

Deployment Strategies for a Financially Viable Remote Sensing Constellation

MIT Student 1

Dr. Richard de Neufville Professor of Engineering Systems, MIT Institute for Data, Systems, and Society

- Context and Motivation
- Problem Statement
- > Methodology
 - □ Modelling Approach
 - **G**Static Case
 - □ Incorporating Flexibility
- ➢ Results
- Limitations and Assumptions
- Conclusions and Lessons Learned

Space-based Remote Sensing

<u>What is Space-based Remote Sensing?</u> Obtaining, processing and providing data on terrestrial objects, phenomena and scenes as gathered by imaging payloads **onboard space-based assets**

© Springer Nature Switzerland AG. Part of Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

© VI Media.. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Planet Labs PBC. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

© ESRI. All rights reserved. This content is excluded from our Creative Commons

Courtesy: ESRI

A New Paradigm: CubeSat Constellations

 Maxar Technologies. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>

Problem Statement

	11	 Large architectural trade space for constellations of CubeSats High-risk, high-reward + uncertainty → decision support required
--	----	--

Goal	 Method to explore architecture decisions for deployment strategies responsive to uncertain market and technological conditions
------	--

Approach	 Cost-centric (NPV), parametric system model capturing key design decisions and uncertainties (Monte Carlo) Respond to uncertainties with flexible decision making
----------	--

Modeling Approach

Model Output

2018			Non-Recurring Costs			2023		2027	
	Demand			Satellite Bus Development	\$2,600,000			222	
	Realized Demand (Mkm^2)	-				(conservative)	679		
	Capacity			Satellite Imager Payload	\$10,000,000	NICM			
	Satellites On-Orbit	0		Development			60		
	Capacity On-Orbit (Mkm^2)	0		Ground Station Development	\$50,000,000	SMAD, Ch. 11	664		
	New Satellites to Deploy	10		Manufacturing Facility	\$50,000,000	SMAD, Ch. 11	50		
	Failed Satellites	0		Recurring	r Costs		40		
	Revenue				,				
	Met Demand (Mkm^2)	0		Ground Facilities Maintenance	\$45,000,000	SMAD, Ch. 11	664		
	Revenue	\$ - \$ 1	166,	Constellation Operations	\$100,000,000	Public (assumed)	\$ 920,000,000		
	Costs			Program Management and	\$15,000,000				
1	Non-Recurring Costs	\$ 112,600,000 \$		Program Management and Systems Engineering	<i>э</i> 1 <i>э</i> ,000,000	SMAD, Ch. 11	\$ -		
	Recurring/Per-Unit Costs	\$ 195,600,000 \$ 2	260,4	, 0 0	0		\$ 394,500,000		
	Total Satellites Manufactured	10		Per-Unit	Costs		165		245
	Cashflow Analysis			Satellite Manufacturing	\$3,500,000	SSCM			
	Net Cashflow	\$ (308,200,000) \$ ((94,4	_		(conservative)	\$ 525,500,000		
	Discounted Cashflow	\$ (308,200,000) \$ ((75,:	Launch Costs	\$450,000	Public	\$ 172,200,000		
<	Net Present Value	\$ 989,500,000		· · ·	·				

• "Base Case" – Static deployment, perfect knowledge

7

Sources and Impacts of Uncertainty

Deviation from Static NPV (\$ Millions)

Static Case with Uncertainty

\$, Millions				
\$960				
(\$440)				
\$230				
(\$70)				
\$0				
\$500				
\$600				

Architecting with Flexibility

- Address most impactful sources of uncertainty → dynamic response as the future unfolds
 - 1. Satellite deployment reactive to demand volatility
 - 2. Launch vehicle flexibility
 - Improved reliability of CubeSats → improved lifetime

$$X_{flex} = X_{base}(1 + \Delta D\%)$$

If Satellite Lifetime >20% below nominal: Payload Upgrade = \$10 M Bus Upgrade = \$5 M Ground Station Upgrade = \$2.5 M Facility Upgrade = \$12.5 M Else

Flexibility and Demand Uncertainty

Flexibility under Uncertainty

Assumptions and Limitations

- Emphasis should be on process/methodology, figures are for demonstration only
- Assumptions/limitations to consider:
 - □ Linear marginal coverage model
 - □ Simple satellite capacity model
 - □ SSCM over-costing CubeSat development and production
 - □ Pricing and demand models by extrapolation
 - □ Fixed launch vehicle capacity

Conclusion

- Avoid the Flaw of Averages! Look at Uncertainties!
- Large costs, significant technical overhead, long deployment timelines make modeling space systems a complex endeavor
 - Simplicity of model should frame understanding of results (qualitative over quantitative fidelity)
- A perfectly designed technical architecture can still fail financially
 - Iridium constellation \$5 B deployment cost, sold for \$25 M after bankruptcy ("Build large...then look for customers")
- Flexible and responsive plan found to be better than a rigid one
 - However, choice of particular flexibility strategy dependent on stakeholder priorities

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

IDS.333 Risk and Decision Analysis Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.