

ANALYSIS OF FLEXIBLE DESIGN OPTIONS FOR MIXED-SIGNAL INTEGRATED CIRCUIT PRODUCTS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY IDS.332 FINAL REPORT MATT MCSHEA

12/12/2017

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Agenda

- Background
- Problem Statement
- Analysis Approach
- Recommended Strategy
- Questions

Background: Semiconductor Industry

- ► \$378 Billion Industry
- ► Expected to grow 12% in 2017
- Historically, driven by Economy of Scale (EoS) benefits associated with Moore's law
- Recent years have focused on energyefficiency rather than speed
- Due to the capital investment required, companies are re-thinking their plans in fine-line geometries

© Statista 2017

Additional Information World; World Semiconductor Trade Statistics; 2017 Sources WSTS; SIA

Background: IC Integration Levels

			Integration Type	IC Process	IC Die	Package(s)	Resistors, Inductors, Capacitors (RLC)
_	Levels		System in Package (SiP)	l or more	2 or more	I	Few (optional)
-	Integration		Heterogeneous (Hetero)	2 or more	l or more	I	None
_		DEVICES AD9361 RF. Agile Transceiver	Monolithic (Mono)	I	I	I	None

EoS compels companies to:

Build Big

- To overcome initial Non-Recurring Engineering (NRE) costs
- Compels companies to integrate super-set of all target customer's functionality demands

Commit Early

- To reduce mask sets
- Customer configurations must be known in advance and included in the initial design

Couple Developments

- All functionality must be finished prior to mask set creation
- Exposes companies to competitive threats since customers cannot see actual working silicon until all developments complete

Building Big, Committing Early, and Coupling Developments:

- Creates all-or-nothing dependencies
- Increases the project risk under uncertainty
- Hinders the project from quickly responding to future customer future needs
- Increases dependent complexity

To maximize the Net Present Value (NPV) of a mixed-signal Integrated Circuit (IC) product

By creating a flexible development strategy in the face of uncertainty*

Using decision rules to modify System in Package contents as demand changes

*uncertain product demand,

*uncertain project costs, and

*uncertain project execution timelines

7

Target Applications

Analysis Steps

9

Base Case + Flexible Option #1 Monolithic Integration (One Mask – One Die)

Flexible Option #2 System in Package Integration (One Mask – Two Die)

Flexible Option #3 System in Package Integration (Two Mask - Two Die)

12

Parameter	Base Case	Flexible Option #I	Flexible Option #2	Flexible Option #3
Integration Type	Mono	Mono	SiP	SiP
# Mask Sets	One	One	One	Two
# Die	One	One	Two(Tx,Rx)	Two(Tx,Rx)
Capacity Assumptions	Static	Dynamic	Dynamic	Dynamic
Capacity Dependency	None	None	Tx=Rx	None
Schedule Dependency (Tx)	max(Tx,Rx)	max(Tx,Rx)	max(Tx,Rx)	Tx
Schedule Dependency (Rx)	max(Tx,Rx)	max(Tx,Rx)	max(Tx,Rx)	Rx
Cost Dependency (Tx)	Tx + Rx	Tx + Rx	Tx	Tx
Cost Dependency (Rx)	Tx + Rx	Tx + Rx	Rx	Rx

Monte Carlo Simulation (n=2000) Results

- Flexible Option #2 (SiP Integration w/ one mask, two die)
 - provided the highest average NPV value at \$13.2M.
 - Improves the average NPV by \$2.4M to \$9M relative to the other options.
 - 90% probability that the NPV will lie between:
 - P5 = +\$0.5 and
 - 95 = +\$25.9 million,

Results Summary

Evaluation Metrics	Base Case	Flexible Option #I	Flexible Option #2	Flexible Option #3
NPV (VaR ₅) - 90% confidence min	-\$8.9M	-\$6.3M	-\$3.IM	-\$5.4M
NPV (VaR ₁₀) - 80% confidence min	-\$6.0M	-\$2.9M	\$0.5M	-\$1.8M
NPV (mean)	\$4.0M	\$9.4M	\$13.2M	\$10.8M
NPV (VaG ₉₀) - 80% confidence max	\$14.IM	\$21.2M	\$25.9M	\$23.4M
NPV (VaG ₉₅) - 90% confidence max	\$17.0M	\$24.6M	\$29.5M	\$27.0M
NPV (std dev)	\$7.9M	\$9.6M	\$10.1M	\$10.0M
Flexibility Value (mean)	-	\$5.5M	\$10.3M	\$7.5M
Fixed Cost (mean)	\$18.IM	\$18.2M	\$18.IM	\$22.3M
Fixed Cost (std dev)	\$I.4M	\$I.4M	\$I.4M	\$I.4M

*Bold entries represent the best alternative between options

Recommended Decision Making Strategy: SiP Integration w/ one or two mask, two die

Recommended Strategy

Hybrid approach between Flexible Option #2 and Flexible Option #3

- Plan for two separate Tx and Rx die
- Defer decision on # of mask sets needed (one vs two), until Rx or Tx developments are close to completion
- ▶ If one development team finishes early, management can decide to either
 - Pay for two mask sets or
 - Wait for second development to finish and only pay for one mask set
 - Decision made at time when additional information would be known about the market demand.
- Minimizes the silicon cost for Tx and Rx Only applications enables Tx/Rx Integration!

See previous slide for visual

Benefits of Recommended Flexible Strategy

Increases Project Flexibility due to Deferred Commitments

- Pushes integration decisions to later point in time when more information available
- Since customer demand dynamically changes over time:
 - Flexible Approach Enables Future Expansion Allows new combinations of integrated products through laminate changes (simpler and cheaper to modify than silicon mask layers)
 - Allows Performance Scaling With separate semiconductor die, opportunity to optimize functionality for RF, Analog or Digital content

Reduces Costs (Tx Only & Rx Only)

Tx and Rx functionality exist on separate die which minimizes the full-factory cost of the silicon for Tx and Rx Only
applications and improves the Gross Margin (GM) on those products.

