

Deployment Strategies for a Financially Viable Remote Sensing Constellation

MIT Student 1

 Dr. Richard de Neufville *Professor of Engineering Systems, MIT Institute for Data, Systems, and Society*

- \triangleright Context and Motivation
- Problem Statement
- Methodology
	- *Modelling Approach*
	- *Static Case*
	- *Incorporating Flexibility*
- \triangleright Results
- \triangleright Limitations and Assumptions
- Conclusions and Lessons Learned

Space-based Remote Sensing

What is Space-based Remote Sensing? Obtaining, processing and providing data on terrestrial objects, phenomena and scenes as gathered by imaging payloads **onboard space-based assets**

 © Springer Nature Switzerland AG. Part of Springer Nature. All rights reserved. This [https://ocw.mit.edu/help/faq](https://ocw.mit.edu/help/faq-fair-use/) license. For more information, see<https://ocw.mit.edu/help/faq-fair-use/> -fair-use/

content is excluded from our Creative Commons license. For more information, see © V1 Media.. All rights reserved. This content is excluded from our Creative Commons

© ESRI. All rights reserved. This content is excluded from our Creative Commons

Courtesy: ESRI

Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

A New Paradigm: CubeSat Constellations

 © Maxar Technologies. All rights reserved. This content is excluded from our Creative Commons license. For more information, see<https://ocw.mit.edu/help/faq-fair-use/>

Problem Statement

Modeling Approach

Model Output

"Base Case" – Static deployment, perfect knowledge

7

Sources and Impacts of Uncertainty

Deviation from Static NPV (\$ Millions)

Static Case with Uncertainty

NPV, \$ Millions

Architecting with Flexibility

- • Address most impactful sources of uncertainty \rightarrow dynamic response as the future unfolds
	- 1. Satellite deployment reactive to demand volatility
	- 2. Launch vehicle flexibility
	- 3. Improved reliability of CubeSats \rightarrow improved lifetime

Implementation

$$
X_{flex} = X_{base}(1 + \Delta D\%)
$$

If Satellite Lifetime >20% below nominal: Payload Upgrade = \$10 M Bus Upgrade $=$ \$5 M Ground Station Upgrade = \$2.5 M Facility Upgrade = \$12.5 M Else Do Nothing 10

Flexibility and Demand Uncertainty

Flexibility under Uncertainty

Assumptions and Limitations

- • Emphasis should be on process/methodology, figures are for demonstration only
- Assumptions/limitations to consider:
	- \Box Linear marginal coverage model
	- \Box Simple satellite capacity model
	- □ SSCM over-costing CubeSat development and production
	- \Box Pricing and demand models by extrapolation
	- \Box Fixed launch vehicle capacity

Conclusion

- Avoid the Flaw of Averages! Look at Uncertainties!
- make modeling space systems a complex endeavor • Large costs, significant technical overhead, long deployment timelines
	- • Simplicity of model should frame understanding of results (qualitative over quantitative fidelity)
- A perfectly designed technical architecture can still fail financially
	- • Iridium constellation \$5 B deployment cost, sold for \$25 M after bankruptcy ("Build large…then look for customers")
- • Flexible and responsive plan found to be better than a rigid one
	- • However, choice of particular flexibility strategy dependent on stakeholder priorities

MIT OpenCourseWare <https://ocw.mit.edu>/

 IDS.333 Risk and Decision Analysis Fall 2021

For information about citing these materials or our Terms of Use, visit: [https://ocw.mit.edu/terms.](https://ocw.mit.edu/terms)