Economic Evaluation

- Objective of Analysis
- Criteria
- Nature
- Peculiarities
- Comparison of Criteria
- Recommended Approach

Objectives of Economic Evaluation Analysis

- Is individual project worthwhile? Above minimum standards?
- This is a "choice", is it better or not?
- This is easier
- Is it best? Is it at top of ranking list?
- This is a "judgment" about details
- This is more difficult
- Note difference between "choice" and "judgment"

Principal Evaluation Criteria

- Net Present Value
- Benefit - Cost Ratio
- Internal Rate of Return
- Cost-Effectiveness Ratio
- Pay-Back Period

Net Present Value

- NPV = B - C (stated in present values)
- Objective: To Maximize
- Advantage: Focus on Result
- Disadvantages
- Interpretation of NPV
- No account for scale, thus difficult to use for ranking

Present Value and Net Present Value: Example Calculations

Activity: \begin{tabular}{llllllllllllll}
Initial

Years: \& 0 \& 1 \& 2 \& 3 \& 4 \& 5 \& 6 \& 7 \& 8 \& 9 \& 10 \& 11 \& 12

Cash Flow \& -100 \& 5 \& 10 \& 20 \& 40 \& 50 \& 40 \& 30 \& 20 \& -40 \& 35 \& 25 \& 15

\qquad| Use NPV function in Excel. Note carefully that it assumes you mean that |
| :--- | :--- | :--- |
| all cash flows occur at the end of the relevant period, not at beginning. |

\end{tabular}

Present Value of cash flows at end of year 1, 2,etc, at rate $=$ NPV (rate,c9:n9) $\$ 143.58$ Discount rate expressed either in percent or decimal: 10\% or 0.1

Net Present Value is above plus cash flow at time zero $=\mathrm{NPV}(0.1, \mathrm{c} 9: \mathrm{n} 9)+\mathrm{b} 9$

Difficulty in Interpreting Meaning of NPV

- Suppose for example that a project
- costs 1000
- sells 4 years later for 1500
- The obvious profit is: $500=1500-1000$
- From an NPV perspective, however, we get
- NPV = [1500 / (1+r) exp 4]- 1000
- This amount depends on discount rate, r
- If r = 10\%, NPV ~ [1500 / 1.47] - 1000 ~ 20
- Try telling that to tax authorities -- or others!

Evaluation of Projects S and T

Project	Benefit $\$$	Cost $\$$	Net Value $\$$	NPV as \% of Cost
S	$2,002,000$	$2,000,000$	2,000	0.1
T	2,000	1,000	1,000	100

Which project has the highest Net Present Value?
Which would you choose?
When might NPV be a good method?

When you spend the same total budget!

Benefit - Cost

- Ratio $=\Sigma$ B $/ \Sigma$ C (Present Values)
- Objective: To Maximize
- Advantage: Common Scale, Useful in Ranking
- Disadvantages:
- Treatment of Recurring Costs इB/इC or Net Benefits/Investment
= > Bias against operating projects
- Ranking sensitive to r low r = > higher rank for long-term projects

A Comparison of a Capital Intensive and Operations Project (Benefits in Present Values)

Project	K	R
Investment, C k	$\$ 1,000,000$	$\$ 1,000,000$
Annual Cost, C r	$\$ 50,000$	$\$ 500,000$
Annual Benefits	$\$ 200,000$	$\$ 700,000$
Annual Return	$\$ 150,000$	$\$ 200,000$
Useful Life	10 Years	10 Years
Total Benefits	$\$ 2,000,000$	$\$ 7,000,000$
Total Cost, C k $+C_{r}$	$\$ 1,500,000$	$\$ 6,000,000$
Benefit/Cost Ratio	1.34 better than	1.17
Annual Return	15% worse than	20%
Net Value Present	$\$ 500,000$ worse than	$\$ 1,000,000$

Note: Because B/C counts recurring costs as part of total costs, It disadvantages projects with operating costs (ex: factories), And favors capital intensive projects (hydropower dams)

Ranking of Projects by Benefit-Cost Criterion Can Depend on DR

Project	Investment$C_{k}, \$$	Annual Benefits R, \$	Project Life N Years	Benefit - cost at discount rate of	
				3\%	10\%
A	1000	200	10	1.73	1.23
					(best)
B	1000	125	20	$\begin{gathered} 1.86 \\ \text { (best) } \end{gathered}$	1.05

