 , although it is more 
complicated; there are 200 or so. 

17.2 Motivating Examples 

The idea of a group action will generalize and make more abstract an idea that has been present throughout 
the class so far. Let’s start with the following motivating example. 

Example 17.1 (GLn) 
Given g ∈ GLn(R) and a column vector v ∈ Rn , the matrix g can be seen as a transformation on Rn , taking 
v 7→ g(v) ∈ Rn . 

The data of GLn(R) acting on Rn can be packaged together by a map 

GLn(R)×Rn −→ Rn 

#» »(g, v ) 7−→ g( # v ). 

The same principle applies to Sn, the group of permutations on {1, · · · , n}. 

Example 17.2 (Sn) 
The symmetric group Sn can also be viewed as acting on a set. More or less by defnition, given a number 
between 1 and n, and a permutation, it’s possible to spit out the result of permutation acting on that 
number. So Sn permutes the set [n] = {1, · · · , n}. This gives us another mapping encoding this information: 

Sn ×{1, · · · , n} −→ {1, · · · , n} 
(σ, i) 7−→ σ(i). 

Our last example is one we have been considering for the past few lectures. 

Example 17.3 
The set M2, isometries of 2-space, acts on R2 : given some vector in the plane and some isometry, the 
isometry will return some other vector in the plane. This information is again encoded by a mapping 

M2(R)×R2 −→ R2 

(f, ⃗x) 7−→ f(x⃗). 

68They are diferent terms for the same idea. Artin uses group operations, while Professor Maulik prefers to call them group 
actions. 

69In fact, with any metric space, which is a set with some distance on it (as discussed in 18.100, for example), it’s possible 
to consider isometries, distance-preserving transformations, in the same way as we considered the plane R2 . Depending on the 
metric space, the groups can look very diferent! One example of this is the hyperbolic plane, which is the upper half-plane of R2 

with a non-Euclidean metric, or distance, on it, and the discrete subgroups of isometries on it. There are infnitely many discrete 
subgroups of isometries on it, even though it is 2-dimensional, just like R2 . The question of why it is so diferent from the R2 case 
is really a geometry question, rather than an algebra question. 
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17.3 What is a group action? 

These are all examples of group operations on a set, and they motivate the following defnition of a group 
operation in general. 

Defnition 17.4 
Given a group G and a set S, a group actiona on a set S is a mapping 

G×S −→ S 

(g, s) 7−→ gs. 

It must satisfy the following axioms: 

• The identity maps every element of the set back to itself: es = s for all s ∈ S.b 

• The mapping must respect the group multiplication: (gh)s = g(hs) for s ∈ S and g, h ∈ G.c 

aor group operation 
bThis corresponds to the identity multiplication rule. 
cThis corresponds to the associativity rule. 

Essentially, given an element g ∈ G and s ∈ S, the mapping returns another element of S depending on g, and 
the mapping must respect the group structure on G. All of the groups that we have seen so far show up as 
symmetries of some set, maybe preserving some extra structure, so all the groups that we usually think about 
already come with an action on some set S. Furthermore, a group G can act on many diferent sets at the same 
time in diferent ways, which gives insight into the group itself. 

Let’s look at a couple of examples. 

Example 17.5 (S4) 
The symmetric group S4, permutations on 4 elements, acts on S = {1, 2, 3, 4}. It can also act on a diferent 
set, T = {unordered pairs in S} = {(12), (13), (14), (23), (24), (34)}. The set T has 6 elements, and S4 acts 
on T as well as acting on S. Given a permutation σ ∈ S4, and an unordered pair {i, j}, it acts by taking 

σ({i, j}) = {σ(i), σ(j)} 

for a permutation σ ∈ S4. 

So the group action on S leads to a diferent group action on a diferent set, T. The existence of a group action 
on a given set actually yields a lot of information about the group G, as will be explored in the next few lectures. 
Let’s see a diferent example. 

Example 17.6 (D2) 
Let G = D2, which contains rotation by π as well as refection across the x-axis (and then refection across 

athe y-axis.) As a subgroup of O2, , D2 will act on all of R2 . It also acts on the set S consisting of the 
vertices of a square and a diamond, as well as the center. 

a2×2 orthogonal matrices 

A group G can also act on itself viewed as a set. 
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Example 17.7 
Given a group G, there is a mapping 

G×G −→ G 
′ (g, g ′ ) 7−→ gg , 

and this is a valid group action. 

When G acts on itself, the frst G in G×G is seen as a group, while the second G is seen as a set, since the 
axioms of a group action don’t care about the group operation on the second instance of G. 

Let’s see one last example. 

Example 17.8 
Taking a vector space V over a feld F, the group F × , the nonzero elements of the feld, which is a group 
with respect to multiplication, acts on V by scaling: 

F × ×V −→ V 

(a, v⃗) 7−→ av⃗. 

Scaling by nonzero scalars defnes a group operation! It satisfes each of the axioms. 

Student Question. What type of element is g(s)? 

Answer. It depends on what S is! It is the type of element that is in S. Two group actions of G on S and S ′ 

might not have anything to do with each other, other than the fact that they both involve G; G can act on wildly 
diferent types of sets, and show up in diferent contexts. 

Say we fx an element g ∈ G, we can defne the group action of g on S, a mapping τg : S −→ S sending 
s 7−→ g(s). 70 We can show that τg is a bijection from S to itself because it has an inverse map, τg−1 , coming 
from the fact that g is invertible. Because τg is a bijection, it actually permutes the elements of S, and so it is 
a permutation of S. Thus, each element of G can be mapped to a permutation by a map 

τ : G −→ Perm(S), 

which takes g 7−→ τg ∈ Perm(S). From the group action axioms, τ is a group homomorphism. In Example 17.6, 
D2 is acting on a set with |S| = 9, so there exists a homomorphism from D2 −→ Perm(S) = S9. 

Note that τ does not have to be injective; there may be some action g ∈ G such that g ≠ e but G fxes each 
s ∈ S, which would make τ(g) the identity permutation. 

17.4 The Counting Formula 

Defnition 17.9 
Given s ∈ S, the orbit of s is 

Os = Gs := {gs : g ∈ G} ⊆ S. 

For instance, in Example 17.6, there are several orbits of diferent sizes. The top and bottom vertices of the 
diamond are in the same orbit (size 2), the left and right vertices of the diamond are in the same orbit (size 2), 
all the vertices of the square are in the same orbit (size 4), and the origin is in an orbit by itself (size 1), just 
by applying each of the group elements to an element of the set. 

Defnition 17.10 
The group G acts transitively on S if S = Os for some s ∈ S. 

For example, Sn acts transitively on {1, · · · , n}, since given an element i ∈ {1, · · · , n}, there is some permutation 
mapping it to any other element i ′ . 

70This notation is not standard and may not correspond with the textbook. 
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Student Question. Does this have to be true for all s ∈ S, or just one? 

Answer. If it is true for one s ∈ S, it is true for all s ∈ S. Try checking it! 

So a transitive group action is one where there is only one orbit consisting of the entire set S; in particular, any 
element of s can be carried to any other element when acted on by some g ∈ G. 

Defnition 17.11 
The stabilizer of s is 

Gs = StabG(s) := {g ∈ G : gs = s}, 

and it is a subgroup of G. 

For Example 17.6, the top and bottom vertices of the diamond are stabilized by the refection across the y-axis, 
whereas the stabilizer group of a vertex of the square is just the identity element. 

Proposition 17.12 
The orbits of G form a partition of S.a In particular, S is the disjoint union of the orbits: S = ⨿Oi where 
Oi ∩ Oj = ∅. 

aThe set can be cut into non-overlapping pieces by the orbits. 

Proof. The orbits clearly cover S, since every element s ∈ S is also an element of Os, its own orbit. Also, they 
′ ′ −1 ′ are disjoint. If Os ∩ Os ′ ̸= ∅, then there is some element in their intersection t = gs = g s . Then s = (g g ′ )s , 

which is in Os ′ . So every element of Os is in Os ′ , and by the same logic Os ′ ⊆ Os. Then Os = Os ′ . So if two 
orbits have nonempty intersection, they are in fact the same orbit. 

For a fnite set, the size of S can be obtained from the sizes of the orbits. 

Corollary 17.13 
If S is a fnite set, and O1, · · · , Ok are the orbits, then 

kX 
|S| = |Oi|, 

i=1 

since each of the orbits cover S exactly. 

In Example 17.6, this gives 9 = 4 + 2 + 2 + 1. 

Guiding Question 
What does each orbit look like? 

For this, we use the notion of a stabilizer of an element. 
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Proposition 17.14 
Fix some s ∈ S and let H := Stab(s). Then there exists a bijection ε from the quotient group G/H to the 
orbit of s, Os. It takes 

G/H −→ε 
Os 

gH 7→ gS. 

Proof. Consider g and γ in G. Then their cosets map to the same element if gs = γs, which is equivalent to 
saying that g−1γs = s. Since H is the stabilizer of S, this means that g−1γ ∈ H; equivalently, γ ∈ gH. Since 
each of these conditions were equivalent conditions, gs = γs if and only if γ ∈ gH, and thus ε must be bijective: 
two elements in G/H map to the same element in Os if and only if they are the same element. 

Corollary 17.15 (Counting Formula for Orbits) 
As a result, the number of cosets of H, which is the order |G/H|, is equal to the size of the orbit of s, since 
there is a bijective correspondence between them. So 

|Os| = [G : Stab(s)]. 

In particular, the size of the orbit of any element |Os| divides |G| when G is a fnite group. We have 

|Os| · |Stab(s)| = |G|. 

These theorems are similar to the Counting Formula and Lagrange’s Theorem from Chapter 2. In particular, 
let C be the set of left cosets of a given subgroup H. Then G acts on C; an element g ∈ G takes C 7−→ gC. 
Every coset can be mapped to any other coset by some element of G. For example, g1H is mapped to g2H by 

−1 g2g ∈ G. So there is only one orbit, the entire set C. The stabilizer of the identity coset, which is eH = H, is1 
Stab(eH) = H, because some element g ∈ G carries h ∈ H to h ′ ∈ H if and only if gh = h ′ , which implies that 
g = h ′ h−1 ∈ H. Thus, the Orbit-Stabilizer Theorem states that 

|G| = |H|[G : H], 

since |H| is the stabilizer of the identity in G/H and [G : H] is the size of the identity orbit. 
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Example 17.16 
Consider the subgroup G ≤ SO3 consisting of rotational symmetries of a cube centered at the origin. 

• Let S be the set of faces of the cube; it has order 6 since there are 6 faces. For every face of the cube, 
there is some element in G mapping it to any other face in the cube (G acts transitively on the faces), 
so the orbit of a given face is the set of all the other faces, which is S. The stabilizer StabG(face) = C4, 
since a given face, which is a square, is preserved by rotation by π/2 around the axis through the 
center of the face. Then 

|G| = |S| · |StabG(face)| = 6 · 4 = 24. 

• Similarly, any vertex can be mapped to any other vertex by some element of G. The stabilizer 
StabG(vertex) = C3, since a vertex is preserved under rotation by 2π/3 around the axis from the 
vertex to the opposite vertex. Again, 

|G| = |{vertices}| · |StabG(vertex)| = 8 · 3 = 24. 

• Again, G acts transitively on the set of edges. The stabilizer of an edge is StabG(edge) = C2. Then 

|G| = |{edges}| · |StabG(edge)| = 12 · 2 = 24. 
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18 Stabilizer 

18.1 Review 

A group action is when a group G acts on a set S by 

G×S −→ S 

and sends 
(g, s) 7−→ gs. 

The orbit of an element in s is all the elements it gets mapped to, 

Os = {gs ∈ S : g ∈ G}, 

and the stabilizer is 
StabG(s) := {g ∈ G : gs = s} ≤ G, 

18.2 Counting Formula 

Figure 1: The partition of S into orbits and theeir corresponding bijections with G/ Stab(si) 

One of the facts we learned about orbits is that they partition S. We further learned that there is a bijection 
between the left cosets of the stabilizer with the orbit. We were then able to write the size of S as X X 

|S| = |Osi | = [G : Stab(si)]. 

18.3 Stabilizers of Products 

Given a group G acting on a set S and an element s ∈ S, we know that |Os| = [G : Stab(s)]. This also means 
that we expect that if we take the stabilizer of two elements in the same orbit, then they should be the same 

′size. Specifcally, we are asking what can we say about the stabilizer of a product. If s = as for a ∈ G, if 
g ∈ Stab(s), then gs = s. Then 

′ aga −1(s ′ ) = aga −1(as) = ag(s) = as = s . 

′In other words, if g stabilizes s, then aga−1 stabilizes s . So the upshot is that 

−1StabG(s ′ ) = a StabG(s)a . 

If StabG(s ′ ) was normal, then the two stabilizers would be the same, but this doesn’t have to be the case. We’ve 
provided a nice bijection to see that the sizes of the two stabilizers must be the same size. 
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18.4 Statement 

Today, we will look at a consequence of these counting formulae. Recall that we were able to study and classify 
fnite and discrete subgroups of isometries in the plane. The special orthogonal group SO3 is the group of 

»rotations ρ(u,θ) in R3 fxing 
# 
0 . What are the fnite subgroups G ≤ SO3? 

In fact, there are not so many! Let’s start with the theorem. 

Theorem 18.1 
If G ≤ SO3, then 

• G ∼= Cn = ⟨ρu,2π/n⟩, or 

• G ∼= Dn = ⟨ρu,2π/n⟩, or 

• G is the group of rotational symmetries of a regular polyhedron. 

Figure 2: The regular polyhedra 

Although there are 5 regular polyhedra, there are only 3 distinct subgroups of symmetries. The dodecahedron 
and icosahedron have the same symmetries, which we denote as I. The cube and octahedron have the same 
symmetries as well, which we denote by O. Finally, the tetrahedron is partnered with itself and we denote its 
symmetries with T . 

As an example to see why some of the symmetries are the same, consider the symmetries of the octahedron. 
We can draw a point on the center of every face in the octahedron. Connecting these points lead to a cube, and 
thus any rotational symmetry of the cube will give a symmetry of the octahedron, and vice versa. A similar 
argument can be applied to the dodecahedron and icosahedron. Trying the argument for a tetrahedron just 
maps to the tetrahedron itself. 

On Wednesday, we worked out that the group of symmetries of a cube has size 24. Similarly, the tetrahedron 
has |T | = 12, and |I| = 60. 
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We will prove this by studying orbits! An non-identity element g ̸= I ∈ G71 is a rotation and thus fxes two 
unit vectors, which are exactly the positive and negative unit vectors on the rotation axis of g. These are called 
the poles of g. Let [

P = {poles of g}. 
g ̸=I 

Lemma 18.2 
If p ∈ P and some g ∈ G, then gp ∈ P also. As a result, we learn that G acts on P. 

′ ′Proof. For p ∈ P, then there exists h ≠ I ∈ G such that hp = p. If p = g(p). Then ghg−1(p ′ ) = p by earlier 
′reasoning. Then ghg−1 ∈ G, and ghg−1 ≠ I since h ≠ I. thus p ∈ P also. 

Example 18.3 
Let G = Cn. Then P = {p, −p} since every rotation will have the same poles. 

Example 18.4 
Let G = O.a Then P = {pole for each vertex, edge, or face}. 

aThe group of symmetries of an octahedron. 

Now, what can we say about stabilizers of these subgroups. let |G| = N. Let’s decompose P into orbits. Then 
P = O1 ∪ O2 ∪ · · · ∪ Ok. Then |Oi| = ni, and Oi = Opi for some pole pi. Then by our relations about the 
number of index of the stabilizer 

N | Stab(pi)| = ri = . 
ni 

Note that the stabilizer group will be a cyclic group. Geometrically, it will just contain the rotations around 
the axis pi. 

18.5 Finding the subgroups 

Let’s write down an auxiliary set. It is the set of poles and group elements paired together. Let 

S := {(g, p), g ≠ I, p is a pole for g}. 

Then we can count the order of S in two diferent ways. 

The order of S is X 
|S| = 2 = 2(N − 1), 

g∈G 
g ̸=I 

since there are two poles for every non-identity element of G. 

Additionally, since we have k orbits, 

k kX X X N |S| = | Stab(p)| − 1 = ni(ri − 1) = (ri − 1). 
ri 

p∈P i=1 i=1 

Every pole in the same orbit has the same stabilizer size, so we can group them together. Now, we have that 

kX N 
(ri − 1) = 2(N − 1). 

rii=1 

Dividing by N, � � � � � � 
1 1 1 2 

1 − + 1 − + · · · + 1 − = 2 − . 
r1 r2 rk N 

71We use I for the identity here 
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1Each of these quantities 1 − is between 1/2 and 1, since r1 must be at least two (by the defnition of a pole.) r1� � 
So 1 − r 

1 
1 
∈ 1

2 , 1 . 

2In addition 2 − ∈ [1, 2). So k = 2 or 3, since this is the only way the counting formula works out from ourN 
bounds. In fact, this works out for examples 18.3 and 18.4. For G = Cn, we have two orbits, and for G = O we 
have three orbits, even though it is much more complicated. 

For k = 2, when there are two orbits, 
1 1 2 

1 − + 1 − = 2 − , 
r1 r2 N 

and so 
1 1 2 

+ = . 
r1 r2 N 

But since r1, r2 ≤ N, 
2 1 1 2 ≤ + = . 
N r1 r2 N 

We have r1 = r2 = N, and n1 = n2 = 1. Each of the poles is fxed by the entire group. Then G is a fnite 
subgroup of SO2, and thus G = CN , a cyclic subgroup. 

For the three-orbit case, the numerics of the problem is also extremely constraining. When k = 3, the equation 
is 

1 1 1 2 
1 − + 1 − + 1 − = 2 − , 

r1 r2 r3 N 

and equivalently 
1 1 1 2 

+ + = 1 + . 
r1 r2 r3 N 

Without loss of generality, let r1 ≤ r2 ≤ r3. It is necessary for r1 = 2, or else the LHS72 would be ≤ 1. If r2 ≥ 4, 
then r3 ≥ 4 as well, and again the LHS would be ≤ 1. So r2 = 2 or 3. Finally, if r2 = 3, then r3 cannot be ≥ 6, 
again from the numerics of the problem. So r3 = 3, 4, or 5. 

In total, the cases are 

• Case 1. (2, 2, r) : r = N/2. In this case, we still have an infnite family. 

• Case 2. (2, 3, 3). We can solve for N to get N = 12. This corresponds to the tetrahedral group T. 

• Case 3: (2, 3, 4). N = 24. This corresponds to the octahedral group O. 

• Case 4: (2, 3, 5). N = 60. This corresponds to the icosahedral group I. 

We can really strongly limit the possibilities of a group G. We got this by counting a set S in two diferent 
ways, and playing around with the numbers and fractions. 

We aren’t done; we still have to show that these cases actually correspond to the groups. In each of these cases, 
we have three orbits, and those correspond to edges, faces, and vertices of these regular polyhedra. The pole 
for any vertex can be rotated to the pole for any other vertex. We’ll do the argument for the octahedral group 
and it will be similar for the remaining polyhedra. 

18.6 The Octahedral Group 
72left hand side 
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Example 18.5 (Octahedral group) 
Let’s take (2, 3, 4) and argue that this group must be symmetries of a cube or an octahedron. For 4, 
n3 = 6. So the stabilizer has size 4 and the orbit has size 6. Let’s try to fgure out what the orbit looks like. 
It contains six vectors inside R3 , so we can simply see the possible confgurations. 

Drawing the frst vector is easy; we just pick wherever we want for p. Then −p has to be in the same orbit 
as well because StabG(−p) has the same order as StabG(p), but we only have one orbit with stabilizer size 
4. What does the stabilizer group look like? Geometrically, it’s rotations around p and must have size 4, so 
we have Stabg(p) = C4. 

Now, let’s try to fgure out the other 4 poles in our orbit. Suppose we draw q such that p and q are not 
perpendicular. For any q in the orbit, −q is also in the orbit. We have determined that rotations by π/2 
around p are in our group, so those rotations of q should also be in our orbit. However, this gives us 4 
vectors for rotations of q and 4 vectors for rotations of −q, and this is too many. This picture was wrong 
because q was not drawn perpendicular to p. If we drew q perpendicular, then rotating q by 90 degrees 
gives us an orbit of size 6. 

Whatever the group G is, it fxes the collection of vectors that we drew. In particular, it fxes the octahedron 
obtained by taking the convex hull of the vectors and thus G ≤ O. But the octahedral group has size 24a 

and this group also has size 24, so |G| = |O| = 24 implies that G = O. 

awe worked this out in class on Wednesday 

We can repeat this for all the cases to fnish the proof, but it isn’t too important. The key lesson is how we 
were able to use the counting formulas and orbit decomposition of the set to really constrain the possibilities in 
these ways. A lot of the challenge was just fnding the right set to act on; in this case it was the poles. 
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19 Group Actions on G 

19.1 Conjugation 

Today, we will discuss the special case of group actions where the set S is G itself. We’ve seen the power of 
studying orbits and stabilizers and how they can help us understand groups of symmetries. One attempt is to 
just directly apply the group action on G: 

G×G −→ G 

(g, x) 7−→ gx. 

However, this isn’t particularly interesting. The action is transitive, and thus there is only one orbit and the 
stabilizers are all trivial. 

We instead defne a diferent group action on itself, conjugation. It takes 

G×G −→ G 

(g, x) 7−→ gxg −1 , 

conjugating x by g. One can check that it satisfes the axioms of a group action. We have some special names 
for the orbit and stabilizer under conjugation. 

Defnition 19.1 
The orbit of an element under conjugation is 

−1C(x) := Orbit(s) = {gxg : g ∈ G}, 

and is called the conjugacy class of x. 

Defnition 19.2 
The stabilizer of an element under conjugation is 

−1Z(x) := StabG(x) = {g ∈ G : gxg = x} = {g ∈ G : gx = xg} ≤ G. 

It is called the centralizer of x in G, and it is a subgroup of G. 

From before, for any x ∈ G, we have 
|G| = |C(x)| · |Z(x)|, 

and we also have the class equation, which states that 

|G| = |C1| + · · · + |Ck|, 

since the conjugacy classes partition G, and additionally, each |Ci| divides |G| from the counting formula. 

Student Question. Are the conjugacy classes related to cosets, like we saw how left cosets of a subgroup 
partitioned a group? 

Answer. No, in general the conjugacy classes won’t have the same size like cosets do. We’ll be seeing exactly 
what this equation looks like for diferent examples in the next few lectures. 

Another related set, which we saw in homework before is the center of a group. 

Defnition 19.3 
The center of G is 

{Z := x ∈ G : xg = gx, g ∈ G}. 

Other facts: 

• C(x) = {x} is equivalent to Z(x) = G and also x ∈ Z, the center of G. 

So if we had an abelian group, then the center would be the whole group, and the class equation would 
be just the sum of a bunch of 1s. 
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• For any x ∈ G, we have that Z ≤ Z(x) since the center commutes with all elements. Also, since x 
commutes with itself, ⟨x⟩ ≤ Z(x). This fact is a lower bound on the order of Z(x), so it gives us the upper 
bound |C(x)| ≤ |G|/ ord(x). 

• For all x ∈ G, conjugation preserves order: ord(x) = ord(gxg−1). This is true because conjugation defnes 
k k −1 −1)k kan automorphism of our group. If x = e, then e = gx g = (gxg so x = e is equivalent to 

−1)k(gxg = e. 

Student Question. Why is conjugation an automorphism? 

Answer. We can just show that conjugation satisfes the homomorphism property, that it preserves products: 
−1 −1 −1gxyg = gxg gyg . Conjugation is a homomorphism and in fact an isomorphism from G to itself. Since it 

is an automorphism of G, elements that are conjugate to each other will have the same properties with respect 
to order; whether or not they commute; and so on. 

All we have done so far is take observations about these defnitions, and the class equation comes from our work 
on group actions from last week. 

Example 19.4 
What does the class equation say for D5? The order of the group is |D5| = 10. It is equal to 

2 3 4 2 3 4D5 = {e, x, x , x , x , y, xy, x y, x y, x y}. 

−1 4One of the properties of refections is that conjugating x by y gives yxy = x . Let’s fgure out the 
conjugacy class of all the elements. The identity commutes with everything, so its conjugacy class is 
C(e) = {e}. 

Now let’s look at the refection y. From our facts above about the centralizer, we know that ⟨y⟩ ≤ Z(y) ≤ D5. 
Then Z(y) must be at least 2, and it must divide 10, so 2 and 10 are our only possibilities. However, not 
every element in D5 commutes with y, so |Z(y)| = 2, and thus |C(y)| = 5. In fact, every refection is 
conjugate to every other refection: C(y) = {all refections}. 

The conjugacy class of x is at least x, and it is also at least {x, x4}. It cannot be more, because the order 
must divide 10 and we only have 4 elements left to partition. Then we have C(x) = {x, x4} and similarly 
C(x2) = {x2, x3}. 

So we have 10 = 1 + 5 + 2 + 2. The center corresponds to the elements that are in its own conjugacy class, 
so the center of D5 is {e}. 

Notice that the conjugacy classes have very diferent sizes; they partition the group in a very diferent way from 
cosets. 

Since the group was small, we could have just brute forced and directly calculated the conjugacy classes for 
every element. However, looking at these divisibility facts is powerful and can handle more complicated and 
larger groups. 

Student Question. The conjugacy classes seem to contain x−1; is that always true? 

−1 4Answer. In the example, it was specifcally true because yxy = x . However, in general it isn’t true. For 
example, in the integers, 5 and −5 are inverses, but not conjugate to each other. 

19.2 p-groups 

By studying the class equation, it is possible to gain some information about a general class of groups, p-groups. 

Defnition 19.5 
eG is a p-group for a prime p if |G| = p for some e ≥ 0. 

There exists a group of any order simply by taking the abelian cyclic group of that order. 

92 



Lecture 19: Group Actions on G 

Example 19.6 
For example, we have a p-group for every e ≥ 0 by taking Cp, Cp2 , Cp3 , and so on. Another example of a 
p-group is Cp × Cp × · · · × Cp. 

