Kris Mas Solution Sheet

Evaluation

Two periods: June and December
Discount rate: 20\%/year - his rate for money, for his best project, his opportunity cost
Projects profits per unit sold is $3 \$=(15-12)$
NPV $=-20+(12,000 \times 3) / 1.1 \sim-20+32.4=12.4$ money in thousands

Recognizing Uncertainty

Histograms differ because production is capacity constrained to 12,000 units.
NPV for each outcome indicated in expression below

Value under Uncertainty

NPV $=-20+$ discounted expected value

$$
=-20+(1 / 1.0)[(0.1 \times 36)+(0.6 \times 30)+(0.3 \times 15)]
$$

$=-20+(0.9)[3.6+18+4.5]=-20+(0.9)[26.1] \sim 3.5$

Flexibility

The base decision tree shows 1 decision with 3 outcomes
The one with flexibility shows first decision augmented by cost of Tom in June (3)
And a second decision in December to keep Tom on if demand is 50,000, or not if demand is lower (either 5,000 or 10,000)
The Flexible decision has an extra cost of -3 at start, and a further cost of -3 IF there is the possibility $(p=0.1)$ of boosting production from 12,000 to 50,000 .
The Present Value of the incremental cash flows are:
Change in NPV $=-3 .+(p=0.1)(0.9)[-3+(38 x 3)]=-3+(0.1)(0.9)[111) \sim-3+10 \sim 7$
So NPV with Flexibility $\sim 7+3.5=10.5-$ go for it

EVPI

We Insert the Test as a decision before the Decision Tree for Flexible case We do not give it a cost - we assume that we have it and see how much it is worth
Then we decide how much to pay for actual test (or consultancy) -- which isn't perfect Perfect test has 2 outcomes in this case:

1) 10% chance that sales $=50,000-$ if so go for it

NPV in that case $=(0.1)[-23(=20+$ Tom $)+(0.9)[(50 \times 3)-3$ (more Tom) $]]$ $=(0.1)[-23+(0.9)[147]]=0.1(109.3) \sim 10.9$
2) or 90% of either other two possibilities, whose net present value we calculated first So NPV in the "not 50,000" case is $=(0.9)[-23+(0.9)[(0.6 \times 30)+(0.3 \times 15)]]$

$$
=(0.9)[-23+(0.9)[22.5]]-\text { which is negative }
$$

So, if you knew in advance that you couldn't get the 50,000, you would NOT go forward with project, and avoid the downside.
EVPI $=$ value after perfect test - value without $=10.9-10.5=0.4$
No way additional info worth the $2,000 \$$
I hope I didn't make an arithmetic mistake while typing.
Focus on the rationale of what needs to be done (as I done in grading tests!)

MIT OpenCourseWare
https://ocw.mit.edu/

IDS. 333 Risk and Decision Analysis

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

