
mas.s62 
lecture 10 

PoW results, forks part 2 

2018-03-12 
Tadge Dryja 

1



today 
pset02 recap 

PoW analysis 

more fork and non-fork types 

tx replay and attacks 

2



pset02 issues 
looks like a (truncated, ahem) Pareto 
distribution 

1 miner has >70% of the entire 
network power! 

Exaggerated here, but these are real 
issues seen in PoW networks 

3



pset02 work done 
congrats to the workers 

16 trillion hashes performed 

prove it! 

4



compact proof of work 
Often heard, but incorrect: 

"Proof of Work doesn't scale" 

Actually couldn't scale better: prove 
O(n) work in O(1) time, space 

Blockchains, and Bitcoin sure have 
scaling problems, but PoW doesn't 

5



compact proof of work 
How to prove all the work done 
throughout the entire pset in 1 line? 

6



compact proof of work 
How to prove all the work done 
throughout the entire pset in 1 line? 

Show the luckiest block 
hash(0000000065a211f01118fc6727661d71e6c6bf68d9f708c2116f6b1b72483675 turtle 1/654244/7105) 

-> 00000000000c49a941d589d5e842032d221f9ba98a5a22f3ae13e25611f79f69 

7



compact proof of work 
How to prove all the work done 
throughout the entire pset in 1 line? 

Show the luckiest block 
hash(0000000065a211f01118fc6727661d71e6c6bf68d9f708c2116f6b1b72483675 turtle 1/654244/7105) 

-> 00000000000c49a941d589d5e842032d221f9ba98a5a22f3ae13e25611f79f69 

00 00 00 00 00 0c 49 a9 41 ... 
8



compact proof of work 

00 00 00 00 00 0c 49 a9 41 ... 

that's 5 ½ bytes, or 44 bits 

244 is ~17T, which is what we 
expect. 

9



compact proof of work 

00 00 00 00 00 0c 49 a9 41 ... 

Another way to look at it: 

need 33 bits, have 44, 11 bits 
of "excess" work, or 2048 
blocks. Close to the 1862 
observed. 10



header optimization 
000000007f1f75507526524972bd4a666ea2ee20899a1feb5bb5de095d687993 kezike17 1012907732 
000000002fae9c508791febcbcc0e1e9daa5413ad1852dfe1a2b3da60695bba9 tomriddle LcGCkMKWys 
00000000486dff5b17f76839e0e5073c1efccacf0db08a97af243bbb662c604b Thalita 6bkcnQAAAAA= 
00000000057949f7b54e90dea28e32580b2d440f240be9e6258aeb81d7717cd3 AlanBidart 804030736 
000000007dadcf0730175689c9d4bd2c389d08f99ebf8fad95332ad1f1a2eb1c ShangyanLi jaojqcgvMP 

Sending this over the wire, or 
storing on disk... what can we 
optimize here? 

11



header optimization 
000000007f1f75507526524972bd4a666ea2ee20899a1feb5bb5de095d687993 kezike17 1012907732 
000000002fae9c508791febcbcc0e1e9daa5413ad1852dfe1a2b3da60695bba9 tomriddle LcGCkMKWys 
00000000486dff5b17f76839e0e5073c1efccacf0db08a97af243bbb662c604b Thalita 6bkcnQAAAAA= 
00000000057949f7b54e90dea28e32580b2d440f240be9e6258aeb81d7717cd3 AlanBidart 804030736 
000000007dadcf0730175689c9d4bd2c389d08f99ebf8fad95332ad1f1a2eb1c ShangyanLi jaojqcgvMP 

First 8 chars always 0, so 
don't send them 

12



header optimization 
000000007f1f75507526524972bd4a666ea2ee20899a1feb5bb5de095d687993 kezike17 1012907732 
000000002fae9c508791febcbcc0e1e9daa5413ad1852dfe1a2b3da60695bba9 tomriddle LcGCkMKWys 
00000000486dff5b17f76839e0e5073c1efccacf0db08a97af243bbb662c604b Thalita 6bkcnQAAAAA= 
00000000057949f7b54e90dea28e32580b2d440f240be9e6258aeb81d7717cd3 AlanBidart 804030736 
000000007dadcf0730175689c9d4bd2c389d08f99ebf8fad95332ad1f1a2eb1c ShangyanLi jaojqcgvMP 

Entire prevhash can be removed, 
saves most of the space! 

13



header optimization 

This type of optimization is 
not done in Bitcoin; but would 
work! 

If you want to, code up a PR! 