Looking at a subgroup of 3×3 matrices also provides an example of a p-group. 

Example 19.7 
A more interesting group is the set of matrices   

1 ⋆ ⋆  1 ⋆ ≤ GL3(Fp), 
1 

which has order p3 . 

By looking at the class equation modulo p, the following theorem holds. 

Theorem 19.8 
Every p-group has non-trivial center.a 

aThere are elements of the center that are not the identity. 

Example 19.9 
For G = D4, |G| = 8 = 23 . The class equation says 8 = 1 + 1 + 2 + 2 + 2, so the center has size 2 (since 
there are two 1’s in the class equation.) 

Proof. The class equation for G states that 

|G| = |C1| + · · · + |Ck|, 

which is 
e 2 e−1 p = (1 + · · · + 1) + (p + · · · + p) + (p + · · · + p 2) + · · · + (p + · · · + p e−1), 

since the order of the conjugacy class must divide the order of G. 

Recall that the sizes of the center, |Z| is exactly the number of 1s in the class equation. Then the equation 
taken modulo p gives 

0 = |Z| mod p, 

which implies that p divides |Z|, since |Z| ≥ 1 because at least the identity e is in Z. So |Z| ≥ p, and then the 
center is nontrivial. 

This theorem is interesting because we get some nontrivial information about the group just from the size of 
the group, by using the class equation and looking at the numerics. 
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Example 19.10 
Take the upper triangular matrices of the form   

1 ⋆ ⋆  1 ⋆ ≤ GL3(Fp). 
1 

What is the center of the group? We want  
1  

a 
1 

  
b 1 
c  

x 
1 

  
y 1 
x =  

x 
1 

  
y 1 
x  

a 
1 

 
b 
c 

1 1 1 1 

for all x, y, z. This happens exactly when a = c = 0 and b can be anything. So |Z| = p, since there are p 
possibilities for b. 

The example above was a group of order p3 having center of size p, so it demonstrates that there is not a better 
2theorem where the center always has size p , or something. 

However, we can say a little more about the specifc case of |G| = p2 . 

Corollary 19.11 
2If |G| = p , then G must be abelian.a 

2aEarlier on, we stated that if p were prime, then G must be cyclic; now we get from p that G is abelian, although not 
necessarily cyclic. 

Proof. We have 
{e} ⪇ Z ≤ G. 

2We want to show that |Z| = p , because that implies that Z = G and then G is abelian. We already know that 
p divides |Z|, and that |Z| ≥ p, so the only two possibilities are p and p2 . Assume for the sake of contradiction 
that |Z| = p. Then, pick x ∈ G \ Z that is not in the center. Then, Z ⪇ Z(x); Z(x) ̸= Z because x ∈ Z(x) but 
x ̸∈ Z. 

Then there exists x ∈ Z(x) such that x ∈/ Z. Thus if |Z| = p, the only possibility is that |Z(x)| = p2 since Z(x) 
is a subgroup. However, this implies that Z(x) = G, but then x ∈ Z, which is a contradiction. 

The issue here is that p2 is just not very big, so there is not very much room for a lot to happen. We can even 
classify exactly what groups of size p2 look like. 

Corollary 19.12 
2 2Given a group G such that |G| = p , G must be isomorphic to either Cp2 , the cyclic group of size p , or 

Cp ×Cp = {(a, b) : a, b ∈ Cp}. 

Proof. We can split this up into two cases. 
2 2• Case 1. If there exists a ∈ G with ord(a) = p , then ⟨a⟩ = G, since ⟨a⟩ has size p , and thus must be the 

entire group G. 

2• Case 2. Otherwise, every element a ≠ e has order p, since it must divide p and cannot be p2 since we 
already considered that case. We claim that G being abelian such that every x ̸= e has order p comes 
from considering it as a vector space V over F = Fp 

2What is the dimension of this mystery vector space? The group G has size p , so it has dimension p. 
So V = F ⊕ F , implying that G = Cp ×Cp. Here, we are forgetting the vector space structure and just 
thinking about it as a group with respect to addition. 
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The addition structure is already implicit from the structure on G. To turn G into a vector space, we only 
n times z }| {

need to defne how to scale g ∈ G by n ∈ Fp, and then check the vector space axioms. Let n·g = g + · · · + g 
This is well-defned because ord(g) = p, so it only matters what n is modulo p. We have fgured out a way 
to turn the group into a vector space. Since any two vector spaces of the same dimension are isomorphic 
to each other as vector spaces; in particular, they are isomorphic to each other as abelian groups. 

All of this is gravy from what we were supposed to discuss this week, but it is helpful to see these examples. 
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20 The Icosahedral Group 

20.1 Review: The Class Equation 

Last time, we discussed the conjugacy class of an element, which is the orbit of an element under conjugation, 
and the centralizer of an element, which is the stabilizer of an element under conjugation. 

Defnition 20.1 
The conjugacy class of an element is 

−1C(x) := {gxg : g ∈ G} ⊆ G. 

Defnition 20.2 
The centralizer of an element is 

−1Z(x) := {g : gxg = x} ≤ G. 

The class equation states that 
|G| = |C1| + · · · + |Ck|, 

which tells us information about a group simply through numerics. 

20.2 Basic Information 

The group I ≤ SO3 is the icosahedral group, which is the group of symmetries of the icosahedron under rotations 
(orientation-preserving isometries in R3.) It is isomorphic to the dodecahedral group. 

The group is 
I = {ρ(u,θ)}, 

where each ρ(u,θ) is a rotation by θ around a vector u preserved by the rotation, which is called a pole of u. 
Additionally, the rotations have the property that ρ(u,θ) = ρ(−u,−θ). For a polyhedral group, u lies on a face, an 
edge, or a vertex of the polyhedron. 

Let’s start with counting the number of rotations in I by whether the pole is on a face, an edge, or a vertex. 

• Identity. The trivial rotation is one rotation. 
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• 20 faces. For each face, excluding the identity, there are 2 rotations by 2π/3 and 4π/3, which is 40 
rotations total. In this way, every rotation is counted twice, since ρ(u,θ) = ρ(−u,θ), and every pole through 
the center of a face also goes through the opposite face. So we count 20 face rotations total. 

• 30 edges. For each face, there is one (non-identity) rotation by π, and this also gets double-counted, so 
there are 30/2 = 15 edge rotations total. 

• 12 vertices. For each vertex, there are four nontrivial rotations, by 2π/5, 4π/5, 6π/5, and 8π/5. This 
double-counts as well, so there are 12 · 4/2 = 24 total vertex rotations. 

In total, we have 1 + 20 + 15 + 24 = 60 rotations. 

20.3 Conjugacy Classes 

Now, it is possible to understand I by thinking about the group action of conjugation on itself. 

Guiding Question 
How can we decompose I into conjugacy classes and what does the class equation tell us about normal 
subgroups of I? 

−1For g ∈ I, the conjugate of ρ(p,θ) under g is gρ(p,θ)g = ρ(q,θ), where q = g(p), since conjugating by g is 
essentially taking a change of coordinates by g. Thus, the rotations by the same angle θ with poles that can be 
reached from each other, through conjugation by some element in I, are conjugate. Then, we can count the 
conjugacy classes. 

• The identity is conjugate to itself. 

• Thus, the face rotations by 2π/3 are all conjugate.73 

• In addition, the vertex rotations by 2π/5 (or 8π/5 = 2π − 2π/5; they are the same rotation with the pole 
fipped) are conjugate. 

• The vertex rotations by 4π/5 and 6π/5 are conjugate as well. 

• The edge rotations are all conjugate. 

Then the class equation states that 
60 = 1 + 20 + 12 + 12 + 15. 

In particular, we see that the center of the group is trivial. 

20.4 Simple Groups 

We can use the class equation to study normal subgroups of I. The following defnition and then analysis 
provides one way the class equation can be useful. 

Guiding Question 
How can we study complicated groups by decomposing them into simpler groups? 

Defnition 20.3 
A group G is simple if the only normal subgroups H ⊴ G are H = {e} or H = G.a Equivalently, G is 

bsimple if for any surjective homomorphism f : G −→ G ′ , G ′ = G or G ′ = {e}. 
aA group G always has at least two subgroups, the trivial subgroup and the whole group, and a simple group only has 

these two. 
bSince the kernel of the homomorphism is a normal subgroup, the kernel must be either {e} or G, leading to these two 

cases: either f is an isomorphism or f is trivial. 

The guiding principle for studying groups is that simple groups are building blocks for all fnite groups. To 
study a complicated group G, it is possible to break it up by considering surjective homomorphisms to a smaller 
group G ′ and studying instead the kernel, which is normal, and the image, which is G ′ . Once a simple group is 

73These are the same as the face rotations of 4π/3; one angle must be picked to avoid double-counting. 
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reached, there are no more interesting surjective homomorphisms, and in this way a group can be "decomposed" 
into simple groups. 

For example, Cn is simple if and only if n is prime. In the same way that primes are building blocks for integers, 
simple groups are building blocks for all fnite groups and cannot really be broken down any further. 

Student Question. Does this mean that p-groups are simple? 

Answer. No. For instance, any subgroup of an abelian group will be normal, so an abelian group containing 
any nontrivial subgroup will not be simple. In particular, Cpn for n ≠ 1 are not simple. The center of a subgroup 
is always a normal subgroup, and the center of a p-group is nontrivial, so whenever the center of a p− group is 
not the entire group, the p-group will not be simple. 

Theorem 20.4 
The icosahedral group I is simple.a 

aIt has no normal subgroups. 

Proof. If N ⊴ I, then gNg−1 = N. In fact, for some element x ∈ N, its conjugate gxg−1 ∈ N as well. Thus, 
for x ∈ N, C(x) ⊆ N as well. So the normal subgroup is a union of conjugacy classes: [ 

N = C(xi). 
xi∈N 

Also, |N | divides 60 for G = I. Since 60 = 1+20+15+12+12, we must have that 1+ (a subset of {20, 15, 12, 12}) 
is a factor of 60, which is possible only when |N | = 1 or 60, in which case N = {e} or I. So there are no other 
normal subgroups of I, and I is simple. 

In some sense, this is a very soft proof. We do not really have to grapple with the group structure of the mystery 
normal subgroup N ; all we have to deal with is the sizes of the conjugacy classes. 

This argument is very special to I and would not work for D5. On the other hand, it is still possible to list all 
of the normal subgroups of D5 by looking at the class equation; there are not that many. 

Problem 20.5 
Try to follow the same proof for D5 (and fail!)a 

aSince it is not actually simple, the proof will not work. 

Recall that |S5| = 5! = 120. Then, let A5 be the subgroup of even permutations in S5; it is the kernel of the 
homomorphism sign: S5 −→ {±1}, and has index 2, so it has order 60. 

Theorem 20.6 
The icosahedral group I is isomorphic to the alternating group A5. 

Proof. We want to show that an element in I acts in the same way as an element of S5.. To do this, we construct 
an action of I on a set of size 5. 

We want to fnd a set S such that the group action of I on S gives a homomorphism 

non-trivial f 
I −−−−−−−→ S5. 

98 



Lecture 20: Class Equation for the Icosahedral Group 

Recall from before that I is the symmetry group of both the icosahedron and the dodecahedron. There are 
fve cubes ftting in the dodecahedron where the vertices are vertices of the dodecahedron and the edges of the 
cubes are diagonals of the pentagons that are the faces of the dodecahdron. For such a cube, every face of the 
dodecahedron will contain exactly one edge of the cube. Once one diagonal on one face is chosen, it determines 
the rest of the cube, and since a pentagon has fve diagonals, there are 5 such cubes. 

Let S be the set of 5 cubes in the dodecahedron, labeled from 1 to 5 in some order. Then, I clearly acts on S, 
since it acts on the dodecahedron. 

Let 
f : I −−−−−−→ Perm(S) = S5

non-trivial 

take an element of I to the corresponding permutation of the fve cubes. 

The group I is simple, and the kernel of a homomorphism is always normal, so ker(f) ⊴ I = {e} or I. Since f 
is nontrivial, ker(f) ̸= I, so ker(f) = {e}. This implies that the homomorphism f must be injective. 

Then, consider a diferent homomorphism φ taking I −→ {±1}, the composition 

f sign
I −→ S5 −−→ {±1}. 

Again, ker(φ) = {e} or ker(φ) = I. Since |I| = 60 > |{±1}| = 2, φ is mapping a larger group onto a smaller group 
and cannot be injective, so ker(φ) = I. So under φ, every element of I maps to 1. However, this implies that the 
sign of the corresponding permutation of some element of I is 1, so the corresponding permutation is even, and 
so f(I), a subgroup of permutations in S5, consists entirely of even permutations. Then f(I) ⊆ ker(sign) = A5, 
so f is actually a homomorphism from I to A5 ⊂ S5; since it is injective from I to S5, it is still injective from I 
to A5. Since I and A5 are both of order 60, f is also a surjection, and thus f is an isomorphism between I and 
A5. 

Throughout this proof, the fact that I is simple is used over and over again to argue facts about various 
homomorphisms coming from I. 

Corollary 20.7 
The alternating group A5 is also simple. 

In fact, An is simple for all n ≥ 5, but the proof is more complicated and involves thinking about the actual 
permutations. For the proof that A5 is isomorphic to I and thus simple, the class equation was the jumping-of 
point. The class equation showed that I was simple, which then provided strong restrictions on homomorphisms 
from it. 

20.5 Conjugacy Classes for Symmetric Groups 

Next time, the conjugacy classes for Sn and An will be determined. Recall that every σ ∈ Sn can be decomposed 
via cycles. 

Example 20.8 
The permutation (123)(45) ∈ S6 takes 1 7→ 2, 2 7→ 3, and 3 7→ 1 as the frst cycle, of length 3, then 4 7→ 5 
and 5 7→ 4 as the second cycle, of length 2, and 6 7→ 6 as the third cycle, of length 1. 

99 



Lecture 20: Class Equation for the Icosahedral Group 

The sign of σ, where σ = τ1 · · · τr, where each τi is a 2-cycle74 , is (−1)r . For example, the sign of (1234) = 
(12)(13)(12) is −1. 

74Also called a transposition. 
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21 Conjugacy Classes for Symmetric and Alternating Groups 

21.1 Review 

Recently, we have been discussing the conjugation action of a group on itself. In particular, it is possible to 
decompose a group into its conjugacy classes, which is similar to decomposing a set into its orbits (like we 
were doing last week). 

Last time, we looked at the icosahedral group and saw its class equation and fgured out information based on 
that. 

21.2 Cycle Type 

Today, we will be looking at the conjugacy classes for Sn and An, the symmetric group and the alternating 
group, which consists of even permutations. 

Recall that a permutation σ ∈ Sn can be written in cycle notation. This is a very useful way of writing a 
permutation. 

Example 21.1 (Cycle Notation) 
For example, the permutation (123)(45) takes 1 to 2 to 3 to 1, and 4 to 5 back to 4. 

Given the cycle type, it is easy to defne and fgure out the sign of a permutation. A 1-cycle will have sign 
+1, a 2-cycle will have sign −1, and so on, where a k-cycle will have sign (−1)k−1 . For example, (123)(45) has 
sign −1 = (+1)(−1) = −1, where the signs of each cycle are multiplied. In particular, even permutations are 
permutations that have an even number of even-length cycles.75 

Guiding Question 
What are the conjugacy classes of Sn? 

It turns out that the sign will be a very helpful tool in determining the conjugacy classes. 

Let’s look at an example. 

Example 21.2 
If σ = (123), then for p ∈ Sn, let the conjugate be 

τ = pσp−1 . 

Let’s say p(1) = i, p(2) = j, and p(3) = k. Evaluating the conjugate on i gives 

τ(i) = pσp−1(p(1)) = p(σ(1)) = p(2) = j. 

Similarly, 
τ (j) = p(σ(2)) = p(3) = k. 

It turns that in cycle notation, 
τ = (ijk) = (p(1)p(2)p(3)). 

It is easy to check that τ fxes all the other points. So conjugating a 3-cycle produces another 3-cycle with 
diferent points. 

Consider a more complicated permutation. 
75It’s confusing: an even-length cycle makes a permutation odd. 

101 



Lecture 21: Symmetric and Alternating Groups 

Example 21.3 
For σ = (123)(47) · · · , conjugating by p gives 

(p(1)p(2)p(3))(p(4)p(7)) · · · . 

It turns out that the lengths of the cycles in a permutation don’t change upon conjugation! 

Defnition 21.4 
Given σ ∈ Sn, the cycle type of σ is the number of 1-cycles, 2-cycles, and so on, that show up in the cycle 
notation. 

The cycle type is conjugation-invariant. If τ = pσp−1 , then σ and τ have the same cycle type. For example, 
(47)(123) has cycle type (2, 3). 

In fact, if σ and τ have the same cycle type, then they are conjugate. 

Example 21.5 
Take 

σ = (145)(23) 

and 
τ = (234)(15). 

Simply by matching cycles, we can defne p ∈ Sn taking 1 7−→ 2, 4 7−→ 3, 5 7−→ 4, 2 7−→ 1, and 3 7−→ 5; 
that is, p = (12)(354). This p is constructed to be such that 

pσp−1 = τ.a 

aTry working through this by hand! 

The upshot is this proposition. 

Proposition 21.6 
Two permutations σ and τ are conjugate if and only if σ and τ have the same cycle type. 

21.3 Conjugacy Classes in Sn 

Conjugation in Sn can be understood well by looking at cycles. 

Guiding Question 
What are the conjugacy classes in Sn? 

From our characterization of when two permutations are conjugate, this can certainly be done! Let’s start with 
an example. 

Example 21.7 
For S3, there are three conjugacy classes: cycle type 3, 2 + 1, and 1 + 1 + 1. For example, representatives 
could be (123), (12), and the identity permutation. 

Now, we can do more complicated computations. For instance, we may want to fnd out the size of a given 
conjugacy class. 
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Example 21.8 (Conjugacy classes in S4) 
For a permutation 

x = (1234) ∈ S4, 

the conjugacy class C(x) is all 4−cycles in S4. For each 4-cycle, there are 24 orderings of 1, 2, 3, and 4, and 
each one is overcounted by a factor of 4. For example, 

(1234) = (2341) = (3412) = (4123). 

So there are 
24/4 = 6 

elements in the conjugacy class. 

Alternatively, where the stabilizer is Z(x), then 

|G||C(x)| = . 
|Z(x)| 

Since conjugation is essentially "relabeling" the numbers in the original permutation, replacing 1 with p(1), 
2 with p(2), and so on, the elements in the stabilizer should relabel the numbers 1 through n in such a way 
that the permutation is still the same. For instance, relabeling (1234) to (2341) gives the same permutation 
x. In this case, because there are 4 diferent starting points to the cycle, there are 4 permutations p ∈ Z(x) 
that stabilize x. So again, 

|G| 24 |C(x)| = = = 6. 
|Z(x)| 4 

Essentially, the redundancy in cycle notation gives us diferent ways to write the same permutation, and 
dividing out by this redundancy (the stabilizer) gives the size of the conjugacy class. 

Cycle notation also simplifes these computations for larger symmetric groups. 

Example 21.9 (Conjugacy Class in S13) 
Consider 

x = (123)(456)(78910)(11)(12)(13) ∈ S13. 

What is the stabilizer Z(x) of x? For the 4-cycles, there are 4 choices for where to start the cycle. Any 
reordering of 12, 11, and 13 doesn’t change the fact that 12, 11, and 13 are fxed; there are 3! ways to order 
the 1-cycles. 

For the 3-cycles, there are 3 starting points each, but the 3-cycle (123) could also be mapped to (456), so 
there are 2! ways to order the two 3-cycles, and 3 starting points each. 

In general, if there are k ℓ−cycles, there are ℓ starting points for each cycle, and k! ways to order them. So 

|Z(x)| = 2! · 3 · 3 · 4 · 3! · 1 · 1 · 1 = 432. 

Then, 
13! |C(x)| = . 
432 

So fnding the sizes of conjugacy classes is really just doing some combinatorics for the size of stabilizer. Given 
the size of the stabilizer, since we know the size of the entire group, |Sn| = n!, dividing by |Z(x)| directly gives 
|C(x)|, without having to compute every permutation in the conjugacy class. 

21.4 Class Equation for S4 

Now, we can work out the class equation for S4 without too much pain. 
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Example 21.10 (Class Equation for S4) 
The order of S4 is |S4| = 4! = 24. Then, there are only fve possible cycle types, listed on the left column of 
the table. These are the diferent ways to sum to 4. 

cycle type |Z(x)| |C(x)|
4 4 6 

3 + 1 3 8 
2 + 1 + 1 2 · 2! = 4 6 

2 + 2 2! · 2 · 2= 8 3 
1 + 1 + 1 + 1 24 1. 

The size of the stabilizer for cycle type 4 is 4, as we worked out already. For 3, there are three possible 
places to start the cycle, so there are three permutations fxing the cycle type. For 2 + 1 + 1, there are 2 
ways to pick a starting point for the 2-cycle and 2! = 4 ways to order the 1-cycles, which gives 4 total. The 
rest of the middle row follows similarly. 

We have 
|C(x)| = |G|/|Z(x)|, 

so the right row, the size of the conjugacy class, is found by dividing |G| = 24 by the middle row, the size 
of the stabilizer. 

The class equation then says 
24 = 1 + 3 + 6 + 8 + 6. 

What about the alternating group? The conjugacy classes for A4 can also be determined. 

Example 21.11 (Conjugacy classes for A4) 
What are the conjugacy classes for A4? 

The alternating group A4 is a subgroup of S4. In fact it is the kernel of the sign homomorphism, so it is a 
normal subgroup. In particular, a normal subgroup is fxed under conjugation, so A4 is the union of conjugacy 
classes. Using the defnition of the sign, the cycle types 3 + 1, 2 + 2, and 1 + 1 + 1 + 1 all correspond to the 
elements in A4. Then, taking the sizes of the corresponding conjugacy classes, we have 

|A4| = 12 = 1 + 3 + 8, 

but since 8 is not a factor of 12, this is actually not the class equation for A4. 

What’s going wrong? If an element σ is conjugate to another element τ in A4, it is a diferent notion than 
being σ being conjugate to τ in S4! In particular, σ and τ can be conjugate in S4, since we need τ = pσp−1 for 
p ∈ S4, without being conjugate in A4, since we require that τ = qσq−1 for q ∈ A4. If it is possible to fnd two 
elements conjugate by an odd permutation but not an even permutation, then they will be conjugate in S4 but 
not A4. 

Consider x ∈ An ≤ Sn. The conjugacy class of x in An is 

−1CA(x) = {y ∈ A : y = pxp , p ∈ An}, 

the subset of elements in An conjugate to x by some even permutation, which is a subset of 

−1CS (x) = {y ∈ An : y = pxp , p ∈ Sn}. 

Similarly, the stabilizer for A is a subgroup of the stabilizer for S. 

ZA(x) = {p ∈ An : px = xp} ≤ ZS (x) = {p ∈ Sn : px = xp}. 

Using the counting formula, 
1 |CA(x)| · |ZA(x)| = |An| = |Sn|,
2 

so 
1 |CA(x)| · |ZA(x)| = |CS (x)| · |ZS (x)|. 
2 
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The product difers by a factor of 2 for An and Sn. Additionally, |ZA(x)| is a factor of |ZS (x)|, as it is a 
subgroup. 

Our analysis leads us to two possibilities: 
1• Case 1. In this case, |CA(x)| = |CS (x)| and |ZA(x)| = |ZS (x)|. Here, the conjugacy class stays the same2 

size, but only half of the permutations that stabilize them are even and in An. 

1• Case 2. In this case, |CA(x)| = |CS (x)| and |ZA(x)| = |ZS (x)|. So the size of the conjugacy class is split 2 
in half when going from Sn to An, and only half of them are conjugate by even permutations. Since the 
sizes of the stabilizers of x are the same, every p ∈ Sn such that px = xp is even, and lives inside of An. 

In our example, 8 must split, since it does not divide 12, and 1 and 3 cannot split because when they are split, 
they are split into halves, and they are odd numbers. Thus, the class equation for A4 must be, by simple 
numerics, 

|A4| = 12 = 1 + 3 + 4 + 4. 

In the 8 = 4 + 4 case, x = (123), and this is the case where the conjugacy class does split, which means the 
stabilizer group does not get any smaller. Thus, every p such that px = xp is even. This is what it means for 
the stabilizer group not to get any smaller! 

Example 21.12 
What happens for S5? What about A5? 

For S5, the class equation looks like 

120 = 1 + 10 + 15 + 20 + 20 + 30 + 24 . 

The even classes have size 1, 15, 20, and 24. We currently have 

|A5| = 60 = 1 + 15 + 20 + 24, 

which is not the class equation. Clearly, 1 and 15 do not split, since they are odd. Since 24 is not a factor of 
60 (but 24/2 = 12 is), it must split. 

The question remains if 20 splits into 10 + 10 or not. We can show directly that there is an odd permutation 
that commutes with it, and so it cannot split. So the class equation is 

60 = 1 + 15 + 20 + 12 + 12 . 

These examples demonstrate that after our analysis of cycle types in symmetric and alternating groups, deter-
mining the class equation is not so much algebra and more counting and combinatorics. 

21.5 Student Question 

Student Question. Why do we care about An? Does it show up as the symmetry group of some object? 

Answer. Since we are working with low numbers and dimensions, there are lots of coincidences where the 
groups that show up will be the same as each other, even if they aren’t actually related in a general way for 
higher dimensions. In fact, A4 shows up in the symmetry group of the tetrahedron, and we had A5 show up as 
the symmetry group of the icosahedron. But in general, An is (maybe? Davesh said he didn’t really know/hadn’t 
thought about it) not necessarily the symmetry group of some higher-dimensional geometric object. But in 18.702 
we will study the symmetries of equations (Galois frst studied these) instead of geometric objects, and it is very 
easy to write down equations that have An or Sn as (part of) their symmetry groups. In fact, group theory 
evolved at the same time as studying symmetries of non-geometric objects evolved (Galois again?) 