Note: Varying the DR changes the Relative value of projects

Internal Rate of Return

- IRR = r such that $N P V=0$
- Objective: Maximize IRR
- Advantages:
- No need to choose r
- Manipulation by r impossible
- Disadvantages:
- Calculations complex -- but easy in spreadsheet
- Ambiguous

Data for calculation of IRR

Example:

| Year | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
| :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Investment | 15 | | | 3 | | | 5 | | | |
| Net Income | | 2 | 3 | 4 | 5 | 5 | 3 | 4 | 5 | 6 |
| Cash Flow | -15 | 2 | 3 | 1 | 5 | 5 | -2 | 4 | 5 | 6 |
| NPV at 12\% | $\$ 0.79$ | | | Formula: NPV(12\%, B9:K9) | | | | | | |

Spreadsheet Determination of IRR

Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Investment	15			3			5			
Net Income		2	3	4	5	5	3	4	5	6
Cash Flow	-15	2	3	1	5	5	-2	4	5	6
IRR	13.33%			Formula: $\operatorname{IRR}(\mathrm{bg}: \mathrm{kg})$						

Graphical Determination of IRR

Determination of IRR

Discount rate

Projects can have Ambiguous Solutions for the Internal Rate of Return

Project	Investment, $\$$	Annual Benefits $\$$	Project Life Years	Closure cost at Year N-1 $\$$
P	C_{k}	R	N	$\mathrm{C}_{\mathrm{c}}>$ RN $-\mathrm{C}_{\mathrm{k}}$
Q	200	100	5	310

Ranking of Projects by Internal Rate of Return and Benefit-Cost Ratio Can Differ

$\left.\begin{array}{cccccc}\hline & \text { Investment, } & \begin{array}{c}\text { Annual } \\ \text { Benefits } \\ C_{k}, \$\end{array} & \begin{array}{c}\text { Project } \\ \text { Life }\end{array} & \begin{array}{c}\text { Benefit - Internal Rate } \\ \text { Cost } \\ \text { r=3 }\end{array} & \text { of Return, 0\% }\end{array}\right]$

Why is this? Because Relative value of project in B/C depends on DR

Pay-Back Period

- PBP = Number of periods needed for net benefits to sum up to initial investment
- Note: undiscounted !!!
- Objective: To minimize
- Advantages: Really simple; No choice of r
- Disadvantages
- Difficult to rank correctly projects with different useful lives or uneven cash flows

Evaluation of Projects V and W

Project	Investment, $\mathrm{C}_{\mathrm{k}, ~}$	1	2	3	4	5	6	Payback Period Years	NPV at 10%
V	2000	1000	1000	1000				2	IRR
w	2000	800	800	800	800	800	800	2.5	1484

Note: Although Pay-back period gives "wrong" results, many Managers prefer it, because they do not trust forecasts!

Cost- Effectiveness Ratio

- Ratio = (Units of Benefit) / Cost
- example: "lives saved/million dollars"
- Objective: To Maximize
- Advantage: Avoids problem of trying to assign money (example, \$) values to "intangibles" such as a "life", "ton of pollution", etc.
- Disadvantage: No sense for minimum standard or limits

Data for of Cost-Effectiveness Analysis

Possible Projects
Lives Saved Cost Cost-Effect.

Visual Exam	20	0.5	40.0
X-Rays	40	2	20.0
Lab Tests	60	7	8.6
MRIs	75	12	6.3
Biopsy	100	25	4.0

Cost-Effective Combinations

Combo.	L Lives	C Cost	Marginal CE
VE	20	0.5	40.0
VE + X-Ray X-Ray + Lab	60	2.5	20.0
MRI + Lab	100	9	6.2
MRI + Bio.	175	19	37

NOTE: Each project has its own cost-effectiveness.
Overall cost-effectiveness might sometimes just add projects. In general, however, an advanced technology often substitutes for a lesser one. In this example, MRI (Magnetic Resonance Imagining) thus substitutes for X-Rays, and so on.

Cost-Effectiveness Analysis

If budget is fixed, we deploy combination that maximizes results. If not, then we have to ask if extra results are worth the extra expense, that is, "Is the marginal cost-effectiveness worthwhile?"

Recommended Procedure (if you have discretion to choose)

- Examine Nature of projects
- Easy to put into \$ terms? Steady cash flows? Closure costs? Or various project lifetimes?
- An operating or a straight capital investment?
- Choose Method Accordingly
- No method is perfect -- ultimately a judgment
- Current "best practice" uses several criteria; uses judgment to decide on project

MIT OpenCourseWare
https://ocw.mit.edu/

IDS. 333 Risk and Decision Analysis

Fall 2021

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