(Nobody has bothered because headers are 
pretty quick and not a bottleneck) 

14



forks and non-forks 

continuing Neha's talk last 
week: 

fork types: soft, hard, also, 
non-forks, where there is no 
change 

15



non-forks 

header optimization is not a 
fork 

new nodes identify each other, 
omit the first 4 bytes of every 
block 

old nodes see no change 16



example non-forks 

internal only: 

compressing blocks / utxo set 
on disk 

faster signature verification 

nobody else needs to know 
17



example non-forks 

peer non-forks: 

identify at connect time, 
default to old behavior 

compact blocks 

bloom filters 
18



standardness 

"non standard" txs will not be 
relayed, but will be accepted 
in a block 

not-quite a soft fork, but 
close 

19



standardness 

"non standard" txs will not be 
relayed, but will be accepted 
in a block 

not-quite a soft fork, but 
close 

20



intermission 

128 second break 

21



soft / hard chart 
Hash rate 
adopting / fork 
type 

Soft 

Hard 

0% 

adopting: 
system halts 

ignoring: 
nothing changes 

adopting: 
nothing changes 

ignoring: 
nothing changes 

1% to 50% 

adopting: adopting & adopting & 
split off 
new rule 

ignoring: ignoring: ignoring: 
slow blocks new rule new rule 

adopting: 
nothing changes 
(orphans) 

ignoring: 
nothing changes 

51% to 99% 

adopting: 
split off 
new rule 

ignoring: 
slow blocks 

100% 

adopting: 
new rule 

ignoring: 
system halts 

22



variant: soft & hard 

example: 

blocks CAN be 8MB (hard fork) 

blocks MUST be 8MB (soft fork) 

prevents reorgs, ensures split 

heard described as "bilateral hard", "full" 
23



soft & hard chart 
Hash rate 
adopting / fork 
type 

Soft 
AND 
Hard 

0% 

adopting: 
system halts 

ignoring: 
nothing changes 

1% to 50% 

adopting: 
split off 
new rule 

ignoring: 
slow blocks 

51% to 99% 

adopting: 
split off 
new rule 

ignoring: 
slow blocks 

100% 

adopting: 
split off 
new rule 

ignoring: 
system halts 

24



variant: firm fork /evil fork 

a hard (&soft) fork, that looks 
like a soft fork to 
non-adopting nodes 

25



variant: firm fork /evil fork 

a hard (&soft) fork, that looks 
like a soft fork to 
non-adopting nodes 

PoW for new chain is an empty 
block in the old chain! 

26



evil fork chart 
Hash rate 0% 
adopting / fork 
type 

Evil fork adopting: 
system halts 

ignoring: 
nothing changes 

1% to 50% 

adopting: 
split off 
new rule 

ignoring: 
slow blocks 

51% to 99% 

adopting: 
split off 
new rule 

ignoring: 
system halts 
(empty blocks 
forever) 

100% 

adopting: 
split off 
new rule 

ignoring: 
system halts 
(empty blocks 
forever) 27



evil fork 

seen by some as the best way to 
hard fork 

others don't want miners to 
know they can do this 

seems coercive, thus "evil" 
28



fork coordination 

BIP9: miners signal soft fork 
adoption in header 

when 95% adopt, fork rule 
activates 

probably deprecated. 
"governence" 29



transaction replay 

split happens (minority soft 
fork, majority hard fork, or 
any full fork) 

make tx on old chain 

what happens on new chain? 
30



transaction replay 

in many cases, the tx happens 
on BOTH chains 

if valid on both, someone will 
relay it 

this can be messy! 
31



transaction replay 

split coins: merge with mined 
coins (diverges) 

spam double spends 

try exploiting locktime deltas 

expensive, ugly, but possible 
32



transaction replay problems 

want to sell one, not the other 

many users unaware of forks 

may unknowingly send both 

33



replay attack on exchange 

network split to coinA, coinB 

exchange only runs coinB 

34



replay attack on exchange 

network split to coinA, coinB 

exchange only runs coinB 

user: deposit coinB 

exchange: you have coinB 

user: withdraw coinB 35



replay attack on exchange 

user: withdraw coinB 

exchange: here's coinB (&coinA) 

user: split utxos 

user: deposit coinB 

(GOTO top) 36



replay attack on exchange 

this has happened 

not saying this is obvious, but 
there were warnings 

37



consensus changes are hard 

integrated feature and bug 

you want coins to stay put 

you might not want new features 

but new features can help a lot 

miners have outsize influence? 38



consensus changes are hard 

small coins, changes are pretty 
easy: call up exchanges, miners 

Bitcoin, very messy. Future 
fork methods unknown. 

Stay tuned. 
39



MIT OpenCourseWare 
https://ocw.mit.edu/ 

MAS.S62 Cryptocurrency Engineering and Design 
Spring 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/
https://ocw.mit.edu/terms