The reason why we care about An is this idea that simple groups are "building blocks" in some sense, and An 

for n = 5 and higher is simple, and in fact it is essentially the only (interesting?) simple normal subgroup of 
Sn. So if we care about Sn then we automatically care about An, since An is a "building block" of Sn. 

In general, people like to break down problems into studying the simple subgroups of certain groups, and then 
studying the ways in which the simple groups can combine into the larger groups, in order to understand the 
larger group as a whole. 
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There are lots of ways of combining groups that get pretty complicated, and this is defnitely something a lot of 
people are working on. The two ways of combining groups that get their own names are the "direct product" 
and the "semidirect product," which is a slightly more nonabelian way of combining groups. In this case, getting 
from An to Sn is just a semidirect product in some way. 
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22 The Sylow Theorems 

22.1 Review 

Last time, we discussed the conjugacy classes of symmetric and alternating groups. 

22.2 Motivation 

The Sylow theorems are a set of related theorems describing the subgroups of prime power order of a given 
fnite group. They are very powerful, since they can apply to any fnite group, and play an important role in 
the theory of fnite groups. 

To motivate the Sylow theorems, recall the following basic theorem. 

Theorem 22.1 
If G is fnite, and H is a subgroup of G, then |H| divides |G|. 

In fact, we can ask if the reverse is also true: given a factor of |G|, is there a subgroup of that size? It turns 
out that it it not true. 

Example 22.2 (Counterexample) 
For G = A4, |G| = 12, but it turns out that there is no subgroup of order 6.a 

aAs an exercise, try showing this using the class equation! 

So there is not always such a subgroup. 

Guiding Question 
Can we add constraints so that some form of reverse of Theorem 22.1 is true? When must there be a 
subgroup of a particular size? 

The next theorem is quite surprising and powerful: it turns out that the reverse is true for prime powers. If 
k kd = p , a prime power dividing |G|, then there must exist a subgroup where |H| = p . 

22.3 The First Sylow Theorem 

The three Sylow theorems, which will be stated in this lecture and proved in the next, formalize and elaborate 
on this idea of studying subgroups of prime power order. 

Note 22.3 
eFor today’s lecture, we use e to denote the largest exponent of p such that p | |G| and we use 1 to denote 

the identity element instead. Also, n will always refer to |G|. 

The frst Sylow theorem states that there is always a prime power order subgroup. 

Theorem 22.4 (Sylow I) 
Given G such that 

e|G| = n = p · m, 

ewhere p is the largest power of p (that is, gcd(p, m) = 1), then there exists a subgroup H ≤ G such that 

e|H| = p . 

Such a subgroup is called a Sylow p-subgroup. It has maximal prime power order within G. 
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Defnition 22.5 
eLet G be a group such that |G| = n = p m such that gcd(p, m) = 1. Then a subgroup H ≤ G such that 

e|G| = p is called a Sylow p−subgroup. 

Let’s see an application of this powerful theorem. 

Example 22.6 
Consider G = S4. Since |S4| = 24 = 8 · 3, Sylow I states that there is a subgroup of order 8. In fact, we can 
take 

H = ⟨(12), (34), (13)(24)⟩. 

Another example is the dihedral group. 

Example 22.7 
For G = D5, we have |D5| = 10 = 2 · 5. So there must be subgroups of size 5 and 2. A subgroup generated 
by a rotation 

⟨ρ2π/5⟩ has order 5. 

A subgroup generated by any refection 

⟨refection⟩ has order 2. 

Looking at this theorem now, it may be hard to appreciate. One reason this theorem is relevant now is that 
the proof is a very nice application of the theory on group actions and orbits. Moreover, this theorem is one 
that applies extremely generally. We have mostly been studying explicit groups such as the dihedral groups or 
symmetric groups in this class, but the Sylow theorems apply to any fnite group. When given an unfamiliar 
group, the Sylow theorems provide footholds and crevices, like in climbing a clif, to start of with and to learn 
more about the groups. Sylow I gives lots of interesting subgroups that play of of each other, depending on 
the diferent factors of the size of the group G. 

We can get a useful corollary for free. 

Corollary 22.8 
If p divides |G|, there exists an element x ∈ G with order p. 

For example, if |G| = 14, it must have at least one element of order 7. 

Proof of Corollary 22.8. eUsing Sylow I, there exists a subgroup H ≤ G such that |H| = p , where e ≥ 1. Pick 
some y ∈ H. Then, 

⟨y⟩ = Cpf , 

esome cyclic group with order dividing p . Taking 

k−1 px = y 

provides an element of order p. 

22.4 The Second Sylow Theorem 
eThe frst Sylow theorem states that a Sylow p-subgroup, a subgroup of maximal size p dividing |G|, exists. In 

fact, we can say a lot more about what these subgroups look like. 
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Theorem 22.9 (Sylow II) 
There are two parts; part a) is what is usually referred to as the second Sylow theorem. 

′(a) Given H ≤ G, where H is a Sylow p-subgroup, any other Sylow p−subgroup H ≤ G is conjugate to 
′ H; i.e. there exists g such that H = gHg−1 . 

d(b) Given any subgroup K ≤ G such that |K| = p , for any Sylow subgroup H, there exists g such that 
gKg−1 ≤ H.a 

aNotice that |K| does not have to be the maximal prime power, and can have order smaller than |H|. Every prime power 
order subgroup, up to conjugation, sits inside a Sylow subgroup. 

Evidently, conjugating a Sylow subgroup will result in a Sylow subgroup (since they have the same size), and 
Sylow II states that all the Sylow subgroups arise in this way. 

Note that the second part is stronger, since |K| can be a prime power smaller than |H|, and implies the frst 
′part by applying b) to K = H . The second part states that given any prime power subgroup K ≤ G and any 

Sylow subgroup H ≤ G, it is possible to conjugate K to make it land in H. 

Student Question. Is the converse of part a) true? If H is a Sylow p-subgroup, is gHg−1 also a Sylow 
p-subgroup? 

Answer. The converse is essentially automatically true. In order to be a Sylow p-subgroup, the only requirement 
is being a subgroup of a certain size, and conjugating by an element evidently produces a subgroup of the same 
size. The impressive part is that given two arbitrary Sylow p-subgroups, they must in fact be conjugate! 

Sylow II confrms our intuition for refections in dihedral groups. 

Example 22.10 
For D2n, every subgroup of size 2 is generated by a refection, and Sylow II indicates that all the refections 
are conjugate. 

22.5 The Third Sylow Theorem 

The last Sylow theorem indicates the number of these (conjugate) subgroups. 

Theorem 22.11 (Sylow III) 
The number of Sylow p-subgroups of G divides 

n 
m = 

pe 

and is congruent to 1 modulo p. 

This theorem seems kind of weird, but is actually very useful. 

Example 22.12 
Consider D5 and p = 2. The number of Sylow 2−subgroups is 5, which does divide 10/2 and is congruent 
to 1 modulo 2. 

The frst Sylow theorem indicates existence of Sylow subgroups, the second Sylow theorem indicates that all 
Sylow subgroups are related by conjugation, and the third provides strong (and kind of funky) constraints on 
the number of such subgroups. 

22.6 Applications of the Sylow Theorems 

Now, we can look at a few diferent applications of these theorems, and we will see how powerful they are. 
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Example 22.13 
Consider any group G such that 

|G| = 15 = 5 · 3. 

By Sylow III, for p = 5, the number of Sylow 5-groups divides 3 = 15/5, and is equal to 1 mod 5. In 
particular, the only possibility is 

#Sylow 5-groups = 1. 

So there is a unique H ≤ G such that |H| = 5. Since there is only one subgroup of size 5, Sylow II indicates 
that gHg−1 = H. That is, H is normal: the Sylow theorems indicate automatically that there is a normal 
subgroup of size 5. 

For p = 3, Sylow III states that the number of Sylow 3−subgroups divides 5 and is 1 mod 3, so it is also 1. 
Thus, there exists some unique K ⊴ G such that |K| = 3. 

Moreover, H ∩ K = {1}, since H ∼= C5 and K =∼ C3. Nontrivial elements of H have order 5, while elements of 
K have order 3, so they intersect only at the identity. So the Sylow theorems give, for free, nonintersecting 
normal subgroups of size 5 and 3 for every single group of size 15. That is quite impressive! 

76Recall the notion of a product group. 

Defnition 22.14 
The product group H ×K is 

H ×K = {(h, k) : h ∈ H, k ∈ K} 

where 
(h, k) · (h ′ , k ′ ) = (hh ′ , kk ′ ). 

The product group is the group given by coordinate-wise multiplication. We claim that in Example 22.15, a 
group of order 15 must be isomorphic to a product of groups of order 3 and order 5. 

Proposition 22.15 (Example 22.15) 
Where |H| = 5 and |K| = 3, 

(a) the two subgroups commute: for h ∈ H and k ∈ K, hk = kh; 

(b) H ×K ∼= G. 

Once H ×K ∼= G, then we know that any group of order 15 is isomorphic to C5 ×C3. 

Proof. Part b) follows from part a). 

(a) For the frst claim, since K is normal, hkh−1 ∈ K, and thus, multiplying on the right by an element of K, 

hkh−1k−1 ∈ K. 

Similarly, kh−1k−1 ∈ H, since H is normal, but then 

hkh−1k−1 ∈ H. 

Thus, hkh−1k−1 ∈ H ∩ K = {1}, and since the intersection was just 1, so hkh−1k−1 = 1, and so 

hk = kh. 

(b) Consider the mapping 

f : H ×K −→ G 

(h, k) 7−→ hk. 

76This was discussed on the homework. 
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We claim that this is a homomorphism. In particular, 

f((h, k) · (h ′ , k ′ )) = f((hh ′ , kk ′ )) = hh ′ kk ′ = hkh ′ k ′ = f((h, k)) · f((h ′ , k ′ )), 

where the second-to-last step comes from H and K commuting. 

In general, if we take two arbitrary subgroups and take this function, this would not be a group ho-
momorphism! It was extremely important that H and K commute, which is true since they are both 
normal. 

Next, we must check that f is in fact an isomorphism. Since H and K have trivial intersection, hk = 1 
only when h = 1 and k = 1, so the kernel is 

ker(f) = {h, k : hk = 1 ∈ G} 
= {(1, 1)}. 

Since the kernel is trivial, f is injective. In addition, |H ×K| = |G| = 15, and so f must be bijective and 
thus an isomorphism. 

We have shown that any group G of order 15 is 

G ∼= C5 ×C3. 

There is only one group of size 15. In particular, 

C15 = C5 ×C3. 

Student Question. How did we know that H and K were C5 and C3? 

Answer. Any group of prime order is cyclic; we proved this in a previous lecture. 

There is only one group up to isomorphism of order 15. For higher order groups, fnding the number of groups 
up to isomorphism can get tricky. The Sylow theorems make it much easier to start an argument for classifying 
diferent groups, since they can apply to any fnite group. 

For n = 15, there is only one isomorphism class. 

Guiding Question 
For groups such that |G| = pq, a product of two distinct primes, how many isomorphism classes of groups 
are there of size pq? 

Let’s think about n = 10. 

Example 22.16 
Consider a group G such that |G| = 10 = 5 · 2. 

We know already that G is not unique; for example, D5 and C10 both have order 10 but are non-isomorphic. 

Proposition 22.17 
There are two isomorphism classes: G ∼= C5 ×C2, and G ∼= C10. 

Proof. From Sylow III, the number of Sylow 5-groups divides 2 and is 1 modulo 5, so there is only one Sylow 
5-group. So there is a normal subgroup K ⊴ G such that |K| = 5. Let x ∈ K be a generator for K, so that 

K = ⟨x⟩, 

where ord(x) = 5. 
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Take H to be some Sylow 2-group. Let H = ⟨y⟩, where the order of y is 2. Since K is normal and generated by 
x, yxy−1 ∈ K, so 

−1 r yxy = x 

for some exponent 1 ≤ r ≤ 4. Rearranged, we have 

r yx = x y. 

As before, since K has elements of order 5 and H has elements of order 3, the intersection is trivial: 

K ∩ H = {1}. 

iThis implies that the possible x yj are distinct from each other.77 

Therefore, the group G is 
i jG = {x y : 0 ≤ i ≤ 4, 0 ≤ j ≤ 1}, 

where all these elements are distinct. There are 10 such elements, so these elements must be the entire group 
G. The relations 

5 2 x = y = 1 

and 
r yx = x y 

completely determine the group operation! The exponent r entirely controls which group of size 10 we have. 

Which values of r work? Currently, we have that 1 ≤ r ≤ 4, so there are at most four diferent isomorphism 
classes for G. 

• If r = 2, then we would have 
2 2 4 2 4 x = y x = yyx = yx y = x y = x , 

5 2 r 4 3by repeatedly using the relations x = y = 1; yx = x y. Here we have x = x , implying that x = 1. This 
is a contradiction, since x had order 5. So r = 2 is impossible. 

r• In general, if yx = x y, then 
22 r x = y x = · · · = x , 

r −1 2by running through the same calculations as above. So x 
2 

= 1, and we must have r = 1 mod 5. So 
r = 3 is impossible, since 9 is not 1 mod 5. 

• For r = 1, then H and K commute by defnition, and the same analysis as in 22.15 works, and we have 

G = C5 ×C2, 

which turns out to be isomorphic to C10. 

• For r = 4, we recognize these relations: 
G = D5. 

For this example, we used the Sylow theorems to narrow down the possibilities, and simply looked through the 
possibilities to determine the isomorphism classes of groups of order 10. 

For n = 10, because Sylow III did not restrict the number of 2-subgroups to be 1, only the 5-subgroup was 
necessarily normal, and so the analysis was more complicated and subtle than for n = 15. Since for p = 2, there 
could have been 1 or 5 subgroups (both these numbers divide 10/2 = 5 and are congruent to 1 modulo 2), we 
were able to obtain less information about 2−subgroups. 

In general, if |G| = pq, a product of two distinct primes, then 

• if q ≠ 1 mod p, then G = Cp ×Cq = Cpq. 

i−i ′ j−j ′ 77Otherwise, if there are two nondistinct elements, we end up with x y = 1, implying that some element of K is the 
inverse of some element of H, which is not possible with a trivial intersection. 
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• if q = 1 mod p, then G = Cpq or a diferent non-abelian group.78 

To prove this, we follow the same analysis as today. The frst step is to look at the Sylow p−groups and 
the Sylow q−groups. In the frst case, we argue that they are normal and commute, and we can show that 
G ∼= Cp ×Cq . In the second case, using the relations, there end up only being two possibilities for r. 

78For p = 2 and q = 5, the diferent non-abelian group is D5. 
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23 Proofs and Applications of the Sylow Theorems 

23.1 Review 

Last time, we introduced the Sylow theorems. While they may be a lot to take in, the main takeaway is how 
general the Sylow theorems are. When provided with any fnite group, we automatically already know that 
there exist certain p-subgroups79 that must be conjugate, and additionally there is a strong constraint on the 
possible number of such subgroups. 

The applications for C15 and C10 discussed last lecture demonstrate how powerful these theorems can be. 

We restate the theorems briefy here: 

Theorem 23.1 (Sylow Theorems) 
Let G be a fnite group where 

e|G| = n = p m 

and gcd(p, m) = 1. The three parts of the theorem follow: 
e1. Recall that a Sylow p-subgroup is a subgroup H ≤ G such that |H| = p . The frst theorem states 

that there always exists a Sylow p-subgroup. 
f2. Given any K ≤ G where |K| = p , there exists some g ∈ G such that gKg−1 ≤ H. 

3. The number of Sylow p-subgroups is a factor of m and congruent to 1 mod p. 

23.2 Application: Decomposition of Finite Abelian Groups 

One application of the Sylow theorems is the decomposition of fnite abelian groups. 

Consider a fnite abelian group G such that the prime factorization of the order is 

e1 er|G| = p · · · p .1 r 

Then we know that we have a Sylow subgroup Hi such that 

ei|Hi| = pi 

for each of these primes. Since G is abelian, conjugating a group produces the same group, so by Sylow II, these 
(abelian) subgroups Hi are unique for each prime. 

Theorem 23.2 
Every abelian group G is isomorphic to a product of groups of prime power order. 

Using that G is abelian, if we take the product 

H1 × · · · × Hr, 

we can construct a homomorphism80 

f : H1 × · · · × Hr −→ G 

(x1, . . . , xr) 7−→ x1 + · · · + xr. 

Lemma 23.3 
The homomorphism f is an isomorphism. 

79The size is the largest power of p that divides |G|
80Because G is abelian, we use + as the group operation. 
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Proof. First, f is a homomorphism because G is abelian and the terms will commute when verifying the 
homomorphism property. It is necessary that G is abelian. 81 Next, we know that im(f) is a subgroup of G 
and also contains a copy of Hi for all i82: 

Hi ≤ im(f) ≤ G 
eifor all i. Thus, p divides |im(f)| for each i, and since they are relatively prime, the product i Y 

eipi 

divides |im(f)|. This forces the image to be the same order as |G|, and thus they must be the same. We can 
conclude that f is surjective. Both the domain and image of f have the same size, so it is also injective and an 
isomorphism. 

As a result, the study of fnite abelian groups can be reduced to studying abelian p-groups. These are completely 
understood, and will potentially be covered more in 18.702! In contrast, non-abelian groups are complicated 
and not well understood. 

23.3 Proof of Sylow Theorems 

The main idea to prove all of these theorems is to fnd a useful action of G on a set and exploit it. This is a 
continuation of what we have been doing in the last few weeks, in geometric situations with symmetries as well 
as with the conjugation action of G on itself. The striking part about these three proofs is that unlike rotational 
symmetries of the cube, where there are lots of sets to think about, such as vertices and faces and so on, here, 
there is no prior knowledge about G, and the only group action we have for any arbitrary group is G acting on 
itself, and not much else. 

Theorem 23.4 (Sylow I) 
Given G such that 

e|G| = n = p · m, 

ewhere p is the largest power of p (that is, gcd(p, m) = 1), then there exists a subgroup H ≤ G such that 

e|H| = p . 

Proof of Sylow I. Take G such that 
e|G| = p · m. � � 

eLet S be the subsets of G of size p and let n be the order of G. By basic combinatorics, there are n 
pe such 

subsets, so � � 
n |S| = . 
pe 

Let G act on S by left translations: given an element g ∈ G and a subset U ∈ S, we map 

U 7−→ gU. 

eOur eventual goal is to fnd a subgroup of G of size p by looking at stabilizers, as they are always subgroups 
of G. We fnd the size of a stabilizer by trying to fnd an orbit of size m, as we then know that the stabilizer 

ewill be order p . 83 We begin with some lemmas. The frst lemma provides information about the size of the set 
modulo p. 

81Essentially, since G is abelian, there is really only one way to "combine" the Sylow p-subgroups. When |G| = 10 for a 
non-abelian group, we saw that the Sylow subgroups for 2 and 5 could combine in a diferent way to make D10. 

82Take H1 ×{1}× · · · {1} to get H1 ≤ im(f ), for example. 
e83The product of the size of an orbit and the size of the stabilizer is the size of the group G, which here is m · p . 

115 



Lecture 23: Proving the Sylow Theorems 

Lemma 23.5 
eWhere n = |G| = m · p , we have that � � 

n |S| = ̸= 0 (mod p). 
pe 

Furthermore, � � 
n ≡ m (mod p). 
pe 

Sketch of Proof. The proof is not particularly relevant to group theory and can be proved by expanding the 
binomial coefcient and showing that the number of powers of p in the numerator is the same as the denominator. 
Alternatively, one could expand (1 + x)n and look at it modulo p. 

eTo reiterate, S consists of all subsets of G of size p , and these subsets do not have to be subgroups. 

Lemma 23.6 
Suppose we have a subset U ∈ Sa , which is a subset of G. Also, let H be a subgroup of G that stabilizes 
U . Then, |H| divides |U |. 

aNote that U is an element of S but is itself also a subset of G, so U ⊂ G. 

Proof. Since H stabilizes U , for any h ∈ H, we know hU = U . In other words, for each u ∈ U , we have 

Hu ⊂ U. 

Equivalently, for each u ∈ U , the corresponding right coset of H is a subset of U . This implies that the right 
cosets partition U . Since the cosets have the same size, we know that |H| divides |U |. 

With these lemmas in hand, we can continue with the proof of the main theorem. The frst lemma tells us that 
|S| ̸= 0 (mod p). We know that the orbits partition S, so 

|S| = |O1| + · · · + |Or|. 

Since p does not divide the LHS, there must exist an orbit θ where 

gcd(p, |θ|) = 1. 

Let the size of θ be |θ| = k. 

Now, consider some element u of θ. By the counting formula, we also know that 

|G| = |θ| · |Stab(u)|. 

e eAnd so p m = k|Stab(u)| and p | |Stab(u)| because gcd(k, p) = 1. By the second lemma, |Stab(u)| divides 
e|u| = p . 

Thus, 
e|Stab(u)| = p 

and we have found a Sylow p-group. 

The proof of the second Sylow theorem is similar. 
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Theorem 23.7 (Sylow II) 
There are two parts; part a) is what is usually referred to as the second Sylow theorem. 

′(a) Given H ≤ G, where H is a Sylow p-subgroup, any other Sylow p−subgroup H ≤ G is conjugate to 
′ H; i.e. there exists g such that H = gHg−1 . 

d(b) Given any subgroup K ≤ G such that |K| = p , for any Sylow subgroup H, there exists g such that 
gKg−1 ≤ H.a 

aNotice that |K| does not have to be the maximal prime power, and can have order smaller than |H|. Every prime power 
order subgroup, up to conjugation, sits inside a Sylow subgroup. 

Proof of Sylow II. We approach this proof similarly, fnding a nice set and an action on it. Fix H to be a Sylow 
subgroup. Our set is X = G/H, the left cosets of H. The index of H is the same as |X|, so |X| = m. 

Let K be the subgroup we want to show is a subgroup of H up to conjugation, where |K| = pf . We will look 
at how K acts on X by left translation, the mapping: 

k(aH) 7−→ kaH. 

We decompose into orbits, |X| = |O1| + · · · + |Or|. Note that these orbits are with respect to the action of 
K, not the action of G, as that would be transitive and we’d only have one orbit. We have that |Oi| divides 

f|K| = p , but p does not divide m. Thus this orbit decomposition can only work if some orbit O has size 1. In 
other words, there exists some coset aH that is fxed by all k ∈ K. Then, 

kaH = aH 

a −1kaH = H 

a −1ka ∈ H 

a −1Ka ≤ H 

which is what we needed to show. 

A lot of the work done in these proofs are choosing some set and action, then looking at the orbits and seeing 
what we can do what them. The third proof is similar. 

Theorem 23.8 (Sylow III) 
The number of Sylow p-subgroups of G divides 

n 
m = 

pe 

and is congruent to 1 modulo p. 

Proof of Sylow III. Our set will be Y as the set of Sylow p-subgroups of G. We will be trying to fnd the size 
of Y . G acts on Y by conjugation, H 7−→ gHg−1 . By Sylow II, there is only one orbit. Pick a Sylow subgroup 
H ∈ Y . Then 

|G| = |Stab(Y )||orbit(H)| = |Y ||Stab(Y )|. 

This already tells us that |Y | divides |G| = n, but we can say more. 

The stabilizer here has a name, the normalizer of H. It turns out that H ≤ Stab(H) because for all h ∈ H, 
e ehHh−1 = H. So | Stab(H)| is divisible by p = |H|. The counting formula then says that |G| = p m = 

e|Y | · (p · stuf) which implies that |Y | divides m. 

The last part is showing that |Y | ≡ 1 (mod p). We now use the action of H on Y by conjugation. 

Fact 23.9 
′ ′ ′Suppose we have another Sylow subgroup H ∈ Y , H is fxed by H if and only if H = H . In other words, 

under the action of H, there is only one fxed point. 
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By looking at orbits, there is only one orbit of size 1 because there is only one fxed point. The rest are powers 
of p because the size of H is a power of p. Thus the decomposition into orbits looks like 

2 3Y = 1 + p + · · · + p + · · · + p + · · · ≡ 1 (mod p). 

Proof of fact. If we look at the stabilizer/normalizer, StabG(H ′ ) = N(H ′ ), we know that H ≤ N(H ′ ) because 
′ ′ H is fxed by H, and that H ≤ N(H ′ ) by what we said above about normalizers. 

e ′Now N(H ′ ) is a subgroup of G as well, so the largest power of p that divides N(H ′ ) can only be p . So H and H 
′ −1are Sylow subgroups of N(H ′ ) as well. By Sylow II on N(H ′ ), there exists n ∈ N(H ′ ) such that nH n = H. 

′ −1 ′ ′But then by the defnition of N , nH n = H , and so H = H . 

Given this fact, we are done with the third proof. 
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24 Bilinear Forms 

24.1 Review 

Last week, we talked about the Sylow theorems, which are fundamental to the theory of fnite groups. 

24.2 Bilinear Forms 

Throughout this class, we have been pivoting between group theory and linear algebra, and now we will return 
to some linear algebra. 

Today, we will be discussing the notion of bilinear forms. Let’s look at some examples frst and then provide 
the general defnition. 

For now, we will be working with a vector space V over F = R, and later on we will look at the case of F = C, 
the complex numbers. 

Let’s consider three examples of bilinear forms on R3 . 

Example 24.1 
Consider these three diferent examples of mappings: 

R3 ×R3 −→ R     
x1 y1  (1)x2

 , y2 7−−→ x1y1 + x2y2 + x3y3 

x3 y3 

(2)7−−→ x1y1 + 2x2y2 + 3x2y1 + 4x2y3 + 5x3y1 

(3)7−−→ x1y1 + 2x2y1 + 2x1y2 + 3x2y2. 

These all take in pairs of vectors in R3 and return a real number. They all have the property that when keeping 
the y’s fxed, the mapping is "linear" in the x’s, and when keeping the x’s fxed, the mapping is "linear" in the 
y’s.84 In particular, there are no constant terms or terms that are squared or higher order in xi or yi. 

Defnition 24.2 
A bilinear form is a function 

V ×V −→ R 

(v, w) 7−→ ⟨v, w⟩85 

such that 

1. ⟨v, cw⟩ = c⟨v, w⟩ 

2. ⟨v, w1 + w2⟩ = ⟨v, w1⟩ + ⟨v, w2⟩ 

3. ⟨cv, w⟩ = c⟨v, w⟩ 

4. ⟨v1 + v2, w⟩ = ⟨v1, w⟩ + ⟨v2, w⟩. 