Decouples Developments

- Each subsystem can be given its own die or even mask set
- Subsystems developed independently
- Reduces product development risk for Tx Only and Rx Only products (removes the all-or-nothing barrier)

Summary

►SiP Integration strategy

- Provided the highest NPV (\$13.2M)
- Scored the best overall according to the evaluation metrics (22% increase)
- Minimizes downside risk and maximizes upside opportunities
- ► Flexible SiP options:
 - Defer integration decisions, which...
 - Enables future expansion by...
 - Allowing new product configurations as market demand changes Resulting in....
 - Increased Value

References

- ▶ [1] <u>http://www.nasdaq.com/article/semiconductor-industry-outlook-april-2017-cm780023</u>
- [2] <u>https://www.semiconductors.org/news/2017/10/02/global_sales_report_2017/monthly_semiconductor_sales_reach_35_billion_globally_for_fi_rst_time_in_august/</u>
- [3] <u>https://www.statista.com/statistics/266973/global-semiconductor-sales-since-1988/</u>
- [4] <u>http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law</u>
- [5] MIT SDM 2016/17 Capstone Project Analysis of IC System Integration Models and Their Market Viability Gina Aquilano, Matt McShea, Wyatt Taylor
- [6] <u>https://en.wikipedia.org/wiki/Semiconductor_device_fabrication</u>
- [7] <u>http://bwrcs.eecs.berkeley.edu/Classes/icdesign/ee141_f01/Notes/chapter2.pdf</u>
- [8] <u>https://ycharts.com/companies/ADI/gross_profit_margin</u>
- [9] <u>https://www.investopedia.com/terms/n/npv.asp</u>
- ▶ [10] <u>https://hbr.org/2014/11/a-refresher-on-net-present-value</u>
- [11] Images:
 - IC image: <u>http://news.mit.edu/2016/electron-phonon-interactions-affect-heat-dissipation-computer-chips-1012</u>
 - Wafer Image: <u>https://www.electronicsweekly.com/news/business/silicon-wafer-shipments-grow-8-2-year-2017-10/</u>
 - Clipart Icons made by Freepik from <u>www.flaticon.com</u>
- [12] de Neufville, Richard. Garage Case Template. Excel Document. Accessed October 2017.
- ▶ [13] de Neufville, Richard and Stefan Scholtes. Flexibility in Engineering Design. MIT Press, 2011.

Backup Slides

Requires development of slow chip-to- chip data and control interfaces between Tx and Rx die.	Planning ahead to ensure buy-in by soliciting feedback from all relevant stakeholders, and creating a formal specification for these interfaces with the goal of handling at least 2 generations of products.
Future managers do not know about capability to create new products from Tx or Rx die.	Create an integrated product delivery team which would collaborate between design and decision making teams.
Key managerial stakeholders could block the development of Tx or Rx standalone die – or any developments which would prevent Monolithic transceiver development.	Develop a long-term roadmap outlining future transceiver products from the Tx and Rx die. This roadmap must include a game plan which is understood by the key managerial stakeholders.
External competitive pressure forces the company to use Monolithic Integration to take advantage of the Economy of Scale benefits.	Combine the Tx and Rx die into a single Monolithic die . At the same time, continue to support the Tx and Rx die in the
Overhead associated with two die solution may require replicated logic (bias, calibrations, etc.) which would affect the feasibility of the SiP solution	During this investigation, the recommendations listed above hold, so long as the replicated logic does not represent >25% overhead on the two die SiP solution. Ensure replicated logic does not represent >25% overhead.
	Requires development of slow chip-to- chip data and control interfaces between Tx and Rx die. Future managers do not know about capability to create new products from Tx or Rx die. Key managerial stakeholders could block the development of Tx or Rx standalone die – or any developments which would prevent Monolithic transceiver development. External competitive pressure forces the company to use Monolithic Integration to take advantage of the Economy of Scale benefits. Overhead associated with two die solution may require replicated logic (bias, calibrations, etc.) which would affect the feasibility of the SiP solution

Background: IC Manufacturing Process

Wafer Processing (Generic)

Wafer Processing ($\frac{1}{2}$ Tx + $\frac{1}{2}$ Rx Wafer)

ID	Uncertainty	%	Comments	
1	Realized demand in qtr 1 within	50%	+/- from projection	
2	Additional demand by qtr 10	50%	+/- from projection	
3	Additional demand after qtr 10	50%	+/- from projection	
4	Annual volatility of demand growth	50%	of growth projection	
5a	Development Schedule Increase (mean)	18%	normal dist. from projection	
5b	Development Schedule Increase (std dev)	21%		
6a	Development Cost Increase (mean)	39%	normal dist from projection	
6b	b Development Cost Increase (std dev)			
7a	Gross Margin (mean)	0%	normal dist from projection	
7b	7b Gross Margin (std dev)		normal dist. Irom projection	
8	Wafer Cost	10%	+/- from projection	
9	Yield Variability	2.5%	+/- from projection	

Cost Increase

% Increase

25%

20%

. .

Model Sensitivity

<u>Monolithic Integration</u> Deterministic NPV = \$9M

SiP Integration

Deterministic NPV = \$14M

Flexible Option #1 Decision Making Process (Mono Integration)

Flexible Option #2 Decision Making Process (SiP Integration)

Flexible Option #3 Decision Making Process (SiP Integration)

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

IDS.333 Risk and Decision Analysis Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.