Requirements (1) and (2) are linearity in the second variable w, and requirements (3) and (4) are linearity 
in the frst variable v. 

The angle brackets ⟨·, ·⟩ are how a bilinear form is usually denoted. 

A bilinear form takes in two inputs and returns a real number in a way that is linear in either of its two inputs.86 

Intuitively, a bilinear form looks like Example 24.1. 
84The general idea of a bilinear form is that it is linear when varying in x (and keeping y fxed) and linear when varying in y 

(and keeping x fxed); hence, it is linear in two diferent variables, independently, so it is "bilinear." However, being bilinear is not 
the same as being linear; for example, if both x and y were doubled, the output would quadruple. 

86A "trilinear form" would also be possible. 
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Defnition 24.3 
A bilinear form is symmetric if 

⟨v, w⟩ = ⟨w, v⟩ 

for all v, w ∈ V. 

For instance, (1) and (3) in Example 24.1 are symmetric, but (2) is not, by looking at the coefcients. 

Linear transformations from Rn −→ Rn can be written down explicitly using matrices. In a similar way, bilinear 
forms can also be described concretely using matrices. Consider the special case where V = Rn . Then the dot 
product is a symmetric bilinear form. More generally, given any matrix A ∈ Matn×nR, the mapping 

⟨x, y⟩ := x T Ay ∈ R 

turns out to describe a bilinear form, satisfying the four properties.87 

Proposition 24.4 
Given a symmetric matrix, the corresponding bilinear form is a symmetric bilinear form. 

Proof. A matrix A ∈ Matn×nR is symmetric if AT = A, and in this case, 

⟨x, y⟩ = x T Ay 

and 
T AT⟨y, x⟩ = y T Ax = (y T Ax)T = x y = x T Ay = ⟨x, y⟩. 

For every matrix, there is an associated bilinear form, and for every symmetric matrix, there is an associated 
symmetric bilinear form. It turns out that every bilinear form arises in this manner. 

Proposition 24.5 
Every bilinear form ⟨·, ·⟩ on Rn arises from a matrix A. That is, there exists some A such that 

⟨x, y⟩ = x T Ay. 

Moreover, the form ⟨·, ·⟩ is symmetric if and only if A is symmetric. 

So there is a bijective correspondence between bilinear forms and n×n matrices. 

In particular, for each example in 24.1, there is an associated matrix. 

Example 24.6 
The associated matrices come from the coefcients, and can be verifed by simply carrying out the multipli-
cation process. 

1. A = 

 
1 0 

0 
1 

 
0 
0 

2. A = 

0  
1 3 

0 

2 
0 

1  
0 
4 

3. A = 

5  
1 2 

0 

2 
3 

0  
0 
0 

0 0 0 

87We won’t verify this, but the properties follow from the way matrix multiplication works. 
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From this example, we see that the matrix entry Aij is the coefcient of xiyj . 

Proof of Proposition 24.5. Given a bilinear form, we want to produce the corresponding matrix. Let V = Rn , 
and let the standard basis vectors be  

1 0 0 

e⃗1 = 
 

0 
. . . 

 , e⃗2 = 
 

1 
. . . 

 , · · · , ⃗en = 
 

0 
. . . 

 . 

0 0 1 

Any other column vector can be written as a linear combination of these basis vectors:   

x1 
. . . 
xn 

 = x1e⃗1 + · · · + xne⃗n. 

X 

In order to produce the matrix for the bilinear form, we look at the form evaluated on pairs of basis vectors. Let 

aij = ⟨e⃗i, ⃗ej ⟩. 

X 

Now, placing these coefcients in a matrix, take 

A = (aij )i,j=1,··· ,n. 

To verify that this matrix actually produces the same result as the bilinear form on any two pairs of vectors, 
take x⃗, ⃗y ∈ Rn , and use bilinearity on both coordinates x and y. 

* 
n n 

+ 

X 

⟨x⃗, ⃗y⟩ = xie⃗i, yj e⃗j 

i=1 j=1 

n 

XX 

= xi⟨e⃗i, ⃗y⟩ 
i=1 
n n 

XX 

= xi⟨e⃗i, e⃗j ⟩yj 

i=1 j=1 

n n 

= xiaij yj 

i=1 j=1 

= x⃗ T Ay⃗. 

In addition, if and only if ⟨·, ·⟩ is symmetric, aij = aji, which is precisely the condition that A is symmetric. 

From the bilinear hypothesis, the bilinear form on any two vectors can be written in terms of the form on a 
basis, which provides us the matrix. The upshot is that when V = Rn , the information of a bilinear form can 
be encoded in a matrix. 

Like when studying linear transformations, we do not have to restrict ourselves to only Rn . More generally, for 
any vector space V along with a basis {v1, · · · , vn} of V, a (symmetric) bilinear form on V corresponds with a 
(symmetric) matrix A ∈ Matn×n(R). 88 

Guiding Question 
What is the correspondence between a bilinear form on a vector space and the matrix, given a basis? 

88The way this form depends on the basis chosen will difer from the case of linear transformations, and will be discussed later in 
this lecture. 
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In some sense, a basis is simply a linear isomorphism 

B : Rn −→ V. 

A basis provides a dictionary between vectors in V and column vectors in Rn . Given two vectors, the result of 
the bilinear form will be 

⟨v⃗, w⃗⟩ = x⃗ T Ay⃗, 

where 
Bx⃗ = v⃗ and By⃗ = w.⃗ 

How can we fnd the entries of A? We take aij = ⟨v⃗i, v⃗j ⟩, and the same argument as in the proof of Proposition 
24.5 holds, by using bilinearity. 

24.3 Change of Basis 

As always, we need to be careful about what basis we are working in and what efects the basis has. 

Note 24.7 (Warning!) 
A linear operator T : V −→ V corresponds to an n×n matrix by picking a basis: 

linear operator T : V −→ V ⇝ n×n matrix 

Today, we saw that a bilinear form on V also corresponds to an n×n matrix by picking a matrix: 

bilinear form on V ⇝ n×n matrix 

But in fact, these two correspondences act extremely diferently! 

For a linear transformation, where the change of basis matrix is Q, the change of basis formula takes 

P 7−→ QP Q−1 . 

Now, we can explore a change of basis for a bilinear form instead. Pick two bases 

B : Rn −→ V, B ′ : Rn −→ V 

for V, and consider a bilinear form ⟨·, ·⟩V on V. The two bases are related by some invertible matrix P such 
that B ′ = BP and P ∈ GLn(R). 89 Using B, there is one bilinear form ⟨·, ·⟩ associated with some matrix A and 
using B ′ , there is another bilinear form ⟨·, ·⟩ ′ associated with a matrix A ′ . 

Rn 

Rn V 

B 

B ′ 

P 

Given two column vectorsx⃗, ⃗y ∈ Rn , the result in B ′ is 

⟨x⃗, ⃗y⟩ = ⟨B ′ x⃗, B ′ y⃗⟩V = ⟨BPx⃗, BP ⃗y⟩V . 

This is the same as 
⟨P ⃗x, P y⃗⟩ = (P ⃗x)T A(Py) = x⃗ T P T AP y. 

So the matrices are related by 

A ′ = P T AP , 

which is not P −1AP. Changing basis for bilinear forms, unlike linear transformations, does not change the 
matrix by conjugation! If A is a symmetric matrix, then A ′ is also a symmetric matrix, which is expected. 
That’s kind of alarming. 

The same question for linear mappings can be asked in this situation. 
89The columns of P indicate how to write one basis in terms of the other. 
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Guiding Question 
Given V and ⟨·, ·⟩V , can we pick a basis B = {v⃗1, · · · , ⃗vn} of V such that A is as nice as possible? 

For linear mappings, we ended up with the Jordan normal form. It turns out that the answer for bilinear forms 
is very nice! We will discuss this in the future. 

24.4 Bilinear Forms over CC 

The defnitions provided so far generally work over any feld. The standard dot product, which is a typical 
example of a bilinear form, has an additional property. 

Defnition 24.8 
A dot, or inner product is a symmetric bilinear form such that 

⟨x, x⟩ ≥ 0, 

aand if x ̸= 0, then ⟨x, x⟩ > 0. 

aThis condition is called being positive defnite. 

p √ 
We can use an inner product to measure distances and lengths in a vector space. In Rn , ||v⃗|| = ⟨v⃗, v⃗⟩ = v⃗ · ⃗v. 

Guiding Question 
Can we extend this to the complex numbers, when F = C? 

First, let’s extend the notion of a dot product. We would like to do so in a way that captures our notion of 
distance. Naively setting the dot product in the same way as over R results in a complex number, which does 
not measure distance in a way that we would prefer. 

In C, the length of a complex number z is zz, which is the distance from the complex number z to the origin in 
the complex plane. The analogue of an inner product over C will coincide with this defnition of distance and 
use complex conjugation. 

Defnition 24.9 
The standard Hermitian form on Cn looks almost like the normal inner product, but with some complex 
conjugates thrown in. We have 

⟨x⃗, ⃗y⟩ = x1y1 + x2y2 + · · · + xnyn ∈ C. 

In particular, 
T ⟨x⃗, ⃗y⟩ = x⃗ y⃗ ∈ C. 

Once we do this, we get 

⟨x⃗, ⃗x⟩ = x1x1 + x2x2 + · · · . 
= |x1|2 + |x2|2 + · · · , 

which is actually a non-negative real number! So we prefer to use this Hermitian form over the complex numbers, 
as it can capture some notion of distance. 

In the defnition of the standard Hermitian form, we took the transpose and then the complex conjugate of 
every entry. This is a move we will do over and over. 
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Defnition 24.10 
For M ∈ Matm×n(C), the adjoint matrix is 

M ∗ := MT ∈ Matn×m(C). 

It behaves very much like taking the transpose does: (AB)∗ = B∗A∗ . 

Then the equation from before becomes 
∗ ⃗⟨x⃗, ⃗y⟩ = x⃗ y ∈ CC. 

Notice that for α ∈ C, 
⟨αx⃗, ⃗y⟩ ≠ α⟨x⃗, ⃗y⟩, 

so it is not bilinear in the frst entry! We instead get 

⟨αx⃗, ⃗y⟩ = α⟨x⃗, ⃗y⟩, 

so it is linear in the second factor but nonlinear (it is only linear up to complex conjugation) in the frst factor. 
This leads us to our last defnition for today. 

We can generalize the properties of the standard Hermitian form for a complex vector space. 

Defnition 24.11 
For V a vector space over F = C, then a Hermitian form is a function from 

V ×V −→ C 

(v⃗, w⃗) 7−→ ⟨v⃗, w⃗⟩ 

where 

1. ⟨v⃗, w⃗1 + w⃗2⟩ = ⟨v⃗, w⃗1⟩ + ⟨v⃗, w⃗2⟩ 

2. ⟨v⃗, α ⃗w⟩ = α⟨v⃗, w⃗⟩ 

3. ⟨ ⃗ v⟩ = ⟨⃗ w⟩.w,⃗ v, ⃗ 

A Hermitian form is like a symmetric form, except instead of being symmetric, it is symmetric with a 
conjugation thrown in. 

Notice that 

⟨αv⃗, ⃗ w,α⃗ w⟩ = ⟨ ⃗ v⟩ 

= α⟨ ⃗ v⟩w,⃗ 

= α⟨ ⃗ v⟩w,⃗ 

= α⟨v⃗, w⃗ ⟩. 

So the Hermitian product of a vector with itself is in R. 
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25 Orthogonality 

25.1 Review: Bilinear Forms 

We discussed bilinear forms last time, which was a function that took two vectors as input, and gave a scalar as 
an output. It was linear in both of the inputs. For now, we will only be interested in symmetric bilinear forms 
because they model after the dot product. On real vectors, every bilinear form can be written as: 

» #» #» »⟨ # x , y ⟩ = x T A # y . 

The form is symmetric if and only if A is symmetric. We may also refer to a bilinear form as a ‘pairing’. 

25.2 Hermitian Forms 

When we worked over a complex vector space, we discussed the Hermitian form, the complex version of a 
symmetric bilinear form. However, symmetry did not work as normal. They had a complex conjugate in 

» #» » #» » #» #» » w⟩ = ⟨ # ∗ #their relation: ⟨ # v , w, v ⟩ The standard Hermitian form was defned to be ⟨ # x , y ⟩ = x y . In particular, 
Hermitian forms are not exactly linear. The second term is linear, but when we scale the frst term, we are scaling 
the output by the complex conjugate. The following chart summarizes the comparison between symmetric 
bilinear forms over the reals and Hermitian forms. Although they have subtle diferences, we will study them 
together. 

Field Canonical Example Symmetry Matrix Change of basis 
R dot product ⟨ #» #» » #» v , w⟩ = ⟨ #w, v ⟩ AT = A P T AP 

C Standard Hermitian 
form 

⟨ #» #» » #» v , w⟩ = ⟨ #w, v ⟩ ? ? 

Now we will fgure out what goes in the two remaining entries of the table. In order to fnd the matrix for a 
Hermitian form on V, a vector space over C, the process is analogous to fnding the matrix for a symmetric 

#» form on a vector space over R. First, pick a basis v #» 
1, . . . , vn of V. Then, set A = (aij )i,j=1,··· ,n, where 

= ⟨ #» #» aij v i, v j ⟩. 

If 
#» #» #» v = x1 v 1 + · · · + xn v n 

and 
#» #» #» w = y1 v 1 + · · · + yn v n, 

by using the almost-bilinearity of the Hermitian form and expanding the Hermitian form in the same way that 
bilinearity was used to expand the bilinear form, we get 

» #» #» »⟨ # v , w⟩ = x ∗ A # y , 

where there is a conjugate transpose instead of a transpose. Then, for every entry of the matrix A, 

» #» » #» aij = ⟨ # v i, v j ⟩ = ⟨ # v j , v i⟩ = aji, 

and so A∗ = A. 

Defnition 25.1 
A matrix A is called a Hermitian matrix if A∗ = A. 

The upshot is that giving a Hermitian form is essentially equivalent to providing a Hermitian matrix on Cn : 

Hermitian form on Cn ←→ Hermitian matrix A90 

Similarly, one can show that the change of basis formula is given by A ′ = P ∗AP. 

90Use the standard basis of Cn , e1, · · · , en. 
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Example 25.2 (n = 2) 
For a Hermitian matrix � � 

A = 
5 

2 − 2i 
2 + 2i 

3 
, 

the associated Hermitian form is 

⟨ #» x , #» y ⟩ = x⃗ ∗ Ay⃗ 

= 5x1y1 + 3x2y2 + (2 + 2i)x1y2 + (2 − 2i)x2y1, 

simply by evaluating the matrix product. 

In particular, when x⃗ = y⃗, then the Hermitian inner product is actually a real number! The Hermitian 
inner product of x⃗ with itself is 

⟨x⃗, ⃗x⟩ = 5|x1|2 + 3|x2|2 + Re((2 + 2i)(x1x2)) ∈ R. 

It turns out Hermitian matrices have very nice properties compared to random complex matrices. Let’s see one 
of them now. 

Claim 25.3. A Hermitian matrix always has real eigenvalues. 

Proof. An eigenvalue λ ∈ C of a Hermitian matrix A satisfes 

Av⃗ = λv⃗ 

for some v⃗ ∈ Cn . By the Hermitian property, 
v ∗ Av ∈ R, 

but because it is an eigenvector, this is equal to 

∗ v ∗ λv = λ(v v), 

∗where v v is a nonzero real number. Thus, 
v ∗Av 

λ = ∈ R.∗ vv 

Not only is the eigenvalue real, λ can be obtained by comparing the value of the Hermitian form to the value of 
the standard Hermitian form. 

From now on, we will study symmetric bilinear forms on the real numbers and Hermitian forms on the complex 
numbers in parallel. They have very similar properties. One idea that carries over is orthogonal matrices. 

Example 25.4 
Consider R equipped with the standard dot product. Let M ∈ Matn×n(R). Recall that we had several ways 
of describing that M was orthogonal. The following properties are all equivalent: 

M is orthogonal ⇐⇒ Mx⃗ · My⃗ = x⃗ · y⃗ 

⇐⇒ MT M = In ( 
1 if i = j

» #» » #» ⇐⇒ for column vectors v # 
i, vj of M , ⟨v # 

i, vj ⟩ = 
0 otherwise. 

The last condition says that the columns of M are orthonormal. 

A similar type of matrix can be defned for C with the standard Hermitian form. 
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Defnition 25.5 
Let V = Cn . The matrix M is called unitary if it satisfes any of the following equivalent conditions. 

M is unitary ⇐⇒ ⟨Mx⃗, My⃗⟩ = ⟨x⃗, ⃗y⟩ 
⇐⇒ M ∗ M = In; M

−1 = M ∗ 

1 if i = j
» #» #»∗ #» ⇐⇒ for column vectors v # 
i, vj of M , vi vj = 

0 otherwise. 

( 

What you can do in one world is very parallel to what you can do in the other world. 

25.3 Orthogonality 

Consider V real with ⟨·, ·⟩ symmetric, or V complex with ⟨·, ·⟩ Hermitian. 

Defnition 25.6 
A vector v⃗ is orthogonal to w⃗ if ⟨v⃗, w⃗⟩ = 0. Also, for W ⊂ V, a vector v⃗ ⊥ aW if ⟨v⃗, w⃗⟩ = 0 for all w⃗ ∈ W. 

aThis is the symbol representing orthogonality 

If ⟨·, ·⟩ is not the standard inner product, this idea of "orthogonality" does not necessarily correspond with 
geometric intuition. 

  

  

Example 25.7 
−1 0 0 0 1 
0 1 0 0 0Let A = , and v⃗ = . Then ⟨v⃗, v⃗⟩ = 0, so v⃗ is orthogonal to itself. 
0 0 1 0 0 

  

0 0 0 1 1 

  

This form comes up a lot when studying special relativity, but does not necessarily correspond to our geometric 
intuition of what "orthogonality" means. One thing that we do a lot of in the geometric world is that we take 
a subspace W and then look at the vectors that are orthogonal to it. 

Defnition 25.8 
For a subspace W ⊂ V, the orthogonal complement is 

W ⊥ = {v⃗ ∈ V such that v⃗ ⊥ W }. 

Example 25.9 
Consider V = R3 , and W as a plane. Then W ⊥ is a line perpendicular to W . 

In this case, W ⊥ is a complement to W, and R3 = W ⊕ W ⊥ . 

In general, there are many possible complements, or ways to extend a basis of a subspace to the whole vector 
space, but the dot product picks out a specifc one. 

Guiding Question 
For a general bilinear form, when can we decompose V into the sum of a subpace and its orthogonal 
complement? 

It is possible to some extent, but we need to be careful. For example, v⃗ ≠ 0 can be perpendicular to all of V. In 
′ ′ ⊥particular, taking A = [0], v⃗ ⊥ v⃗ for any v⃗, v⃗ ∈ V. Thus, for any v⃗, v⃗ = V. 
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Defnition 25.10 
The null space is 

N = {v⃗ ∈ V ⊥: v⃗ = V } ⊆ V. 

If A = In, the null space is N = {⃗0}, but when A = 0, the null space is N = V. 

Defnition 25.11 
Given a vector space V and a bilinear form ⟨·, ·⟩, if N = {⃗0}, (V, ⟨·, ·⟩) is called non-degenerate. 

Given the matrix of a form, how is it possible to tell whether the bilinear form is non-degenerate? 

Proposition 25.12 
A form on a vector space (V, ⟨·, ·⟩) is non-degenerate if and only if the matrix of the form, A, is invertible, 
which is when det A ̸= 0. 

So when A = In, it is non-degenerate, but when A = 0, it is extremely degenerate. In matrix form, v ∈ N if 
∗/T A #»and only if w⃗ v = 091 for all w⃗ ∈ V , which is equivalent to saying that Av⃗ = ⃗0, and so v⃗ ∈ ker A. 

Consider the restriction of the form to W, ⟨·, ·⟩|W : W ×W → R or C. It can happen that ⟨·, ·⟩|W can be 
degenerate, even if ⟨·, ·⟩ is non-degenerate. 

Example 25.13   
−1 0 0 0  
0Let V = R4 . The matrix from before, A = 
0 

1 
0 

0 
1 

0 
, is non-degenerate but a bit weird since it had 

0 
0 0 0 1  

1 
0 

that property that a vector could be orthogonal to itself. However, let v = and consider 
0 
1 

W = Span(v). 

Then, 

W ×W −→ R 

⟨av⃗, av⃗⟩ = 0, 

and the restriction of the form to W is identically zero and is degenerate. 

Given a vector space V, a form ⟨·, ·⟩, and a subspace W ⊂ V, the restriction of the form ⟨·, ·⟩|W is non-degenerate 
′if and only if for all non-zero w⃗ ∈ W, there exists some w⃗ ̸= w⃗ such that ⟨w,⃗ w⃗ ′ ⟩ ̸= 0. In particular, this is 

equivalent to saying that W ∩ W ⊥ = {⃗0}, by the defnition of W ⊥ . If there were a vector both in W and W ⊥ , it 
′would not be possible to fnd such a w⃗ , since the inner product with w⃗ would always be zero since it is in W ⊥ . 

Theorem 25.14 
If ⟨·, ·⟩|W is non-degenerate, then V = W ⊕ W ⊥ is a direct sum of W and its orthogonal space. 

As a reminder, there are several equivalent ways of thinking about the direct sum. If V = W ⊕ W ⊥ , then the 
following are all true 

′ ′1. If w1, · · · , wk is a basis for W, and w1, · · · , wj is a basis for W ⊥ , then gluing them together gets a basis 
′ ′ {w1, · · · , wk, w · · · , w } for V. 1, j 

2. Every v⃗ ∈ V can be written uniquely as v⃗ = w⃗ + ⃗u where w⃗ ∈ W and u⃗ ∈ W ⊥ . 

91Depending on whether we consider R or C, we take either the conjugate transpose or the transpose. 
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3. The intersection is W ∩ W ⊥ = {⃗0} and V = W + W ⊥ . 

These are all diferent ways of talking about the way V has been split here. It is not always the case that W 
and W ⊥ direct sum to V. Once the non-degeneracy condition has been encoded into the restriction of the form 
to W, a splitting can be found. 
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26 The Projection Formula 

26.1 Review: Symmetric and Hermitian Forms 

Last time, we were talking about diferent kinds of pairings or bilinear forms on vector spaces. In particular, 
we will be studying two cases in parallel: vector spaces V over R with symmetric forms on them, and vector 
spaces over C, with Hermitian forms on them. A Hermitian form is almost symmetric, with a complex conjugate 
thrown in. 

Then, we discussed the idea of vectors being orthogonal to each other with respect to the form if the pairing is 
zero. A form is non-degenerate if and only if the space of vectors orthogonal to the entire vector space V is {0}, 
so there are no nonzero vectors orthogonal to all other vectors. Such a vector lies in the kernel of the matrix of 
the form, so a matrix with nonzero determinant will correspond to a non-degenerate form. 

26.2 Orthogonality 

Recall this theorem about the restriction of a bilinear form to a subspace. We’ll prove it now. 

Theorem 26.1 
Let W ⊆ V. If ⟨·, ·⟩|W is non-degenerate on W, then V = W ⊕ W ⊥ , which means that every vector v ∈ V 

» #»is equal to w # + u uniquely, where w ∈ W, u ∈ W ⊥ . 

� � 
0 1It is possible for the restriction of a non-degenerate form to be degenerate; for example the form A = 
1 0 

is non-degenerate but is just given by A ′ = 0 when W = Span(e⃗1), which is clearly degenerate. 

Proof. If ⟨·, ·⟩|W is non-degenerate, then W ∩ W ⊥ = {0}. We have W ⊕ W ⊥ ⊂ V, so it sufces to show that 
V ⊂ W ⊕ W ⊥ . Pick a basis of W, {w1, . . . , wk}, and defne a linear transformation 

φ : V −→ Ck 

v⃗ 7−→ (⟨w1, v, ⟩, . . . , ⟨wk, v⟩). 

This is a linear transformation just by the properties of a Hermitian form. The kernel is 

ker(φ) = W ⊥ , 

since W = Span{w⃗i}. Also, dim im φ ≤ k = dim W, so by the dimension formula, 

dim V = dim ker φ + dim im φ ≤ dim W ⊥ + dim W. 

Consider the mapping 

W ⊕ W ⊥ −→ V 

(w, u) 7−→ w + u. 

It has kernel {0}, since W ∩ W ⊥ = {0}, so 

dim W + dim W ⊥ ≤ dim V, 

and thus dim W + dim W ⊥ = dim V and therefore V = W ⊕ W ⊥ . 

To emphasize, the geometric version of this with respect to the dot product feels obvious and works in most 
cases. For general forms, we have to have this condition that our form is non-degenerate on the subspace. 

The splitting V = W ⊕ W ⊥ is helpful, in particular, for inductive arguments, because it is possible to reduce 
some property of V to being true on W and W ⊥ . 
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26.3 Orthogonal Bases 

By applying a change of basis, it is always possible to put an arbitrary matrix into Jordan normal form, and if 
there are distinct eigenvalues, it is in fact possible to diagonalize it. What about the matrix of a bilinear form? 

Guiding Question 
Given a vector space V and a bilinear form ⟨·, ·⟩, how simple can we get the form to be? 

First, it is always possible to fnd a basis orthogonal with respect to the bilinear form. 

Theorem 26.2 
For a symmetric or Hermitian form ⟨·, ·⟩, the vector space V has an orthogonal basis {v1, · · · , vn}, which is 
when ⟨vi, vj ⟩ = 0 for i ̸= j. The matrix for the pairing in the basis will then be diagonal, since it is given 
by the inner product from the form. 

Proof. To prove this, induct on dim V = n. 

• Case 1. There is some u such that ⟨u, u⟩ ≠ 0. Then, the one-dimensional subspace W = Span(u), ⟨·, ·⟩|W 

is non-degenerate. 

By induction, W ⊥ has an orthogonal basis {v2, · · · , vn}, so {u, v2, · · · , vn} is an orthogonal basis for V. 

• Case 2. Otherwise, for every v ∈ V, ⟨v, v⟩ = 0. This is a very strong constraint on the form, and in fact 
it forces ⟨v, w⟩ = 0 for all v, w, which forces any basis to be an orthogonal basis. To see this, consider the 
inner product on a sum of two vectors with itself: 

0 = ⟨v + w, v + w⟩ 
= ⟨v, v⟩ + ⟨w, w⟩ + ⟨v, w⟩ + ⟨w, v⟩ 
= 2⟨v, w⟩. 

When F = R, we have ⟨v, w⟩ = 0, by the symmetry of the form. Otherwise, for F = C, Re(⟨v, w⟩) = 0, 
and the same process can also be done for v and iw to show that ⟨v, w⟩ = 0. Then the inner product is 0 
on any two vectors so every basis is orthogonal. 

We can simplify the basis even further. 

Corollary 26.3 
In fact, V has an orthogonal basis {v1, · · · , vk} where ⟨vi, vi⟩ = 1, −1, or 0. 

Proof. Take an orthogonal basis {x1, · · · , xk}. Consider ⟨xi, xi⟩, which is a real number. 

• If the pairing is 0, then let vi = xi. 

1 ⟨xi,xi ⟩• Otherwise, we can normalize and take vi = √ xi; then ⟨vi, vi⟩ = |⟨xi,xi ⟩| , so it will be 1 or -1 
|⟨xi,xi⟩|

depending on the sign of ⟨xi, xi⟩. 
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In particular, if ⟨·, ·⟩ is non-degenerate, only ±1 occur. Also, if ⟨·, ·⟩ is positive defnite, by defnition, ⟨v, v⟩ > 0 
if v ̸= 0, so only +1s occur, so in that basis, the form looks just like the dot product or the standard Hermitian 
product. 

The following claim will be shown in the upcoming problem set. 

Claim 26.4 (Sylvester’s Law). In fact, given V and ⟨·, ·⟩, the number of 1s, the number of -1s, and the number 
of 0s that occur in the diagonal form are determined by V and ⟨·, ·⟩, and not by the choice of orthogonal basis.92 

This is called Sylvester’s Law, and the number of 1s, -1s, and 0s is called the signature of the form.  

For example, in the form used in special relativity, 
 

−1 
1 , the signature is (3, 1, 0). 

1 
1 

In matrix form, the corollary states that for a symmetric matrix A ∈ Matn×n(R), for which AT = A, there 
exists some matrix P ∈ GLn(R) such that P T AP is a diagonal matrix with all 1s, −1s, or 0s on the diagonal:  

P T AP = 

 

1 
. . . 

−1 
. . . 

0 
. . . 

 

. 

If A is positive defnite, which is when xT Ax > 0, there exists P such that P T AP = In implies that A = QT Q, 
where Q = P −1 . 

The statement is similar for complex matrices, where we replace the transposes with adjoints. 

26.4 Projection Formula 

Consider a vector space V and a form ⟨·, ·⟩, as well as a subspace W for which ⟨·, ·⟩|W is non-degenerate. By 
Theorem 26.1, V = W ⊕ W ⊥ such that v = w + u. 

Guiding Question 
How can we compute w and u? 

To do so, we use the orthogonal projection. We want a map 

π : V −→ W 

v 7−→ w, 

so that v = π(v) ⊥ W.93 

92They are similar to eigenvalues in that while there are many choices of orthogonal basis, the number of 1s, -1s, and 0s are not 
dependent on the particular basis. 

93This is an extremely useful application of linear algebra! In geometric situations, the vector w is the vector closest to v of the 
vector in the plane, and perhaps these vectors are in a vector space of data points. Finding a formula for w explicitly is called 
least-squares regression. 
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Assuming there exists an orthogonal basis {w1, · · · , wk} for W , the formula for π is simple.94 The vector can 
be written as 

v = cw1 + · · · + cwk + u, 

where u ⊥ W. Then for all i, 

⟨wi, v⟩ = 0 + · · · + 0 + ci⟨wi, wi⟩ + 0 + · · · + 0, 

so 
⟨wi, v⟩ 

ci = . 
⟨wi, wi⟩ 

It is not possible for ⟨wi, wi⟩ = 0, because the form would be degenerate. In fact, this formula is useful when 
W = V , because it provides a formula for the coordinates of some vector with respect to the orthogonal basis. 

Example 26.5 
Let V = R3 and ⟨·, ·⟩ be the dot product. Then let W be the span of w⃗1 = (1, 1, 1)T and w⃗1 = (1, 1, −2)T . 
The pairings are ⟨w1, w1⟩ = 3, ⟨w2, w2⟩ = 6, ⟨w1, v⟩ = 6, and ⟨w2, v⟩ = −3. The projection of (1, 2, 3) is 
then   

3/2
6 1 

π(v) = w1 − w2 = 3/2 . 
3 2 

3 

To verify, v − π(v) = (−1/2, 1/2, 0), which is orthogonal both to w1 and w2. 

94Once we’ve developed the machinery for bilinear forms, these ideas become a lot simpler! 
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27 Euclidean and Hermitian Spaces 

27.1 Review: Orthogonal Projection 

Last time, we ended by talking about orthogonal projections and splittings such that V = W ⊕ W ⊥ . Specifcally, 
suppose we have a vector space V with a bilinear form ⟨·, ·⟩ as well as a subspace W such that the restriction 
⟨·, ·⟩|W is non-degenerate. Then, given a orthogonal basis of W = Span{w1, . . . , wk}, we were able to write a 
formula for the projection onto W : 

⟨w1, v⟩ ⟨wk, v⟩ 
proj(v) = w1 + · · · + wk. ⟨w1, w1⟩ ⟨wk, wk⟩ 

and we had that v = proj(v) + u, where proj(v) ∈ W and u ∈ W ⊥ . 

27.2 Euclidean and Hermitian Spaces 

In order to evaluate the projection formula, we need an orthogonal basis of a subspace. How do we calculate 
this? 

To start, we will be talking about Euclidean and Hermitian spaces. Recall that a pairing ⟨·, ·⟩ is positive defnite 
if ⟨v, v⟩ > 0 for all v ̸= 0. 

Defnition 27.1 
A Euclidean space is a real vector space V and a symmetric bilinear form ⟨·, ·⟩ such that ⟨·, ·⟩ is positive 
defnite. Analogously, a Hermitian space is a complex vector space V and a Hermitian form ⟨·, ·⟩ such 
that ⟨·, ·⟩ is positive defnite. 

These spaces have the following nice property. 

Theorem 27.2 
If V is Euclidean or Hermitian, then there exists an orthonormal basis {v1, · · · , vn} for V such that 
⟨vi, vj ⟩ = 0 and ⟨vi, vi⟩ = 1. In particular, the pairing ⟨·, ·⟩ looks like the dot product or the standard 
Hermitian product in this basis. 

Proof. From last time, we saw that for any pairing, there exists an orthogonal basis where all of the self-pairings 
were either 1, 0, or −1. By defnition, all of the self-pairings must be 1 when the form is positive defnite. 

Furthermore, we no longer have the case where a form can be degenerate on a subspace. 

Claim 27.3. For any W ⊆ V and ⟨·, ·⟩|W , the restriction ⟨·, ·⟩|W is always nondegenerate. 

′Proof. For each w ∈ W, we need to fnd a w ∈ W such that ⟨w, w ′ ⟩ ≠ 0. By the positive defniteness of the 
′pairing, we can just take w = w. 

This means that we can inherit all the properties that we showed last time about non-degenerate subspaces. In 
particular, we can always perform the orthogonal projection on any subspace of a Euclidean/Hermitian space. 

27.3 Gram-Schmidt Algorithm 

As an application, we have the Gram-Schmidt algorithm for fnding an orthonormal basis. Take a Euclidean 
or Hermitian vector space V and any basis {v1, · · · , vn} a basis for V. In order to build an orthonormal basis 
{u1, · · · , un}, we inductively build {ui} such that Span{u1} = Span{v1}, Span{u1, u2} = Span{v1, v2}, and so 
on. Let Vk = Span{v1, · · · , vk}. 

• Step 0. Our frst vector must just be a scaled version of v1. We have to scale it such that ⟨u1, u1⟩ = 1. 
Let 

1 
u1 := p v1. ⟨v1, v1⟩ 

Then {u1} is a basis for V1 and ⟨u1, u1⟩ = 1. 
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• Step 1. Set 
x2 = projV1 

v2, 

which is the projection of v2 onto V1, and let 

y2 = v2 − x2, 

which is the orthogonal portion of the vector v2. Then, let 

1 
u2 = p y2 ⟨y2, y2⟩ 

be the result of normalizing y2. Then ⟨u1, u2⟩ = 0, since the portion of v2 spanned by u1 has been 
subtracted of, and ⟨u2, u2⟩ = 1. Thus {u1, u2} is an orthonormal basis of V2. 

• Step k. Assume that {u1, · · · , uk} is a basis for Vk. Then, let 

xk+1 = projVk 
(vk+1)yk, 

the projection onto Vk, and let 
yk+1 = vk+1 − xk+1, 

the orthogonal portion of vk+1. Then let 

1 
= .uk+1 ⟨yk+1, yk+1⟩ 

By induction, {u1, . . . , uk+1} is an orthonormal basis for Vk+1. 

At every step, the projection formula is used, until a basis is found. Note that whenever we are calculating the 
projection, we conveniently have an orthogonal (even more, orthonormal) basis of the previous subspace to use 
the projection formula. Specifcally, on step k the projection formula simplifes to: 

proj (vk+1) = ⟨u1, vk+1⟩u1 + · · · + ⟨uk, vk+1⟩uk.vk 

We can interpret the algorithm in matrix form as well. Take M ∈ GLn(R). The columns of M , {v1, · · · , vn}, are 
a basis for Rn . The Gram-Schmidt algorithm says that we can take this basis and turn it into an orthonormal 
basis: 

u1 = a11v1 

u2 = a12v1 + a22v2 

u3 = a13v1 + a23v2 + a33v3, 

and so on, where {u1, · · · , un} is an orthonormal basis of Rn . The upshot is that there exists an upper triangular 
matrix A and an orthogonal matrix B such that 

M = AB. 

A is the matrix derived from putting ui as columns, and B is the inverse of the matrix derived from the aij 

values. 

Student Question. What sense of orthogonal are we using in the algorithm? 

Answer. This algorithm refers to orthogonal bases with respect to the standard dot product. One could consider 
more general kinds of symmetric bilinear forms, and what results are diferent kinds of groups. We will look at 
this later. 

For Euclidean spaces, we can consider all pairings as the dot product, so orthogonality always is just the normal 
defnition. When the pairing is not positive defnite, then we start getting weirder things. 
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27.4 Complex Linear Operators 

Now, we want to focus on linear operators in a Hermitian space (V, ⟨·, ·⟩). Consider a linear operator 

T : V −→ V. 

We can the defne the analogue of the adjoint operation on matrices. 

Defnition 27.4 
Pick an orthonormal basis {u1, · · · , un} of our Hermitian space. By doing so, we can map our vector space 
into coordinate vectors. We have the correspondence V ⇝ Cn , and the form ⟨·, ·⟩ maps to the standard 

∗Hermitian product. Then, T ⇝ M ∈ Matn×n(C). Then let the adjoint T be the linear operator 

T ∗ : V −→ V 

∗such that, with respect to the basis {u1, · · · , un}, T is the matrix M∗ = M T . 

The following claim gives the key property of the adjoint linear operator and another way to characterize the 
adjoint operator. 

Claim 27.5. For v, w ∈ V, 
∗ ⟨T v, w⟩ = ⟨v, T w⟩. 

∗This property means that T is uniquely determined, by putting v = ui and w = uj . 

Proof. Using the correspondence given by taking a basis, 

v ⇝ x ∈ Cn 

w ⇝ y ∈ Cn 

Tv ⇝ Mx ∈ Cn . 

Then, 
∗ M ∗ ∗ (M ∗ ⟨T v, w⟩ = (Mx) ∗ y = x y = x y) = ⟨v, T ∗ w⟩. 

This also means that T ∗ is independent of the choice of a basis. 

Just as we defned adjoint for both linear operators and matrices, we can do the same for the defnition of 
Hermitian. 

Defnition 27.6 
A linear operator T : V −→ V is a Hermitian operator if T ∗ = T, which is equivalent to ⟨T v, w⟩ = ⟨v, T w⟩. 

Also, a unitary matrix is a matrix such that U∗U = In and U∗ = U−1 . The following defnition is analogous. 

Defnition 27.7 
A linear operator T : V −→ V is a unitary operator if T ∗T = Id, or equivalently if ⟨T v, T w⟩ = ⟨v, w⟩ for 
all v, w ∈ V. 

The following defnition is harder to motivate, but encapsulates the previous two. 

Defnition 27.8 
∗A linear operator T : V −→ V is normal if TT = T ∗T , which is equivalent to 

∗ ⟨v, T ∗ Tw⟩ = ⟨T v, T w⟩ = ⟨T ∗ v, T ∗ w⟩ = ⟨v, TT w⟩. 
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The set of unitary matrices and the set of Hermitian matrices are both subsets of the set of normal matrices. 
1 1 0 

  is0 1 1However, there are normal matrices that are neither Hermitian nor unitary. For example, A = 
1 0 1 

normal but neither Hermitian nor unitary. 

Next class, we will discuss the Spectral Theorem, which is the main important property of normal matrices. 

Theorem 27.9 (Spectral Theorem) 
For a Hermitian space V, and a normal linear operator T : V −→ V , V has an orthonormal basis {u1, · · · , un}
where each ui is an eigenvector of T. 

In other words, we both diagonalize T as well as fnd an orthonormal basis for V . We don’t need to mess around 
with Jordan forms. 

The matrix version states that for a normal matrix M ∈ Matn×n(C), 95 it is possible to fnd a unitary matrix 
P 96 such that  

λ1  . P ∗ MP = P −1MP = . . 
λn 

. 

The columns of P form our eigenbasis. 

What about Euclidean spaces? In full generality, this theorem is false. However, for a Euclidean space V and a 
symmetric linear operator T : V −→ V , T does have an orthonormal eigenbasis. Generalizing from symmetric 
to orthogonal, which is the analogous version of unitary, or some condition similar to “normal," does not work. 
For example, we saw that it is not true for orthogonal matrices, as rotation matrices in the plane do not have 
any eigenvectors. 

95M∗M = MM∗ 

96P ∗P = I 
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28 The Spectral Theorem 

28.1 Review: Hermitian Spaces 

Last time, we discussed Hermitian spaces which were just complex vector spaces with a positive defnite Hermitian 
form. Given a linear operator T , we defned the adjoint T ∗ , which had the property that 

∗ ⟨v, T w⟩ = ⟨T v, w⟩. 

We called a linear operator T normal if TT ∗ = T ∗T . We then were able to state the Spectral Theorem. 

28.2 The Spectral Theorem 

The Spectral Theorem demonstrates the special properties of normal and real symmetric matrices. 

Theorem 28.1 
Given a Hermitian space V , for any normal linear operator T , there exists an orthonormal eigenbasis of V : 
{u1, · · · , un}. In matrix form, for any normal matrix M ∈ GLn(C), there exists a unitary matrix P such 
that P −1MP is diagonal. 

The real version states that for a Euclidean vector space V and a symmetric linear operator T , there exists 
an orthonormal eigenbasis; equivalently, for any symmetric matrix M ∈ GLn(R), there exists an orthogonal 
matrix P such that P −1MP is diagonal. All eigenvalues of real symmetric matrices are real. 

Example 28.2 � � � � 
3 −1 11Say we take the symmetric matrix M = . One eigenvector is √ with eigenvalue λ1 = 2. The−1 3 2 1� � 

1other eigenvector should be orthogonal, so it is √ 
1 with eigenvalue λ2 = 4. 

2 −1 

In 2 dimensions, the fact that our change of basis is coming from an orthogonal basis tells us that the 
change in coordinates is just a rotation. This rotation makes the operator diagonalizable. 

This is called the Spectral Theorem because the eigenvalues are often referred to as the spectrum of a matrix. 
Any theorem that talks about diagonalizing operators is often called a spectral theorem. 

Now we will state some lemmas in order to prove the Spectral Theorem. 

Lemma 28.3 (Lemma 1) 
First, for a linear operator T : V −→ V where V is Hermitian, and a subspace W ⊂ V such that T (W ) ⊂ W, 
then T ∗(W ⊥) ⊂ W ⊥ . 

Proof. Take some u ∈ W ⊥ . For any w ∈ W, then 

∗ ⟨w, T u⟩ = ⟨T w, u⟩ = 0, 

∗by the defnition of the adjoint linear operator, so T u ∈ W ⊥ . 

Lemma 28.4 (Lemma 2) 
If Tv = λv, then T ∗ v = λv. This just means that T and T ∗ have the same eigenvectors, and eigenvalues 
related by complex conjugation. 

Proof. We can frst consider a special case. 

• Special Case: λ = 0. We want to show that Tv = 0 implies that T ∗ v = 0. 
∗ ⟨T ∗ v, T v⟩ = ⟨T v, T v⟩ = 0 

by normality (this was a property shown last time). Since T is positive defnite, this implies that T ∗ v = 0. 
∗This also implies that if a vector v ∈ ker T , then v ∈ ker T as well. 
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• General Case: λ ∈ C. We want to show that Tv = λv implies that T ∗ v = λv. In this case, create a 
new linear operator S = T − λI. Then, Sv = 0. Also, the adjoint is S∗ = T ∗ − λI and SS∗ = S∗S, since 

∗TT ∗ = T ∗T. By the frst case, since v ∈ ker S, we also have that v ∈ ker S∗ so T = λv as needed. 

Proof of the Spectral Theorem. Now we can prove the Spectral Theorem by induction on the dimension of V. 
The general process will be breaking V up into a direct sum and fnding orthonormal eigenbases over each part. 
Since the feld is F = C, it is always possible to fnd an eigenvector w ∈ V such that Tw = λw. By normalizing 
w, assume that ⟨w, w⟩ = 1. Then, let W = Span(w); then V = W ⊕ W ⊥ since all subspaces of Hermitian spaces 
are non-degnerate. In addition, since w is an eigenvector, TW ⊂ W. 

If we can show that TW ⊥ preserves W ⊥ , then we can induct. By Lemma 2, w is also an eigenvector of T ∗ , so 
T ∗(W ) ⊂ W, and by Lemma 1, (T ∗)∗(W ⊥) = T (W ⊥) ⊂ W ⊥ . Then V = W ⊕ W ⊥ , and T maps each part of the 
splitting to itself, so by induction there exists u2, · · · , un an orthonormal eigenvasis for W ⊥ , and {w, u2, · · · , un}
is an orthonormal eigenbasis for V. 

Student Question. Why is the equivalent of the theorem not true over the real numbers? 

Answer. Most of this argument works, except in the very frst step, where we found an eigenvector and eigenvalue. 
We cannot guarantee this will happen with normal linear operators over the real numbers. However, as we found 
last week, for symmetric (and Hermitian) matrices, the eigenvalues are all real, and in particular it is always 
possible to fnd one eigenvector w ∈ V with real eigenvalue to allow the induction to occur. 

As an application, suppose we have a quadratic function f(x, y)�� 2 2 Let this function be + bxy + cy= ax . 
a b/2represented by a matrix ; then 
b/2 c �� 

���� 

x 
f(x, y) = (x, y)M = ⟨v, T v⟩ 

y 

for a linear operator T given by M. By the Spectral Theorem, there exists an orthogonal change of coordinates �� ′ λ1 0 x x 
P T MP = , where P is an orthogonal matrix. It takes = P . Then′ 0 λ2 y y ��� �� ′ � 

x λ1 x′ f(x, y) = (x, y)M = (x , y ′ ) = λ1(x ′ )2 + λ2(y ′ )2 .′ y λ2 y 

��Example 28.5 

2If f(x, y) = 3x2 − 2xy + 3y , the matrix would be M =
3 −1 . Then−1 3 

2 ′ )23x 2 − 2xy + 3y = 2(x ′ )2 + 4(y , 

′ ′for some change of coordinates taking x and y to x and y , since we saw earlier that the eigenvalues were 2 
and 4. 

P
2 2 
1 + ·In n variables, let f(x1, 

a11 · · · aij 
. . . 

. . . 

be represented by the matrix M) = a11x + i<j 2aij xixj · + annx· · · ·   

, xn = n 

(aij ) = . . . .aji 
ann  ′ x1 x 

Applying the spectral theorem gives P and λi, where P is a change of coordinates taking  . . . 
 = P  . . . 

′ 

 . 

xn xn 
In this new coordinate system, 

′ ′ f(x1, · · · , xn) = λ1(x1)
2 + · · · + λn(x )2 .n 
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In two and three dimensions, this has a geometric interpretation. Consider a curve in R2 with an equation of 
the form 

2 2 ax + bxy + cy + dx + ey + f = 0. 

There are several options; the frst three are called conics, and the rest are degenerate conics of some form. 
2• Ellipse. ax + by2 = 1 

• Hyperbola. ax2 − by2 = 1 

• Parabola. ax2 − y = 0 

• Two crossing lines. (a1x + b1y)(a2x + b2y) = 0 

2• Two parallel lines. x = a, a > 0 

• One line. x2 = 0 

2 2• One point. x + y = 0 

2 2• The empty set ∅. x + y = −1 

Theorem 28.6 
2 2After an isometry, all curves of the form ax + bxy + cy + dx + ey + f = 0 look like one of these options. 

»#» B f+ +v vT A # 

λ1 0 2 2that A = Then λ1x + λ2y + b1x + b2y + f = 0. 
0 λ2. 

b1 b2• Nonzero eigenvalues. If λ1, λ2 ≠ 0, then we can complete the square, taking x ⇝ x+ and y ⇝ y+ .2λ1 2λ2 

Then 
2 2λ1x + λ2y = c. 

If c = 0, it is a single point or two intersecting lines, and if c ̸= 0, it is an ellipse or a hyperbola. 

• Zero eigenvalues. The other cases. 

The details of this aren’t that important, and we glossed over much of it at the end. The main idea to take away 
is just the power of the Spectral Theorem to take a complicated quadratic form and simplify into something 
more readily analyzed. 

One idea where the Spectral Theorem is at play is in multivariable calculus with the second derivative test. 
Hidden behind the test is that we have a symmetric matrix and we are trying to fgure out what the signs of 
the eigenvalues are, as that will tell us whether our critical point is a minimum, maximum, or saddle point. 

Proof. The curve be rewritten as� � #» = 0. After an orthogonal change of basis, we can assumev 
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Lecture 29: Geometry of SU2 

29 Linear Groups 

Today we’ll study linear groups – subgroups of matrices which satisfy conditions about preserving properties 
that come from linear algebra. We’ve seen a couple of these already. We can start of with the group GLn(R) 
of all invertible n × n matrices, and consider a few subgroups that we’ve seen: 

GLn(R) 

SLn(R) On(R)� � � � 
A ∈ GLn(R A ∈ GLn(R) 
det A = 1 AtA = I 

SOn(R)� � 
A ∈ GLn(R) 

AtA = I, det A = 1 

These subgroups all preserve some interesting property: 

• SLn(R) ≤ GLn(R) consists of the matrices with determinant 1, which preserve volume. 

• On(R) ≤ GLn(R) consists of the orthogonal matrices, which preserve the dot product (or equivalently, 
which preserve length) – meaning that ⟨Av, Aw⟩ = ⟨v, w⟩ for any two vectors v, w (where the pairing 
denotes the dot product). 

• SOn(R) is the intersection of SLn(R) and On(R). 

We can do the same thing for matrices with complex values: 

GLn(C) 

SLn(C) Un � � � � 
A ∈ GLn(C A ∈ GLn(C) 
det A = 1 A∗A = I 

SUn� � 
A ∈ GLn(C) 

A∗A = I, det A = 1 

These subgroups still preserve some linear algebraic property: 

• SLn(C) ≤ GLn(C) is still the group of matrices with determinant 1, the same as in the real case. 

• Un(C) ≤ GLn(C) is the group of unitary matrices, which preserve the standard Hermitian form – so 
⟨Av, Aw⟩ = ⟨v, w⟩ where the pairing is now the standard Hermitian form (instead of the dot product, as 
in On(R) for the real numbers). 

• SUn(C) is the intersection of SLn(C) and Un(C), the group of unitary matrices with determinant 1. 

We could also look at groups of matrices that preserve other bilinear forms, not just the dot product. For � � 
Ipexample, we could defne the bilinear form Ip,q corresponding to the matrix . Then we could study −Iq 

the matrices preserving this bilinear form, meaning the set {A | AtIp,qA = Ip,q}, which is an interesting subgroup 
of GLn(R). 

29.1 Geometry of groups 

All these matrices are over R or C. What’s special about the real or complex numbers, as opposed to something 
like a fnite feld, is that we have a notion of distance. More explicitly, we have GLn(R) ⊂ Rn 2 

(where we just 
write down the coordinates), so GLn(R) inherits a metric – we can discuss whether two elements are close 
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together or far apart. The same works for GLn(C) ⊂ R2n 2 
(since we can think of a complex number as a pair 

of real numbers). 

The actual metric itself won’t be that important; what will be important is the idea of a topology on this set – 
we have a sense of two elements being close together or far apart, which we didn’t have when we studied fnite 
or discrete groups. With fnite or discrete groups, we can’t really talk about a sequence of elements getting 
closer and closer to another, but with these groups we can. The group structure and topology interact with 
each other in extremely interesting ways – these groups are called Lie groups, and the study of such groups 
ends up being a really rich vein of mathematics. 

Today we’ll see a favor of how we can take a group and look at it not just as a collection of things, but also as 
having some sort of geometry. 

There are some questions we can ask: groups come with multiplication law, G × G −→ G. It turns out that for 
all the matrix groups considered above, the multiplication law is continuous (if you perturb two elements a bit, 
this only perturbs their product a bit as well). The inverse map g 7→ g−1 is also continuous. Similarly, we can 
look at continuous homomorphisms. 

We’ve seen a few simpler examples of groups with a shape (not necessarily matrix groups) – for example, (R, +) 
is just the real line: 

Example 29.1 
How can we draw the group of 2-dimensional rotations 

SO2 = {ρθ | 0 ≤ θ < 2π}? 

Proof. On a homework problem, we showed that SO2 =∼ R/2πZ. So we can draw SO2 as a circle, where the 
angle represents the angle of rotation: 

θ

We have a homomorphism R → SO2 where we send θ 7→ ρθ. Geometrically, this corresponds to wrapping the 
line around the circle infnitely many times. 

Similarly, we can consider O2 – we saw that SO2 has two cosets, itself and the set of refections. So we can 
think of O2 as two circles (with one circle representing each). 

Note 29.2 
We haven’t really defned terms like continuous, metric, or topology. But we won’t be that formal here; 
instead, the main goal is to try to visualize our groups in terms of these pictures. 

29.2 Geometry of SU2 

All the groups whose geometry we’ve looked at so far are one-dimensional. Now we’ll look at a higher-dimensional 
group, the special unitary group 

SU2 = {A ∈ GL2(C) | det A = 1, A ∗ = A−1}. 

We’ll try to fgure out what the points in this set look like, as a geometric shape. 
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29.2.1 Quaternions � � 

First we’ll analyze what matrices are in SU2. Consider a matrix A = 
α β . Then we have 
γ δ � � � � 

1 δ −β δ −β 
A−1 = = 

det A −γ α −γ α 

(since the determinant is 1), and � � 
α γ 

A ∗ = . 
β γ 

These must be equal, so we must have δ = α and β = −γ. Thus we must have � � 
α β 

A = . −β α 

Finally, the condition that det A = 1 means that |α|2 + |β|2 = 1. 

We can write any matrix A as a linear combination of other matrices, by splitting up the real and imaginary 
parts of α and β. Suppose α = x0 + ix1 and β = x2 + ix3 where x0, x1, x2, x3 ∈ R. Then we have � � � � � � � � 

1 0 i 0 0 1 0 i 
A = x0 + x1 + x2 + x3 . 

0 1 0 −i −1 0 i 0 

We’ll introduce some notation for these matrices. The frst is just the other identity; meanwhile we defne � � � � � � 
i 0 0 1 0 i 

i = , j = , k = . 
0 −i −1 0 i 0 

We will also defne a four-dimensional real vector space consisting of all matrices of the above form (which are 
linear combinations of I, i, j, and k: 

H = R4 = {x0I + x1i + x2j + x3k | x0, x1, x2, x3 ∈ R} ⊂ Mat2×2(C). 

This space is closed under multiplication, since we can use the relations i2 = j = k2 = −I, ij = k, ji = −k, and 
so on. So if we multiply any two elements of H, we get another element of H. 

The set H is called the set of quaternions. They’re like a four-dimensional version of the complex numbers 
(instead of adding one square root of −1, we now have three). But unlike the complex numbers, multiplication 
isn’t commutative – so it’s kind of like the feld of complex numbers, but it’s not a feld because of the lack of 
commutativity. (We can still divide by nonzero elements, but we have to be careful about the order.) 

But the main thing we’ll use here is that it’s a four-dimensional real vector space – we’ve fgured out how to write 
2 2 2 2elements in terms of coordinates. Then SU2 ⊂ H are exactly the quaternions such that x0 + x1 + x2 + x = 13 

(since this is equivalent to the determinant condition). So SU2 sits inside R4 , and consists of all vectors with 
length 1 – this means its shape is a 3-dimensional sphere S3 . 

Student Question. Why is it called a 3-dimensional sphere if there are four dimensions? 

Answer. There’s four dimensions, but we’re imposing an additional condition. A sphere only consists of the 
boundary, not the interior (a sphere with its interior is called a ball). So although it lives in four dimensions, 
it’s a three-dimensional surface (because we have one constraint). Similarly, a normal sphere in R3 is called a 
2-sphere, since its surface is two-dimensional. 

29.2.2 Geometry of the Sphere 

The 3-sphere is very hard to picture, so let’s start by drawing the 2-sphere 

2 2 2S2 = {(x0, x1, x2) : x0 + x1 + x = 0} ⊂ R3 .2 

2 2 2As coordinates, S2 is the set of solutions to x0 +x1 +x2 = 1. There are many ways of representing its coordinates, 
but one commonly used one is spherical coordinates, which we can think of in terms of latitude and longitude. 

The latitude lines come from taking a horizontal slice of the sphere – formally, Latc = {x0 = c} ∩ S2 . 
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The latitude lines start of as a point at the north pole Lat1, and then as we go downwards, they get bigger and 
bigger until the equator E = Lat0, and then get smaller again until the south pole. 

Meanwhile, in the other direction, we have longitude lines, which are circles of radius 1 that intersect the north 
and south pole. 

So the latitude and longitude lines give us a way of representing our location on the 2-sphere. We can do the 
same for the 3-sphere: we now have 

2 2 2 2S3 = {x0 + x1 + x2 + x = 1}.3 

We can defne latitudes in the exact same way, with Latc = {x0 = c} ∩ S3 . This is now the set of points with 
2 2 2 2x0 = c and x1 + x2 + x = 1 − c , so now our latitudes are actually 2-spheres. So we’re still taking horizontal 3 

slices (with −1 ≤ c ≤ 1), but now the latitudes are 2-spheres of diferent sizes. We still have just a single point 
at the north and south pole, and the largest latitude is still the equator Lat0 = E. 

We’ll defne the longitudes precisely a bit later. These will still be circles of radius 1 passing through both the 
north and south poles (±1, 0, 0, 0). Just like in the 2-sphere, every point lies on a unique latitude line, and every 
point except the north and south pole lies on a unique longitude line; and each pair of latitude and longitude 
lines intersects at exactly two points. 

We’ve seen now that SU2 as a set is a 3-sphere in R4 (using this choice of coordinates), and the 3-sphere 
can be thought of geometrically as having latitudes and longitudes. It turns out we can use this geometric 
understanding of the 3-sphere to understand the group structure of SU2. 

29.2.3 Latitudes 

Theorem 29.3 
The conjugacy classes of SU2 are precisely the latitudes Latc for −1 ≤ c ≤ 1. 

So slicing the 3-sphere horizontally into latitudes is the same as taking the group and decomposing it into 
conjugacy classes. 

In particular, most of these latitudes are 2-spheres, and are infnite – except the north pole and the south pole, 
which only have one element. A point has conjugacy class of size 1 exactly when it’s in the center, so this 
implies that Lat±1 = ±I = Z(SU2). We can also see this is true directly, by checking which matrices commute 
with every other matrix in the group; but this gives a geometric interpretation. 
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Proof of Theorem 29.3. Recall that when we chose coordinates, we wrote elements of SU2 as � � � � � � � � 
1 0 1 0 0 1 0 i 

A = x0 + x1 + x2 + x3 . 
0 1 0 −i −1 0 i 0 

The main point is that the frst matrix I has trace 2, while the other matrices i, j, and k all have trace 0. So 
then Tr(A) = 2x0. 

So taking horizontal slices has some meaning in terms of the matrices itself – it corresponds to taking slices of 
SU2 with constant trace. 

We can use this idea to prove the theorem. Fix A ∈ SU2 with coordinates (x0, x1, x2, x3), so we want to show 
that Conj(A) = Latx0 . But the latitude is exactly the set {A ′ ∈ SU2 | Tr(A ′ ) = Tr(A)}. 

This immediately solves one direction – suppose A ′ ∈ Conj(A), so A ′ = P −1AP for some P . We’ve seen that 
trace is one of the coefcients of the characteristic polynomial, so it doesn’t change under conjugation. So we 
must have Tr(A ′ ) = Tr(A), which means Conj(A) ⊆ Latx0 . 

For the other direction, we want to show that if Tr(A ′ ) = Tr A, then A ′ = P −1AP for some P ∈ SU2. To see 
this, consider the polynomial t2 − Tr(A)t + 1. This is the characteristic polynomial of both A and A ′ (since 
they both have determinant 1). Let its roots be λ and λ, so λ and λ are the eigenvalues of A and A ′ . 

Now by the Spectral Theorem, there exists a unitary matrix Q such that � � 

Q−1AQ = 
λ 0

= D, 
0 λ 

and a unitary matrix Q ′ such that (Q ′ )−1A ′ Q ′ = D as well. 

So A and A ′ are conjugate to the same matrix, which means they’re conjugate to each other – we have 

(Q ′ Q−1)A(Q ′ Q−1)−1 = A ′ . 

Now we’re almost done, but we’ve overlooked one detail: the Spectral Theorem shows that A and A ′ are conjugate 
to each other in U2, but we need to check that we can do this conjugation using matrices of determinant 1. 

But we can actually arrange for Q and Q ′ to have determinant 1 – suppose we have Q ∈ U2 with Q−1AQ = D, 
and let det Q = δ. Since Q is unitary, we have Q∗Q = I, so δ · δ = 1. So then |δ| = 1. Then we can set � � 

δ−1/2 0
Q̃ = Q . 

δ−1/20 

The matrix on the right is unitary as well (because |δ| = 1), and det Q̃ = δ · δ−1 = 1, so then Q̃ ∈ SU2. We can 
check that Q̃−1AQ̃ = D as well. 

So any two matrices in the same latitude are conjugate. 

Note 29.4 
The main idea of this proof was the Spectral Theorem, which we used to see that if two matrices in SU2 

have the same trace, then they’re conjugate in U2. Then by a bit of messing around, we could also arrange 
for them to be conjugate in SU2. 

The upshot of today is that the 3-sphere is the union of its latitudes 

[1 

S3 = Latc, 
c=−1 

and this decomposition corresponds to the group theoretic decomposition [ 
SU2 = conj classes 

(where we can identify S3 and SU2, and the conjugacy classes are identifed with the latitudes). 
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When we worked with fnite groups, we had the class equation |G| = 
Pk |Ci| (where the Ci are the conjugacy i=1 

classes). In this setting, this doesn’t make much sense, since the size of the group (and the conjugacy classes) 
is infnite. 

But since S3 is a geometric object, we can actually consider the volume of SU2 (which is the volume of S3). We 
can’t sum over the conjugacy classes because there aren’t fnitely many of them, but instead we can integrate; 
and then instead of counting the elements in each slice, we take their 2-dimensional volume (or area) instead. 
So we get the equation Z 1 

vol(SU2) = vol(Conj ) dc.c 
c=−1 

This is very vague, but it’s possible to formalize it, and it gives an identity which is a version of the usual class 
equation. This ends up being a really useful idea when studying these groups further – the idea that we can 
take geometric quantities and integrate them, by frst integrating over conjugacy classes. 
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30 The Special Unitary Group SU2 

30.1 Review 

Last time, we started looking at subgroups of the group of invertible matrices. We saw that one thing these 
groups have in common, that fnite or discrete groups don’t, is that they have some sort of shape or geometry. 
In particular, we looked at the group 

= A−1 

the special unitary group. By playing around with the defnitions, we found that SU2 sits inside the quaternions 

H = {x0I + x1i + x2j + x3k}, 

SU2 := {A ∈ GL2(C) | A ∗ , det A = 1}, 

where we defned � � � � � � 

i = 
i 
0 

0 
, j = −i 

0 
−1 

1 
, k = 

0 
0 
i 

i 
. 

0 

2 2 2 2In particular, SU2 is the subset with x0 + x1 + x2 + x = 1, corresponding to the 3-sphere S3 in R4 .3 

Note 30.1 
We’ve seen that the 1-dimensional sphere and 3-dimensional spheres both have a group structure, so we 
can ask whether the same is true for other dimensions. It turns out the answer is no – there are no other 
n-dimensional spheres which can be made into groups. (This is a deeper fact.) 

Last class, we started taking geometric properties of the 3-sphere and seeing how they correspond to the group 
structure. In particular, we looked at the latitudes – the horizontal slices Latc = {x0 = c} ∩ S3 for −1 ≤ c ≤ 1. 
We proved last class that these latitudes are precisely the conjugacy classes of SU2. We call Lat0 the equator, 
denoted E. 

30.2 Longitudes 

Another thing we can think about are the longitudes – the circles which go through the north and south pole. 

We can defne these more precisely: for each x ∈ E, the longitude containing x is Long := Span(I, x) ∩ S3 .x 
Here Span(I, x) is a 2-dimensional plane, so we’re taking the unit circle of a 2-dimensional plane. 

Theorem 30.2 
For each x ∈ E, Long is a subgroup of SU2. In fact, given θ ∈ R/2πZ, the map θ 7→ cos θI + sin θx is anx 
isomorphism between R/2πZ and Long .x 

What this means is that the longitudes aren’t just circles as shapes, they’re also circles as groups (since we’ve 
seen that the unit circle as a group is isomorphic to R/2πZ. 

Proof. To see this is true, we’ll frst consider the special case x = i. Then we can check that given two points 
in Longi, we have 

′ (c + si)(c + s ′ i) ∈ Span(I, i) 

147 



Lecture 30: The Special Unitary Group and One-Parameter Groups 

as well, since i2 = −I. Meanwhile, since both elements are in SU2, their product must be as well; so their 
product is in SU2 ∩ Span(I, i) = Longi. So this longitude is closed under multiplication, and is therefore a 
subgroup. 

We won’t check the isomorphism to R/2πZ here, but it’s possible to check this directly by multiplying out. 

We can then use this to solve the general case – for any x ∈ E, we know x is conjugate to i (since we saw that 
the equator is a conjugacy class). So then we can write x = P −1iP , and then Long = P −1 Longi P is conjugate x 
to Longi. But when we conjugate a subgroup, we get another subgroup. 

So not only are the longitudes all circle subgroups, but they’re also all conjugate to each other. 

30.3 More Group Theoretic Properties 

When we studied conjugacy classes, we also studied centralizers: 

Guiding Question 
What is the centralizer of i? 

Recall that this means the set of elements for which if we conjugate i by them, we get back i. 

We know that Longi is a subgroup of SU2, and it’s abelian (since it’s isomorphic to the circle). Since i is in this 
longitude, this means it commutes with everything in this longitude. So Z(i) ⊃ Longi. In fact, this turns out to 
be an equality – we have Z(i) = Longi. This is true for any other point on the equator as well – its longitude is 
exactly its centralizer. 

Another thing we saw when studying conjugacy classes was that there’s a bijection between the conjugacy class 
C(g) and the cosets of the centralizer G/Z(g). In our case, this is still true, but now both sides are geometric 
objects. If we fx a point g on the equator, then C(g) = E is a 2-dimensional sphere. Meanwhile, G/Z(g) 
corresponds to taking cosets of a longitude. We’re taking a 3-sphere and covering it in cosets – so we have a 
map S3 → S2 , where the fbers are circles (the cosets of the longitude). 

This is really hard to picture, but the idea is that we start with the 3-sphere and a given longitude, and we’re 
taking its cosets (which correspond to circles not necessarily through the north and south pole) and covering 
the entire 3-sphere in these circles. When we collapse all these circles to a point, we get a copy of the 2-sphere. 

Note 30.3 
This is really difcult to think about, but it’s a construction in topology relating spheres of dimensions 1, 
2, and 3, and it can also be thought of in this group theory setting. 

What we would like to illustrate is that group theoretic facts about this group also become interesting 
geometric facts; it doesn’t really matter if you don’t understand all of them. 

30.4 Conjugation and the Orthogonal Group 

There’s another thing we can look at: we know the equator is a conjugacy class, so SU2 acts on E transitively 
(with the action given by conjugation). In fact, SU2 acts on the space {x0 = 0} ⊂ H (which is the 3-dimensional 
vector space containing the equator), and it preserves the equator E inside this space. 

Conjugation by an element of SU2 is a linear map, so it defnes a group homomorphism ρ : SU2 → GL3(R), 
−1where ρ(g) is the matrix such that ρ(g)v⃗ = gvg . But ρ(g) preserves E, so since it preserves vectors of length 

1, this means it must preserve length in general. So ρ(g) is actually an isometry – which means this map is 
actually ρ : SU2 → O3. 

In fact, we can say even more. We’ve seen that orthogonal matrices in 3 dimensions are either refections or 
rotations – and you can tell which by looking at the determinant (which is always ±1). But SU2 is connected 
(we can get from any point to any other point by following some path), so det(ρ(g)) can’t jump between ±1 
(since ρ is continuous). So then det(ρ(g)) is constant as g varies. We know that det(ρ(I)) = 1, so then det(ρ(g)) 
is always 1. So in fact, this is a homomorphism ρ : SU2 → SO3. 
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Note 30.4 
We could write down this homomorphism in terms of the matrix entries – we start with a 2 × 2 complex 
matrix and create a 3 × 3 real one, and we could explicitly write down the homomorphism. But it’s more 
interesting to think about it geometrically, by considering the action of SU2 on one of its conjugacy classes. 

Note 30.5 
You can go further with this – given a point on the 3-sphere, we can ask how to fgure out what angle and 
axis of rotation it corresponds to. This is written up in the notes, but we won’t discuss it here. But you 
can go really far by playing around with the group-theoretic constructions we’ve seen earlier and trying to 
picture what they mean. 

Student Question. Did we show that ρ was continuous? 

Answer. No, we did not. In order to check that it’s continuous, you can write down the map in terms of the 
−1entries. But this shouldn’t be surprising – we have ρ(g)v = gvg , and we can write down a explicit formula for 

−1g in terms of g. So the matrix ρ(g) is something we can write down explicitly in terms of coordinates. (In 
fact, you can also use this explicit formula to show it’s in SO3, but it’s nicer to just show that it’s continuous 
and then deduce it’s in SO3 by thinking about it geometrically.) 

Student Question. Was the action SU2 defned on E just left multiplication? 

Answer. No, it’s conjugation. The idea is that E is one of the conjugacy classes of the group, and all the 
conjugacy classes are orbits with respect to the conjugation action. (This is why the action is transitive as well.) 

30.5 One-Parameter Groups 

Now we’ll return to looking at linear groups more generally – subgroups G of GLn(R) or GLn(C) which satisfy 
some condition (for example, preserving volume or a bilinear form). 

Defnition 30.6 
A one-parameter group (in GLn(R) or GLn(C)) is a diferentiable homomorphism from R → GLn(R) 
or R → GLn(C). 

In otherwords, it’s a function φ : R → GLn(C) with t 7→ φ(t). It should be a group homomorphism, so 
φ(s + t) = φ(s) + φ(t), and it should be diferentiable (where we think of GLn(C) as sitting inside R2n 2 

– then 
each entry of the function should be a diferentiable function on R). 

One way to think of this defnition is as an analog of when we looked at maps Z → G. The integers are in some 
sense the simplest group we can write down – it has just one generator and no relations – and we can look at 
maps Z → G, to help us study G. 

The idea here is that (R, +) is basically the simplest one-dimensional group. (We haven’t defned dimension, 
but you can think of dimension as how many parameters we have. There are other one-dimensional groups, like 
a circle, but the real numbers are simpler because we don’t have relations like 2π = 0 here.) 

We’ve already seen a few examples of one-parameter groups: 

Example 30.7 
In SU2, the map θ 7→ cos θI + sin θx (for any x ∈ E) is a one-parameter group. 

These one-parameter groups are the longitudes. We’ve seen that every point lies in some longitude, and therefore 
some one-parameter group; in general, that isn’t always true. 

Let’s see another example, when n = 1. 

Example 30.8 
When n = 1, the map φ : R → C× with φ(t) = eαt (for any α ∈ C) is a one-parameter group. 
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Here one-dimensional matrices are just numbers. This construction works because we have 

αs+αt αs αtφ(s + t) = e = e e = φ(s)φ(t). 

Note 30.9 
This isn’t an analysis class, so we won’t check the diferentiability of these maps. In this example, it can be 
done by writing everything down in terms of sines and cosines. 

Guiding Question 
Is there a version of this construction for n > 1? 

AThe answer is yes – if we have A ∈ Matn×n(C), we can try to defne e . Taking a number to the power of a 
matrix doesn’t make any sense, but the exponential function also has a description using power series: we have 

2 3x xx e = 1 + x + + + · · · . 
2! 3! 

xThis is a very nice power series – it converges to e everywhere. In fact, you can even take this as the defnition 
xof e , and you can take the derivative term-by-term. 

So we can use this to defne eA as well: 

Defnition 30.10 
The exponential of a matrix A ∈ Matn×n(C) is 

A2 A3 
A e = I + A + + + · · · ∈ Matn×n(C). 

2! 3! 

This also converges uniformly as A varies in a bounded region, meaning that for every entry of the matrix, if we 
take the corresponding entries of each term, then we get a convergent series. As we vary A in a neighborhood, 

Athis convergence of that series is uniform. So this gives us a well-defned n×n matrix e . (To be more precise, we 
can actually put a metric on the space of matrices, and use this to be careful about the notion of convergence.) 

This exponential has several nice properties, similarly to the normal exponential. 

• The exponential interacts well with conjugation – we have 

P −1 APe = P −1IP + P −1AP + P −1A2/2P + · · · 
(P −1AP )2 

= I + P −1AP + + · · · 
2 

P −1AP = e . 

(To be more careful, the LHS and RHS are both defned by limits – where we take the power series and 
truncate it. The equality is true on the level of these truncations, so the limits are equal as well.) 

λ• If v is an eigenvector of A with eigenvalue λ, then v is also an eigenvector of eA with eigenvalue e . 
sA tA (s+t)A• We have e e = e . To prove this, we can expand the RHS out using the Binomial Theorem as X X ktℓ(s + t)nAn s (k + ℓ)! 

AkAℓ = · . 
n! (k + ℓ)! k!ℓ! 

n≥0 k,ℓ≥0 

Then using uniform convergence, we can factor out the infnite sum as    X kAk X tℓAℓs sA tA   = e e 
k! ℓ! 

k≥0 ℓ≥0 

(the fact that we can rearrange in this way is the result of the strong convergence properties). 
A −AIn particular, e e = I, so we actually have eA ∈ GLn(C). (We’re working in the complex case, but 

this works equally well in the real case.) 
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The last result means that for any A ∈ Matn×n(C), φ(t) = etA is a one-parameter group in GLn(C). 

We can ask two questions about these one-parameter groups: 

Guiding Question 
Is every one-parameter group of this form? 

The answer will be yes, and we will see why in future lectures! 

Guiding Question 
Given a subgroup G ≤ GLn, what are the one-parameter subgroups living inside of G? 

We will discuss this question in future lectures as well. 
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31 One-Parameter Subgroups 

31.1 Review 

Last time, we talked about one-parameter subgroups. 

Defnition 31.1 
A one-parameter group in GLn(C) is a diferentiable homomorphism φ : R −→ GLn(C). 

For a matrix A ∈ Matn×n(C), the matrix exponential is 

A e := 1 + A +
1 
A2 +

1 
A3 + · · · ,

2! 3! 

which converges to a matrix in GLn(C). 97 For example, φA(t) = etA is a one-parameter group.98 

Example 31.2� � � � 

If A = 
1 
0 

0 
0 

, then An = 
1 
0 

0 
0 

for all n ≥ 1. Then 

�X 1A 1 
e = An = 

n! 0 
n≥0 

� �X0 1 
+ 

1 0 
n≥1 

� � 
0 e 

= 
0 0 

� 
0 

. 
1 

Example 31.3 � � � � 

Similarly, for A = 
0 
0 

1 
0 

, A2 = 
0 
0 

0 
0 

= A3 = · · · . Then 

� � � � � � 
A e = 

1 
0 

0 
1 

+ 
0 
0 

1 
0 

= 
1 
0 

1 
1 

. 

31.2 Properties of the Matrix Exponential 
The matrix exponential fulflls several nice properties. 

sA tA (s+t)A A B A+B• The product is the exponential of the sum: e e = e . In fact, if AB = BA, then e e = e , 
but they must commute.99     

λ1 · · · 0 eλ · · · 01 . . .  A  . . . • If A =  . . .  , then e =  . . .  .. .. . . . 
0 · · · λn 0 · · · eλ 

n 

B• If B = P AP −1 , then e = PeAP −1 . This allows us to easily take the matrix exponential of any diagonal-
izable matrix. 

Example 31.4� � � � 
0 2π 2πi 0If A = , it has eigenvalues 2πi and −2πi, so diagonalizing gives P AP −1 = .−2π 0 0 2πi � � 

P AP −1 2πi AThen PeAP −1 = e =
1 0 

, since e = 1. Since eA is conjugate to the identity matrix, e 
0 1 

itself must be the identity matrix. 

     
0 2π 0 0 

In particular, e −2π 0 
= e 0 0 , and so the matrix exponential is not injective, unlike the normal 

exponential. 
97With the metric ||M || = maxi,j |mij |, every entry converges. 
98It is called a one-parameter "subgroup," but it does not have to be injective; it can wrap around. 

1 Ak Bℓ99The key fact here is that (A + B)n = 
P 

when AB = BA; matrix multiplication is not commutative so it is not 
n! k+ℓ=n k! ℓ! 

always true. 
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� � � � 
a(t) b(t) a ′ (t) b ′ (t)d• Defning the derivative of a matrix to be = , the derivative isdt c(t) d(t) c ′ (t) d ′ (t) � � 

t2d dtA) = A2(e I + tA + + · · · 
dt dt 2 

t2 

= 1000 + A + tA2 + A3 + · · · 
2 

= AetA , 

similarly to the normal exponential. 

31.3 One-Parameter Subgroups 

The matrix exponential is related to one-parameter subgroups in the following manner. 

Proposition 31.5 
Every one-parameter group in GLn(C) is of the form φ(t) = etA for a unique matrix A ∈ Matn×n(C). 

Proof. We prove uniqueness and existence. 
tA• Uniqueness. If φ(t) = e , then φ ′ (t) = AetA , so φ ′ (0) = A. So the coefcient A in the one-parameter 

subgroup is given by taking the derivative and evaluating at 0.101 

• Existence. Given φ(t), set A := φ ′ (0) ∈ Matn×n. Since φ is a homomorphism, φ(s + t) = φ(s)φ(t) for 
∂all s and t. Taking the derivative ,∂s 

φ ′ (s + t) = φ ′ (s)φ(t). 

Plugging in s = 0, we get 
φ ′ (t) = Aφ(t), 

and we also have φ(0) = In. Since this is a linear frst-order ordinary diferential equation with an initial 
condition, there is a unique solution, which is φ(t) = etA . 

Defnition 31.6 
For G ≤ GLn(C), a one-parameter group in G is a one-parameter group φ(t) in GLn(C) such that 
φ(t) ∈ G for all t ∈ R. 

For a one-parameter group in G, φ(t) = etA for some A ∈ Matn×n(C) as well. 

Guiding Question 
Given a group G, what are the one-parameter groups in G? What is the corresponding set of matrices A 
for which etA ∈ G for all t? 

Let’s see an example. 

Example 31.7 (Diagonal Matrices) 
Let   λ1 .G =  . . 

0 

· · · 
. . . 
· · · 

 
0  
. .  ≤ GLn(C). 
λn 

where λi ̸= 0. The one-parameter groups in G are determined by the matrices A such that etA ∈ G for all 
t ∈ R. Here, etA ∈ G for all t ∈ R if and only if A is diagonal. 

101Thinking of φ as a trajectory, A is essentially the velocity of the particle when it is passing through the identity. 
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Proof. If  
λ1(t) · · · 0  tA . ..φ(t) = e = . . . ,.. . 
0 · · · λn(t) 

λ ′ 1(0) · · · 0 

  
λ ′ 1(t) · · · 0 

. .. then φ ′ (t) = Then. . . ... . 
0 · · · λ ′ (t)n    A = φ ′ (0) = . ... . ... . 

0 · · · λ ′ (0)n 

must be diagonal. 

a1 · · · 0 eta1 · · · 0 
  

If A =   is diagonal, then tA is diagonal, and so etA =  . .. . .. ∈ G. So every . . . . . .. .. . . . 
tan0 · · · an 0 · · · e 

diagonal matrix A does correspond to a one-parameter subgroup in G. 

We can also do the same with upper triangular invertible matrices. 

· · · c1nc11 
. ..Let G = . . . ≤ GLn(C), where cii ̸= 0 for all i. Then etA ∈ G for all t ∈ R if and only if .. . 

Example 31.8 (Upper Triangular Matrices)  

0 · · · c nn 

. .. A = . . . .. 
0 · · · ann 

   

· · · ⋆a11 

. . 

  

     

 ′ ′ c11(0) · · · c (0)1n 
. .. Proof. If φ(t) is upper triangular, then A = φ ′ (0) = must also be upper triangular.. . ... . 

′ 0 · · · c (0)nn 

tAAlso, if A is upper triangular, so is An for all n, and thus so is e . So the image of φ is in G. 

  

  

  

  

Problem 31.9 
For 

1 · · · ⋆ 
. ..G = . . . ≤ GLn(C),.. . 
0 · · · 1 

what are the corresponding matrices A?a 

0 · · · ⋆ 
. ..aThe answer is that A is of the form . . . . .. . 
0 · · · 0 

We can also look at the one-parameter groups for unitary matrices. 

Example 31.10 (Unitary Matrices) 
For Un = {M∗ = M−1} ≤ GLn(C), etA ∈ Un if and only if A∗ = −A is skew-Hermitian for some matrix 
A ∈ Matn×n(C). 
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Proof. We have � �∗ 
A2 (A∗)2 

A) ∗ = I ∗ + A ∗ (A ∗ )(e = I + A + + · · · + + · · · = e . 
2! 2! 

tA tA)∗ tA)−1 tA ∗ −tA tA ∗ −Ae−tAIf e is unitary, then (e = (e , so e = e . Diferentiating gives A∗ e = , and taking 
t = 0 gives A∗ = −A. 

tA)∗ tA ∗ −tA tA)−1 tA ∈ UnConversely, if A∗ = −A, then (e = e = e = (e , and so e for all t. 
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32 One-Parameter Groups, Continued 

32.1 Review 

Essentially, we want to restrict the image of φ to lie in G, in order to understand G better. 

Guiding Question 
How can we characterize which matrices A defne one-parameter subgroups satisfying this property? 

As a motivation, the real numbers with addition, (R, +), is essentially the simplest one-dimensional group, 
and here the notion of a one-parameter maps the real numbers into other groups, allowing us to study more 
complicated groups using the additive structure of the real numbers. 

Let’s see an example we covered last time. 

Example 32.1 (Unitary Matrices) 
tA ∈ UnLet G = Un ⊂ GLn(C). Last time, we showed that the condition that e for all t ∈ R is equivalent to 

requiring that A∗ = −Aa; that is, if and only if A is skew-Hermitian, the one-parameter subgroup described 
by A maps to only unitary matrices. 

aNote that it is not required for A to be in GLn/invertible; it simply has to be some n×n matrix. 

32.2 Examples! 
Another example is given by upper triangular matrices. 

Example 32.2 (Upper Triangular Matrices) 
Let    1 ⋆ ⋆  

G = 0 
0 

1 
0 

⋆ 
1 

≤ GL3(R) 

be the real upper triangular matrices. Then the corresponding A for which etA ∈ G for all t ∈ R make up 
the set of matrices    0 ⋆ ⋆  0 0 ⋆ ⊆ Mat3×3(R). 

0 0 0 

tAThe one-parameter group is a homomorphism φ(t) = e , for some matrix A; in particular, A is φ ′ (0). So fnding 
what A looks like, given G, is done by taking the derivative at t = 0. The image of φ lies in G, and since the 1s 
down the diagonal are not dependent on t, while the upper right entries could be nonzero,     

1 ⋆ ⋆ 0 ⋆ ⋆ 
A = 

d 0 1 ⋆ = 0 0 ⋆ . 
dt t=0 0 0 1 0 0 0 

It is also necessary to show the other direction that if A is of such a form, then the associated one-parameter      0 ⋆ ⋆   0 ⋆ ⋆  
tAgroup φ = e will actually have its image lie in G. If A ∈ P 

1k ≥ 1. Then, the exponential is a sum Ak , sok! 

0 
0 

0 
0 

⋆  
, then Ak 

0 
= 0 

0 
0 
0 

⋆ 
0 

for 

      
1 0 0 0 ⋆ ⋆ 1 ⋆ ⋆ 

A e = 0 1 0 + 0 0 ⋆ + · · · = 0 1 ⋆ , 
0 0 1 0 0 0 0 0 1 

and therefore etA ∈ G. So in fact etA ∈ G is equivalent to A being upper triangular. 

Now, let’s consider the orthogonal matrices. 
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Example 32.3 
Consider the orthogonal matrices On ⊂ GLn(R). For a one-parameter subgroup of On, the matrix A must 

tA)Tsatisfy (e = (etA)−1for all t. 

This is equivalent to 
tAT −tA e = e 

d tAT

for all t.a Taking the derivative , we get AT e = −Ae−tA , and evaluating at t = 0 gives that thedt 
possible A are the ones satisfying 

b{AT = −A}. 

tAT −tA tA)T tA)−1 tA ∈ OnConversely, if AT = −A, then e = e , which is equivalent to (e = (e , and so e when 
AT = −A. So these are the correct matrices A. 

tA)T t(AT ) tA −tAaWriting out the exponential as a sum gives (e = e , and it is clear that the inverse of e is e . 
bIt is also possible to get this simply by the fact that On is Un ∩ GLn(R), and so A must satisfy the same property as for 

the unitary matrices, that A∗ = −A, and for real matrices this condition is the same as AT = −A. 

32.3 The Special Linear Group SLn(C) 
In order to study SLn(C), which is in some sense the frst subgroup of matrices that we ever studied, an 
important identity about the matrix exponential must be established. 

Guiding Question 
What about SLn(C)? 

Lemma 32.4 
For any A ∈ Matn×n(C), 

A trace(A)det e = e . 

��This property is clearly true for diagonal matrices, and from there we hope that this is true for other matrices 
λ1 0 as well. For example, for A = ,
0 λ2 �� 

 

λ1e 0A e = ,λ20 e 

and 
λ1 λ2 λ1+λ2 trace(A)det(e A) = e e = e = e . 

Trying to steamroll through the proof of the lemma becomes very difcult, but fortunately the exponential, 
determinant, and trace all behave well with respect to conjugation. 

Proof. We have 

P AP −1 

det(P AP −1) = det(A), trace(P AP −1) = trace(A), e = PeAP −1 . 

Thus, if the lemma is true for a matrix conjugate to A, it is true for A, and so only one representative from each 
conjugacy class needs to be considered. Then, without loss of generality, we can assume that A is in Jordan 

λ1 · · · ⋆ 
. ..canonical form, and the proof follows identically to the diagonal case. We take A =   to be . . ... . 
0 λn · · ·   

λλk · · · ⋆ e · · · ⋆ 1 1   . .. . ..upper triangular and in Jordan form. Then Ak = , and so eA = , so. . . . . .. .. . . . 
λλk0 · · · 0 · · · en n P 

λi trace(A)det(e A) = e = e . 
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Now we can take a look at SLn(C). 

Example 32.5 
tA ∈ SLn 

tA ∈ SLn 
tA) = 1Consider A ∈ Matn×n(C) such that e (C) for all t ∈ R. Then e (C), and so det(e 

trace(tA)for all t. Therefore, by Lemma 32.4, e = 1, which is equivalent to stating that trace(A) ∈ 2πiZ 
tAfor all t ∈ R, which is possible only if the trace of A is 0. So the one-parameter groups in SLn(C) are e 

where A ∈ Matn×n(C) is traceless.a 

aThe trace is 0. 

These conditions on A can obviously be combined for diferent groups G. The one-parameter groups in SUn 

correspond with the matrices A such that A∗ = −A and trace(A) = 0. 

In particular, the one-parameter groups in SU2 consist of etA where the 2×2 matrix A is skew-symmetric and 
has zero trace. 

2 

Example 32.6 (SU2)� � 

2
3 

For A = 
α β

, these conditions end up givinga that 
γ δ 

2
2 

� � � � � � � � 
ix1 x2 + ix3 i 0 0 1 0 i 

A = = x1 + x2 + x3 . 

2
1 

−x2 + x3 −ix1 0 −i −1 0 i 0 

These are the matrices that showed up when we studied the equator! We have 

A = x1I + x2J + x3K, 

and so A = cv⃗ for v⃗ ∈ E ⊂ SU2. b 

Then 
tA tcv⃗ de = e = cos(tc)I + sin(tc)v⃗c ∈ Long⃗ .v 

Essentially, there is a one-parameter subgroup of SLn for each v⃗ for some vector v⃗ on the equator, where 
tAthe coefcient c in A = cv⃗ determines the speed at which the subgroup is swept out. The image of e 

simply corresponds to the longitude given by v⃗. 

aActually going through the process is slightly tedious and not that informative; try it for yourself if you want to!q
bBecause there is no requirement that x + x + x = 1, A does not actually have to be on the equator, but it is just 

some multiple c of a vector v⃗ on the equator. When c = 1, A is actually on the equator, by the characterization we gave in a 
previous lecture. 

cThis is given by simply writing out the expansion of the matrix exponential as a sum and collecting the terms into a 
Taylor series for cosine and a Taylor series for sine; since v⃗ is on the equator, v⃗ = −1, and so the result is essentially the same 
as the result that eiθ = cos θ + i sin θ. 

dThis is the characterization given in a previous lecture. 

32.4 Tangent Vectors 

So far, several examples have been shown, but we would like to see what else we can say more generally about 
one-parameter subgroups. To do so, we will introduce some new tools. 

Guiding Question 
What else can we say about the setsa of matrices A defning one-parameter groups? 

aIn fact, they will be vector spaces 

Since they are given by derivatives at t = 0, corresponding to the identity, the matrices A are "tangent vectors" 
to G ≤ GLn(R) at the identity I. Intuitively, a tangent vector at some point is a vector lying in the tangent 
plane. 
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There are three approaches to rigorously defning tangent vectors. 

1. The approach taken so far is that a tangent vector will be given by a matrix A ∈ Matn×n(R) such that 
102the corresponding one-parameter group etA ∈ G for all t ∈ R. 

2. The second approach is more general, and builds on the idea that a one-parameter group is the trajectory 
of a particle moving in G in a specifc way defned by φ. Instead of taking a path that happens to 
be a homomorphism, take any diferentiable path103 from some interval f : (−ε, ε) −→ GLn(R) such 
that f(0) = I and f(t) ∈ (G) for all t. Then a tangent vector is simply the velocity at time t = 0, 

104f ′ (0) ∈ Matn×n(R). 

It is not obvious, but it turns out that the frst defnition is equivalent to the second defnition, giving the same 
subsets of matrices A as tangent vectors. For the frst defnition, the advantage is that each tangent vector 
corresponds to only one path through the identity, so there is a bijection. The second approach gives lots of 
paths through the identity that have a given velocity vector, but it turns out that it is easier to use it to show 
that the set of tangent vectors actually forms a vector space, called the tangent space.105 

3. Suppose G is defned by polynomial constraints on the matrix entries.106 For example, the constraints 
could be that it is upper triangular; then aij = 0 for all i > j is a bunch of polynomial conditions on the 
matrix entries. Orthogonality can also be phrased as a polynomial condition. 

Then, when working with polynomials, the derivative can be mimicked without actually needing to know 
107analysis. We work with an object R[ε] := R + Rε where ε2 = 0. 

This allows us to defne a derivative without actually taking any limits. For example, for f(x) = x2 + 2x, 
evaluating f on x + ε ∈ R[ε] will give 

f(x + ε) = (x + ε)2 + 2(x + ε) 

= x 2 + 2xε + ε2 + 2x + 2ε 

= x 2 + 2xε + 2x + 2ε 

= (x 2 + 2x) + (2x + 2)ε. 

So with this funky multiplication, any terms of order more than two in ε disappear, and we get f(x+ε)−f(x) = ε 
f ′ (x), even though we haven’t actually defned the derivative from an analysis perspective. 

The upshot is that to fnd A ∈ Matn×n(R), we simply look at A with the property that In + εA, the identity 
matrix perturbed by A, satisfes the same system of equations defning G, but in the sense of the funky 
multiplication of R[ε], where ε2 = 0. We’ll explain this more on Friday. 

102Every matrix A will defne some path in GLn; if the entire path lives in G, then we can think of A as a tangent vector. 
103Any matrix-valued function 
104The idea is that all the paths through the identity will give velocity vectors (with lots of redundancy), which we will consider 

as tangent vectors. 
105There is actually more structure on it, which we will talk about on Friday. 
106This approach is not necessary for this class, but it is fun, so we will do it. 
107Here ε is not some number in R, so it is not actually true that ε must be 0; it is simply a formal construct where we impose the√ 

condition that ε2 = 0. It is similar to the defnition of i = −1; there is no such real number, so we simply defne some number 
satisfying this property. In the same way, we simply defne R[ε] to be R + Rε for some object ε satisfying ε2 = 0. 
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33 Lie Groups 

33.1 Review 

Last time, we discussed one-parameter groups G ≤ GLn(R). We started thinking about tangent vectors to the 
group, based at some identity. 

Defnition 33.1 
The collection of all tangent vectors at I ⊂ G, called the tangent space, can be characterized in multiple 
ways. We call this Lie(G), pronounced "lee." 

1. The frst defnition is the most familiar one. The tangent vectors are the matrices such that the associated 
one-parameter subgroup lies in G. We found that there is a bijection between matrices and one-parameter 
groups lying in G. 

Lie(G) = {A ∈ Matn×n(R) : e tA ∈ G, t ∈ R} 

2. More generally, we consider any path inside the group through the identity, not just a one-parameter 
group, and take A, the velocity at the identity, to be a tangent vector.108 

Lie(G) = {A ∈ Matn×n(R) : ∃f : (−ε, ε) −→ G, f(0) = I, f ′ (0) = A} 

3. The third approach is slightly stranger. It is less general, and requires G to be defned by polynomial 
constraints.109 In this case, we take this strange construction 

R[ε] = R ⊕ Rε = {a + bε : a, b ∈ R}, 

where we defne the multiplication to be such that 

110ε2 = 0. 
108For defnition 1, we know all the 1-parameter subgroups, but for defnition 2, there are lots of other possible paths. So for 

defnition 1, there is a bijection between the matrices A and the one-parameter groups, while for defnition 2, there are lots of 
diferent paths with the same tangent vector as the velocity. Defnition 2 does not use the fact that G is a group. 
109For example, setting the determinant to be 1 is some complicated polynomial constraint. 
110This is similar to how we could defne the complex numbers, where we set i2 = −1. 
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If f is a polynomial, then we can set, formally, the derivative to be 

f ′ (x) = f(x + ε) − f(x). 

This is a way of thinking about the derivative without limits, for polnyomials. Then, we take 

Lie(G) = {A ∈ Matn×n : I + εA satisfes the polynomial constraints defning G}. 

33.2 Lie Groups 

These defnitions are quite abstract, so let’s see them in action for On. 

Example 33.2 
Let G = On, the set of matrices such that AT A = I. 

1. The Lie group, as we have seen in the previous lecture, is 

Lie(On) = {A : AT = −A}. 

These are the skew-symmetric matrices. 

2. Consider a path passing through the identity at zero: 

f : (−ε, ε) −→ On 

such that f(0) = I. By the defnition of an orthogonal matrix, 

f(t)T · f(t) = I. 

Taking the derivative, 
f ′ (t)T · f(t) = f(t)T · f ′ (t) = 0, 

and taking t = 0 gives AT I + IA = 0, and thus 

AT = −A. 

So the same condition holds. 

3. The condition that AT A = I is a set of complicated polynomial conditions. From defnition 3), the Lie 
group consists of matrices A such that 

(I + εA)T (I + εA) = I, 

using the rule that ε2 = 0. Multiplying this out, 

I + εAT + εA + ε2AT A, 

and taking ε2 = 0, 
I + εAT + εA = I, 

which implies that 
AT = −A 

after dividing both sides by ε. 

All three defnitions lead to the same Lie group, despite being very diferent. The third defnition is useful because 
it makes sense even without working over the real numbers, and works for any group defned by polynomial 
constraints!111 For example, the Lie group can be defned for orthogonal matrices over fnite felds. 

Here are some non-obvious facts about these characterizations of the tangent space at the identity. 
111The intuition for this third defnition is that it is essentially using the Taylor expansion of the path through the identity, and 

ignoring third order and higher terms. 
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Proposition 33.3 
For Lie(G) : 

• All three defnitions are actually equivalent. 

• For a group G, Lie(G) is actually a vector subspace of Matn×n(R). 

It is surprising that Lie(G) is a vector space, since the matrix exponential does not generally behave well with 
respect to addition if A and B do not commute.112 

33.3 Manifolds 

In order to understand Lie groups, we have to think about the notion of a manifold. For this section, the 
discussion will be less rigorous and precise, and it is okay not to understand all the defnitions; we are just 
providing the favor of concepts that will show up in later classes. 

Defnition 33.4 
For M a subset of Rn , M is a (diferentiable) manifold of dimension d if for each x ∈ M, there 
exists an open set containing x V ⊆ M , an open ball U ⊂ Rda , and a continuous (diferentiable) bijection 
f : U −→ V. 

aAn open ball is a subset of Rd of the form U = {x : |x| < δ} for some δ. 

Globally, a d-dimensional does not look like Rd , but locally, it does. The circle is an example of a 1-dimensional 
manifold; at each point on the circle, there is really only one direction to move in. 

Example 33.5 (Circle) 
Consider some interval on the real line. Then, it is possible to write down some function bijectively mapping 
that interval to some other interval on the circle. This can happen around any point on the circle, so it is a 
manifold. 

tA tB tC112Using the frst defnition, it is not clear that e + e can be written as e . 
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Loosely, for defnition 2, we have tangent vectors at 0 in U ⊂ Rd corresponding to tangent vectors at x in M, 
which in a way brings the vector space structure from Rd to M. 

A non-example would be the union of the x-axis and the y-axis, since at the origin, there is an intersection that 
does not look like an interval. There are two directions to move in, instead of one direction. 

All our examples of G ≤ GLn(R) are manifolds, not just groups. This requires some argument, but it is true. 

33.4 Lie Bracket 

For every group G, there is a corresponding vector space structure Lie(G) ⊂ Matn×n(R) = Lie(GLn(R)). In fact, 
Lie(G) carries some extra structure. The multiplication structure A, B ⇝ AB ∈ Matn×n(R) does not preserve 
Lie(G); if A, B ∈ Lie(G), it does not mean that AB ∈ Lie(G). For example, Lie(On) = {A : AT = −A}, so for 
A, B ∈ Lie(G), (AB)T = BT AT = BA, which is not usually equal to −AB. However, a very similar structure 
does preserve the Lie group. 

Defnition 33.6 (Lie Bracket) 
Let the Lie bracket of A, B ∈ Matn×n(R) be 

[A, B] := AB − BA ∈ Matn×n(R). 

Theorem 33.7 
For any G ≤ GLn, the Lie group G ⊆ Matn×n(R) is preserved by the Lie bracket: 

A, B ∈ Lie(G) → [A, B] ∈ Lie(G) 

The Lie group is not just a vector space — it is actually a vector space with some weirdo multiplication on it! 

The Lie bracket can be seen in action for some of the Lie groups we have seen already. 

Example 33.8 
For G = On, Lie(On) = {A : AT = −A}. Then for A, B ∈ Lie(On), [A, B] = AB − BA, and 

[A, B]T = BT AT − AT BT = BA − AB = −[A, B]. 

So [A, B] ∈ Lie(On). 

Example 33.9 
For SLn(R), Lie(SLn()) = {A : trace(A) = 0}. For matrices A, B, trace(AB) = trace(BA), and so 
trace([A, B]) = 0. 

The commutator in the group corresponds to the Lie bracket. 
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Proof. For A, B ∈ Lie(G), then consider etA ∈ G and esB ∈ G. Then we know that 

tA sB −tA −sB ∈ G,e e e e 

and Taylor expanding gives 

(I + tA + · · · )(I + sB + · · · )(I − tA + · · · )(I − sB + · · · ) ∈ G, 

which, to the frst order, gives 
I + st[A, B] + · · · ∈ G. 

Then, taking the derivative at 0 gives 
[A, B] ∈ Lie(G). 

The Lie bracket comes from the fact that the group is closed under multiplication and taking the derivative at 
0 for that. As a corollary, if G is abelian113 , then the Lie bracket is identically 0 on all of G. In some way, for 
an arbitrary group G, the Lie bracket "measures" the failure of the group to be abelian. 

We started out with groups that we cared about (matrix groups), looked at the set of tangent vectors, which is 
the same as the set of one-parameter groups, and looked at the vector space structure which also has a funky 
Lie bracket, and now we will look at properties of this bracket. 

Here are some nice properties of the Lie bracket. 

• Antisymmetry. [A, B] = −[B, A] 

• The Jacobi identity. We have [[A, B], C] + [[B, C], A] + [[C, A], B] = 0. It is true simply when expanding. 
This also comes from a property of the group; we won’t do it but you can get it by staring at a more 
complicated version of how we derived the Lie bracket. 

Defnition 33.10 
A Lie algebra (over R) is a vector space V with a Lie bracket [·, ·] : V ×V −→ V satisfying [A, B] = −[B, A] 
and the Jacobi identity. 

On the homework, we see that R2 with the cross product is a Lie algebra, and it is Lie(SO3) = Lie(SU2). 

If G is a group that is also a manifold, it is called a Lie group, and if G is a Lie group, it can be replaced with 
Lie(G), a Lie algebra, which is simply a vector space with a weird multiplication on it, which is a lot easier to 
study. However, the Lie algebra carries a lot of information about G. 

Theorem 33.11 
Given a Lie algebra (fnite dimensional over R) V , there exists a unique Lie group G such that Lie(G) = V. 

Lie theory ends up being a very powerful tool in the study of understanding groups. 

113For example, diagonal matrices 
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34 Simple Linear Groups 

34.1 Review 

Last time, we took a group G ≤ GLn(R) and looked at Lie(G), the vector space of tangent vectors at the 
identity. We had lots of diferent defnitions, but the most familiar way is to think of Lie(G) as all the matrices 
that provide one-parameter groups inside of G. The key point was that not only is Lie(G) a vector space, but it 
also has some extra structure: the Lie bracket [A, B] = AB − BA, which is a skew-symmetric multiplication 
on the vector space. This is a new operation, but it also arises naturally from considering multiplication on G, 
and sort of taking its derivative. The Lie bracket measures the failure of G to be commutative. 

We don’t actually need G to be a subgroup of GLn(R) in order to do this. For any group with a manifold 
structure, called a Lie group, we can look at the tangent vectors through the identity, and we get a vector 
space which also has a bracket multiplication, which is its Lie algebra Lie(G). 

Student Question. Can you recover the group from its Lie algebra? 

Answer. In general, the answer is no. For example, SU2 and SO3 have the same Lie algebra. But it turns 
out that if two groups have the same Lie algebra, they’re related to each other – here SU2 and SO3 difer by a 
“fnite amount” (we have a two-to-one surjection SU2 → SO3), and you can show something similar is true in 
general. In fact, if you require the group to be simply connected, then there is a unique group with a given Lie 
algebra. You can then use this to study all the groups with a given Lie algebra. 

This ends up being a powerful tool because now in order to understand a group with a manifold structure, 
we can instead try to understand its Lie algebra, which is an easier problem; and then fgure out how to go 
backwards. 

34.2 Simple Linear Groups 

Recall that a group is simple if its only normal subgroups are the trivial group and the whole group. You can 
think of simple groups as building blocks for more complicated groups – if you have a group that isn’t simple, 
then you can understand it by understanding the normal subgroup and its quotient group. But if you have a 
simple group, you can’t break it down further. 

Guiding Question 
Which G ≤ GLn(R) are simple? 

We’ll look at two groups: SU2 and SL2. 

34.3 The Special Unitary Group 

First we’ll look at whether SU2 is simple. The answer is no – the center of a group (the set of elements which 
commute with everything) is always a normal subgroup. But the center of SU2 is ±I, which is nontrivial. 

But it turns out that’s essentially the only thing that can happen: 

Theorem 34.1 
If N ⊴ SU2, then N must be {I}, SU2, or {±I}. 

So then in order to produce a simple group, we can quotient out by this center: 

Corollary 34.2 
The quotient SU2/{±I} is simple. 

This quotient is actually SO3: we have a surjective homomorphism SU2 → SO3 (from the conjugation action 
on the equator), and the kernel is exactly {±I}. So in particular, SO3 is simple. 

Proof of Corollary 34.2. This follows from the Correspondence Principle: we have a surjection φ : SU2 → SO3. 
So for any normal subgroup N ⊴ SO3, its pre-image is a subgroup of SU2, which is also normal and contains 
the kernel {±I}. But any normal subgroup of SU2 containing the kernel is equal to either the kernel or the 
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whole group, which means the initial normal subgroup in SO3 is either the identity or the entire group (by 
taking the image under φ). 

Proof of Theorem 34.1. We can use the geometric intuition of what SU2 looks like. It’s a 3-sphere in 4-
dimensional space, and its conjugacy classes are exactly the latitudes – the 2-spheres we get from taking 
horizontal slices. 

Suppose we have N ⊴ SU2, and some element Q ∈ N which is not ±I. We’d like to show that N must then be 
the entire group. 

Q

I

Since N is normal, everything conjugate to Q must also be in N . If Tr(Q) = 2c, then Latc is the conjugacy 
class of Q, so this entire latitude must be inside N . (This latitude is a 2-sphere of positive radius, since Q is 
not ±I.) 

Now we can take this 2-sphere, and translate it to pass through the identity: consider Q−1 Latc, which is a 
2-sphere (of positive radius) passing through the north pole I. This must also be contained inside N (since Q 
and Latc are both contained inside N). 

Q

I

Now start at I, and take a nontrivial path inside this two-sphere. Write this path as f(t) for 0 ≤ t ≤ ε, where 
we have f(t) ∈ Q−1 Latc for all t, and f(0) = I, while f(t) ≠ I for t > 0. 
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Q

I

Then f(t) is contained in Q−1 Latc, and therefore inside N . And the north pole is the only point in the sphere 
with trace 2, so Tr(f(t)) < 2 for all t > 0. This means there exists some δ > 0 such that for all 2 − δ < c < 2, 
there exists t such that Tr(f(t)) = c. 

But once we fnd that N contains one point on a given latitude, then N must contain every point on that 
latitude (because N is normal, so it must contain the entire conjugacy class of that point). So this means for 
every c such that 2 − δ < c < 2, the latitude Latc/2 is contained inside N . 

Q

I

This means we have an entire neighborhood of the identity that’s contained inside N – any point A ∈ SU2 with 
Tr(A) > 2 − δ is contained inside N . 

Now we’re almost done: we want to show that once we have a neighborhood of the identity, we have all points. 
To do this, we can look at the longitudes: pick some v on the equator, and look at Long ≤ SU2. Every point v 
on the three-sphere is in some longitude, so it sufces to show that every longitude is contained in N . 

I
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But this longitude is the circle 
{cos θI + sin θv | 0 ≤ θ < 2π}. 

And we know that if θ is small enough, then the point ρθ corresponding to θ is in N (meaning there exists ε 
such that ρθ ∈ N for all |θ| < ε). 

I

ρθ

θ

Now we can take ρθ for small θ, and multiply it by itself repeatedly to cover the entire circle: for any φ ∈ [0, 2π), 
φthere is some M such that < ε. Then ρϕ/M is in N , which means ρφ = (ρφ/M )

M is in N as well. M 

So now every longitude is in N , and since every point is in a longitude, this means all of SU2 is in N . 

Note 34.3 
This is a really hands-on argument; we used the fact that we have both a geometric and group-theoretic 
understanding of what SU2 is. 

34.4 The Special Linear Group 

Now we’ll look at SL2(C) – the group of 2 × 2 matrices with determinant 1. 

Again, ±I is the center of SL2(C), so the most we could ask for is that if we quotient out by this normal 
subgroup, we get a simple group. It turns out that this is the case, and it actually works for any feld F , not 
just the complex numbers: 

Theorem 34.4 
For any feld F with |F | ≥ 4, the quotient SL2(F )/{±I} is simple. 

This quotient is sometimes called P SL2(F ). 

We’re no longer in a geometric setting (F can be a fnite feld), so the proof won’t be geometric like the previous 
one; instead, we’ll get our hands on generators and relations. 

Note 34.5 
The theorem is false over F2 and F3. This is similar to how when we looked at the alternating groups, we 
saw that An is simple for all n ≥ 5, but A4 and A3 are not simple. In both cases, we have a family of 
groups where the frst couple may be counterexamples, but eventually they all become simple. 

Proof of Theorem 34.4. We’ll prove this in the case where |F | > 5 (there’s only two remaining cases, which can 
be checked by hand). It sufces to prove that if we have a normal subgroup N ⊴ SL2(F ), then N is either 
{I}, {±I}, or SL2(F ) – then this implies the quotient is simple by the same argument as before, using the 
Correspondence Principle. 

We’ll begin with a few lemmas about the feld: 
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Lemma 34.6 
Given a ∈ F , the equation x2 = a has at most 2 solutions. 

This seems obvious, but it’s possible to have more solutions in Z/nZ if n is not prime. So it matters that F is 
a feld. 

2 2Proof. If we have two solutions x and y, then x = y , so 

(x + y)(x − y) = 0. 

But because F is a feld, if two elements multiply to 0, then one of them is 0. So either x = y or x = −y; this 
means if there’s one solution, then there’s at most one other solution. 

Lemma 34.7 
If |F | > 5, then there exists some r ∈ F such that r2 is not 0, 1, or −1. 

Proof. There’s at most one square root of 0, two square roots of 1, and two square roots of −1. So there are 
at most fve bad elements; and as long as there are more than 5 elements in the feld, we can fnd some good 
element (whose square isn’t 0 or ±1). 

2Now we’ll prove the main theorem. Fix an element r with r ̸∈ {0, 1, −1}. Assume that we have a normal 
subgroup N ⊴ SL2(F ) containing some element other than ±I; then we’ll show that N is the entire group. 

Claim 34.8. We can fnd some B ∈ N with distinct eigenvalues. 

Proof. Pick some A ∈ N , with A ≠ ±I. Then A is not a scalar matrix, so there is some vector v1 ∈ F 2 which is 
not an eigenvector of A. Then take v2 = Av1. Since v1 is not an eigenvector, v1 and v2 are linearly independent, 
so {v1, v2} is a basis for F 2 . 

−1Now defne P ∈ GL2(F ) with the property that Pv1 = rv1 and Pv2 = r v2. Then P is diagonal in the basis 
−1{v1, v2}, and its eigenvalues are r and r . So the determinant of P is 1, which means P ∈ SL2(F ). 

We don’t know whether P is in N . But we can defne B = AP A−1P −1 . We claim that B is inside N – we 
know A is in N . Meanwhile, PA−1P −1 is the conjugate of an element of N , so it must also be in N (since N is 
normal). Since N is a subgroup, their product must be in N as well. 

But we have 
2Bv2 = AP A−1P −1 v2 = AP A−1 rv2 = AP rv1 = Ar2 v1 = r v2. 

2So r is an eigenvalue of B, and r−2 is the other eigenvalue (because det B = 1). By our choice of r, we have 
2 −2 2r ̸= r , since r ≠ ±1. So this concludes the frst step. 

2 −1Set s = r , so we have a matrix B ∈ N with distinct eigenvalues s and s . 

−1Claim 34.9. All matrices in SL2 with eigenvalues s and s are contained in N . 

Proof. We’ll show that this set of matrices is actually a single conjugacy class in SL2. It contains B, so then 
since N is normal, this implies the entire set is contained in N . 

−1Given Q with eigenvalues s and s , we know Q is diagonalizable (since it has distinct eigenvalues), so we have � � 

LQL−1 = 
s 
0 

0 
−1s

for some L ∈ GL2(F ). Then we can take 

L ′ = 

� 
det L−1 

0 

� 
0 

L. 
1 

This has determinant 1, so it’s in SL2; and it has the same property (that that L ′ QL′−1 is diagonal). So all 
matrices with eigenvalues s and s−1 are in the same conjugacy class of SL2. 
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−1To fnish, we can look at all matrices generated (as a group) by the matrices with eigenvalues s and s . We 
can get a huge collection of matrices like this: for example, we can show that any matrices of the form � � � � 

1 
0 

x 
1 

and 
1 
x 

0 
1 

are in this group. Then there was a homework question from a long time ago that showed matrices of these 
forms generate all of SL2. 

Both our proofs had similar ideas: fnd some element in the normal subgroup, conjugate it to fnd a whole bunch 
of elements in the normal subgroup, and use those elements to generate the entire group. 

34.5 Generalizations 

We focused on 2 × 2 matrices here, but these examples are actually typical, and generalize to higher dimensions. 

If a subgroup G ≤ GLn(C) is defned by polynomial constraints (for example, we can require that the matrix 
has determinant 1, but we can’t take complex conjugates – so the unitary groups are not in this category, but 
the orthogonal groups are), then you can actually classify which ones are simple. We’ve essentially seen these 
already: you can take SLn modulo its center, and SOn modulo its center. You can also take a skew-symmetric 
form instead (which we didn’t really discuss in class), modulo its center. These are almost all the simple groups 
– there’s just fve other examples. 

The proof uses the idea of passing to the Lie algebra Lie(G) – you frst understand what a simple Lie algebra 
is, and use that to study what the simple Lie groups are. 

The really remarkable thing is that understanding these matrix groups also lets you understand fnite simple 
groups – if you replace C with a fnite feld, then these examples give fnite simple groups, and these are almost 
all the known examples (with 26 exceptions). 
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35 Hilbert’s Third Problem 

35.1 Polygons in the Plane 

Defnition 35.1 
Given polygons P and Q on the plane, P is scissors-congruent to Q (denoted P ∼ Q) if we can divide 
P , using fnitely many straight cuts, into a set of polygons R1 through Rn; and we can divide Q into the 
same collection R1, . . . , Rn. 

Example 35.2 
This triangle and quadrilateral are scissors-congruent: 

Guiding Question 
Given two polygons P and Q, when is P ∼ Q? 

There’s one obvious obstruction: we need P and Q to have the same area, since the area is preserved by 
rearranging pieces. This is actually an if and only if condition: 

Theorem 35.3 
If P and Q have the same area, then P ∼ Q. 

Proof Outline. The idea is to rearrange both P and Q to a rectangle with dimensions 1 × area(P ), where A is 
the common area – if P and Q are scissors-congruent to the same rectangle, then they’re scissors-congruent to 
each other. 

First, cut P into triangles T1, . . . , Ts. Then each triangle T is scissors-congruent to some rectangle: cut the 
triangle as shown, and move the red pieces to the blue triangles. 

Then we can show that any rectangle R is scissors-congruent to another rectangle with dimensions 1 × area(R). 
This part is a bit fnicky and involves a bunch of cases, so we’ll skip it. 

Finally, we have a bunch of triangles, which are each scissors-congruent to a rectangle of height 1. So we can 
concatenate all these rectangles, to get a bigger rectangle of height 1. This means P is scissors-congruent to a 
1 × area(P ) rectangle, and by performing the same argument for Q, then P ∼ Q. 

35.2 The Question 

We can now consider what happens in 3 dimensions. 

Defnition 35.4 
If P and Q are polytopes (meaning they have fnitely many vertices, edges, and faces, and each face is 
a polygon), then P ∼ Q if you can use fnitely many straight cuts to decompose P and Q into the same 
polytope pieces. 

171 



Lecture 35: Hilbert’s Third Problem 

Again, there’s an obvious condition: if P ∼ Q, then they must have the same volume. 

Guiding Question (Hilbert’s Third Problem) 
If two polytopes have the same volume, are they scissors-congruent? 

In 1900, David Hilbert made a list of around twenty problems, which he considered the most important problems 
in modern mathematics. These problems were very infuential. 

This question was on that list, and he was pretty sure that the answer was no. In fact, this was the frst one of 
his questions to be answered (in 1901), by his student Max Dehn. He showed more precisely that a cube and a 
tetrahedron of the same volume are not scissors-congruent. 

35.3 Some Algebra 

At the heart of this problem is a certain algebraic construction. 

Defnition 35.5 
Given two abelian groups G and H, their tensor product G⊗H is the abelian group generated by elements 
of the form g ⊗ h for g ∈ G and h ∈ H, satisfying the relations 

′ (g + g ′ ) ⊗ h = g ⊗ h + g ⊗ h, 

and similarly 
g ⊗ (h + h ′ ) = g ⊗ h + g ⊗ h ′ . 

You can think of G ⊗ H as taking M 
Z(g ⊗ h) 

g,h 

(which gives an integer for every pair (g, h)), and then quotienting out by the subgroup generated by ((g + g ′ ) ⊗ 
′ h) − (g ⊗ h) − (g ⊗ h) and so on. This gives a group; and because we’ve quotiented out by the subgroup, now 

our generators satisfy the given relations. L 
Student Question. Is the direct sum Z(g ⊗ h) the free group? 

Answer. Not exactly – it’s a free abelian group, since everything commutes. But if you’d like, you can instead 
start with the free group, and throw the condition that everything commutes into the quotient as well. 

We can think of elements of G ⊗ H as expressions combining the terms g ⊗ h, which we can simplify using the 
given relations. 

Proposition 35.6 
The defnition has a few consequences: 

• 0 ⊗ h = g ⊗ 0 = 0. 

• If a ∈ Z, then (ag) ⊗ h = a(g ⊗ h) = g ⊗ ah (by using linearity). 

• If we take lists of generators G = ⟨g1, . . . , gr⟩ and H = ⟨h1, . . . , hs⟩, then G ⊗ H = ⟨gi ⊗ hj ⟩. 

Example 35.7 
We have Z ⊗ G ∼= G. 

Proof. We must have (a ⊗ g) 7→ ag = 1 ⊗ ag. (So the isomorphism sends (a ⊗ g) to ag, and its inverse sends g 
to 1 ⊗ g.) 

Example 35.8 
We have (Z2) ⊗ G ∼= G × G. 
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Proof. We must have (a, b) ⊗ g 7→ (ag, bg). 

Note that in general, not everything in G ⊗ H is of the form g ⊗ h: you can have expressions g1 ⊗ h1 + g2 ⊗ h2 

which you can’t simplify any further using these relations. So this isn’t the same as looking at ordered pairs. 

Example 35.9 
We have C2 ⊗ C3 = 0. 

Proof. Take x ⊗ y for any x ∈ C2 and y ∈ C3. We have 3x = x, so then 

x ⊗ y = 3x ⊗ y = x ⊗ 3y = x ⊗ 0 = 0, 

since 3y = 0 in C3. 

So you can start with two nontrivial groups and take their tensor product, and get the 0 group. If we just took 
the product, that would be a nontrivial group of size 6. So the tensor product is somewhat subtle. 

Student Question. Does this happen with 2 and 3 replaced by any distinct positive integers? 

Answer. Not necessarily distinct, but it does happen if the integers are relatively prime. 

35.4 Back to Polytopes 

If we have two polytopes of the same volume, we need another way to see they aren’t scissors-congruent. 

Given a polytope P , each edge has a length ℓ, and a dihedral angle θ – where we take the perpendiculars to 
the edge on each face, and look at the angle between them. 

ℓ

θ

Then ℓ and θ are real numbers, so we can take the tensor product 

ℓ ⊗ θ ∈ R ⊗ R/2πZ. 

(Here R and R/2πZ are both uncountably generated infnite groups.) Then every edge gives an element in this 
tensor product, so we can sum over the edges: 

Defnition 35.10 
The Dehn invariant of a polytope P is X 

d(P ) = ℓi ⊗ θi ∈ R ⊗ R/2πZ, 
i 

where the sum is taken over all edges of P . 

We’ll see that the Dehn invariant is preserved by scissors-congruence – then we can use it to tell whether two 
polytopes are scissors-congruent, similarly to how we can use volume. And it turns out that we can actually 
calculate it for some examples – a cube and regular tetrahedron – and see that they give diferent results. 

Theorem 35.11 
The Dehn invariant is preserved by scissors-congruence: if P ∼ Q, then d(P ) = d(Q). 
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Proof. Consider what happens to the polytope when we cut it. First, we’ll look at what happens to the original 
edges. 

One possibility is that the edge is cut into two pieces, while the dihedral angle on each side remains the same: 

θ ℓ1

ℓ2

Then we have ℓ = ℓ1 + ℓ2, so 
ℓ ⊗ θ = ℓ1 ⊗ θ + ℓ2 ⊗ θ. 

Another possibility is that we cut by a plane that contains this edge. Then the entire edge remains intact, but 
the angles change: now we have two polytopes each with an edge of length ℓ, and angles θ1 and θ2 respectively. 

θ1
θ2

In this case, we have θ = θ1 + θ2, so 
ℓ ⊗ θ = ℓ ⊗ θ1 + ℓ ⊗ θ2. 

In both cases, we used the linear property of the tensor product. 

Meanwhile, we can also create new edges: when we make a cut along a face, this produces an edge on each of 
the two pieces. 
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ℓ

θ1 θ2

Then we had a contribution of 0 previously, and a contribution of ℓ ⊗ θ1 + ℓ ⊗ θ2 after the cut. But we have 
θ1 + θ2 = π, so 

ℓ 
ℓ ⊗ θ1 + ℓ ⊗ θ2 = ℓ ⊗ π = ⊗ 2π = 0 

2 
(since the second group is R/2πZ). 

The fnal case is if we have a new edge in the interior of the polytope. Then we have a bunch of angles which 
add up to 2π: 

So the same thing happens: when we add up its contributions, we have 

ℓ ⊗ θ1 + · · · + ℓ ⊗ θk = ℓ ⊗ 2π = 0. 

So in all cases, the Dehn invariant is preserved by cutting the polytope. 

Student Question. Does the argument used to show ℓ ⊗ π = 0 imply that any ℓ ⊗ θ is 0? 

Answer. No – we can only scale by integers. So this shows that if θ is a rational multiple of π, then ℓ ⊗ θ = 0. 
But we’ll see later that if θ isn’t a rational multiple of π, we get something nonzero. But this is something to 
watch out for – it happens a scary number of times that someone defnes a complicated invariant, but it turns 
out the invariant is always 0. 

Note 35.12 
We haven’t thoroughly gone through all possibilities, but this gives a favor of why the theorem is true – in 
every case, if we compare the old and new contributations, then the relations we quotiented out by imply 
that the invariant doesn’t change. 

Now we’ll show that the invariant actually does something interesting. 

Theorem 35.13 
If C is a cube and T is a regular tetrahedron, then d(C) = d(T ). 

Proof. A cube has 12 edges, each of which has dihedral angle π . So we get2 

π 
d(C) = 12ℓ ⊗ = ℓ ⊗ 6π = 0. 

2 
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Lecture 35: Hilbert’s Third Problem 

So the Dehn invariant of a cube is always 0. 

For a regular tetrahedron, we have 6 edges which are symmetric, so we get 

d(T ) = 6ℓ ′ ⊗ α 

for some angle α. 

α

To fnd α, we can drop an altitude. This altitude ends at the center of the base: 

So the short side of the right triangle is a third of the height of the base. 

α

1
3
h

h

Then, since the two triangles have the same height, we have 

1 
cos α = . 

3 

So we’ve found α, and now we want to show that for this value of α, the Dehn invariant is nonzero. 

Claim 35.14. α is not a rational multiple of π. 

2aπProof Outline. One way to prove this is by trig identities – suppose α = , and then use trigonometricb 
identities to write 

cos bα = (cos α)b2b + · · · . 
1Then there’s an enormous power of 3 in the denominator, since cos α = , so this can’t be 1.3 

Claim 35.15. For any α ̸∈ Qπ, and any ℓ ∈ R, ℓ ⊗ α is nonzero. 
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Lecture 35: Hilbert’s Third Problem 

Proof. Think of R as a vector space over Q (of uncountable dimension). Then π and α are linearly independent, 
so we can fll them out into a basis: we can write 

R = Qα ⊕ Qπ ⊕ W, 

where W comes from the uncountably many remaining basis elements. Then we can defne a linear map 
f : R → Q (a map of Q-vector spaces) sending α to 1, and every other basis element to 0 – we can do this 
because to defne a linear map, it sufces to defne it on each basis element. 

Then we have a group homomorphism g : R ⊗ R/2πZ → R, where z ⊗ x 7→ zf(x̃), where x̃ is x mod 2π – since 
2π ∈ ker(f), this is well-defned. (We can also check that this is compatible with the relations of the tensor 
product.) 

Now we have g(ℓ ⊗ α) = ℓ ̸= 0. And since g(ℓ ⊗ α) is nonzero, then ℓ ⊗ α must be nonzero as well. 

So d(T ) = ℓ ′ ⊗ α is nonzero, which means d(C) ≠ d(T ). 

The Dehn invariant lies in some enormous group. In this proof, in order to show it was nonzero, we mapped it 
to a much simpler group – the real numbers – and showed instead that its image is nonzero. 

Note 35.16 
This was proven in 1901. In 1968 Sydler showed the converse – that if P and Q have the same volume 
and Dehn invariants, then they’re scissors-congruent. This is known in dimension 4 as well. But in higher 
dimensions, it’s not actually known how to characterize when two polytopes are scissors-congruent. 

177 



 

 

  

MIT OpenCourseWare 
https://ocw.mit.edu 

Resource: Algebra I Student Notes 
Fall 2021 
Instructor: Davesh Maulik 
Notes taken by Jakin Ng, Sanjana Das, and Ethan Yang 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/pages/privacy-and-terms-of-use/
https://ocw.mit.edu

	Groups
	Introduction
	Laws of Composition
	Permutation and Symmetric Groups
	Examples of Symmetric Groups

	Subgroups and Cyclic Groups
	Review
	Subgroups
	Subgroups of the Integers
	Cyclic Groups

	Homomorphisms and Isomorphisms
	Review
	Homomorphisms
	Examples

	Isomorphisms and Cosets
	Review
	Isomorphisms
	Automorphisms
	Cosets
	Lagrange's Theorem

	The Correspondence Theorem
	Review
	Lagrange's Theorem
	Results of the Counting Formula
	Normal Subgroups
	The Correspondence Theorem

	Normal Subgroups and Quotient Groups
	Review
	Normal Subgroups
	Quotient Groups
	First Isomorphism Theorem

	Fields and Vector Spaces
	Review
	Fields
	Vector Spaces
	Bases and Dimension

	Dimension Formula
	Review
	Matrix of Linear Transformations
	Dimension Formula

	Dimension Formula
	Review
	Linear Operators
	Change of Basis
	Eigenvectors, Eigenvalues, and Diagonalizable Matrices
	Finding Eigenvalues and Eigenvectors

	Eigenbases and the Jordan Form
	Review
	The Characteristic Polynomial
	Jordan Form

	The Jordan Decomposition
	Review
	The Jordan Decomposition, Continued
	Proof of Jordan Decomposition Theorem

	Orthogonal Matrices
	Dot Products and Orthogonal Matrices
	The Special Orthogonal Group
	Orthogonal Matrices in Two Dimensions
	Orthogonal Matrices in Three Dimensions

	Isometries
	Review
	Isometries
	Isometries in 2-space

	Symmetry Groups
	Review
	Examples of Symmetry Groups
	Discrete Subgroups of R
	Finite subgroups of O2
	More Discrete Subgroups

	Finite and Discrete Subgroups, Continued
	Review
	Finite Subgroups of M2
	Discrete Subgroups of M2
	Discrete Subgroups of R2
	Back to Discrete Subgroups of M2!


	Discrete Groups
	Review
	Examples for L and G
	Crystallographic Restriction

	Group Actions
	Review
	Motivating Examples
	What is a group action?
	The Counting Formula

	Stabilizer
	Review
	Counting Formula
	Stabilizers of Products
	Statement
	Finding the subgroups
	The Octahedral Group

	Group Actions on G
	Conjugation
	p-groups

	The Icosahedral Group
	Review: The Class Equation
	Basic Information
	Conjugacy Classes
	Simple Groups
	Conjugacy Classes for Symmetric Groups

	Conjugacy Classes for Symmetric and Alternating Groups
	Review
	Cycle Type
	Conjugacy Classes in Sn
	Class Equation for S4
	Student Question

	The Sylow Theorems
	Review
	Motivation
	The First Sylow Theorem
	The Second Sylow Theorem
	The Third Sylow Theorem
	Applications of the Sylow Theorems

	Proofs and Applications of the Sylow Theorems
	Review
	Application: Decomposition of Finite Abelian Groups
	Proof of Sylow Theorems

	Bilinear Forms
	Review
	Bilinear Forms
	Change of Basis
	Bilinear Forms over C

	Orthogonality
	Review: Bilinear Forms
	Hermitian Forms
	Orthogonality

	The Projection Formula
	Review: Symmetric and Hermitian Forms
	Orthogonality
	Orthogonal Bases
	Projection Formula

	Euclidean and Hermitian Spaces
	Review: Orthogonal Projection
	Euclidean and Hermitian Spaces
	Gram-Schmidt Algorithm
	Complex Linear Operators

	The Spectral Theorem
	Review: Hermitian Spaces
	The Spectral Theorem

	Linear Groups
	Geometry of groups
	Geometry of SU2
	Quaternions
	Geometry of the Sphere
	Latitudes


	The Special Unitary Group SU2
	Review
	Longitudes
	More Group Theoretic Properties
	Conjugation and the Orthogonal Group
	One-Parameter Groups

	One-Parameter Subgroups
	Review
	Properties of the Matrix Exponential
	One-Parameter Subgroups

	One-Parameter Groups, Continued
	Review
	Examples!
	The Special Linear Group SLn(C)
	Tangent Vectors

	Lie Groups
	Review
	Lie Groups
	Manifolds
	Lie Bracket

	Simple Linear Groups
	Review
	Simple Linear Groups
	The Special Unitary Group
	The Special Linear Group
	Generalizations

	Hilbert's Third Problem
	Polygons in the Plane
	The Question
	Some Algebra
	Back to Polytopes




