Evaluating and Choosing Preferred Projects

Richard de Neufville Professor of Engineering Systems MIT Institute for Data, Systems, and Society

Outline

THE THOUGHT

- Fundamental Question: To what extent is it meaningful to look for "the best"?
- What can we expect to do?
- Value Functions (simple form of Utility)

THE METHODS

- Target Curves
- Dominant Designs
- Tables

The Thought

- To what extent is it meaningful to optimize, to look for "the best?"
- What defines "best"?
 - > Extreme (high or low) of all other possibilities
- This supposes what?
 - > Either (1): we have one metric of performance
 - > Or (2): metrics can be put on single scale
- Is (1) realistic? Is (2)?
- Under What Conditions?

Implied Need: "Value Function"

Definition: V(X) is a means of

- <u>ranking</u> the relative preference of
- an individual for a
- bundle on consequences, <u>X</u>

A non-quantitative form of Utility Function

Let's think of lunch

•How would you value helping of...

1 serving ?
2 ?
3 ?
4, I made this especially for you?

Diminishing Marginal Utility Does it always apply?

- Can you think of exceptions?
- Actually "exceptions" with "Decreasing Marginal Utility" are common:
- Critical Mass only valuable if have enough
- Network more connections, more valuable
- Threshold or Competition only valuable if it
 - reaches required level ('must have 70 to get driver's license') or
 matches or beats competition

Conditions for a "Value Function"

Basic Axioms

1. Completeness or Complete Preorder People have preferences over all <u>X</u>_i

2. Transitivity

If X_1 is preferred to X_2 ; and X_2 is preferred to X_3 ; Then X_1 is preferred to X_3

Caution: Assumed True for Individuals; <u>NOT</u> Groups (discussion below)

Basic Axioms (continued)

- **3. Monotonicity or Archimedean Principle**
 - For any X_i (X^{*} ≥ X_i ≥ X_{*}) there is a weighting, w (0 < w < 1) such that V(X_i) = w V(X^{*}) + (1 - w) V(X_{*})
 - In short, value in middle is between value at ends
 - That is, More is Better (or Worse)
 - Reasonable?
 - No, not always true! Let's look at a case...
 - for example, salt on food...
 - More may be better until more is worse!

Consequence of V(X) Axioms

- Existence of V(X)
- Ranking Only
- "Strategic Equivalence" of Many V(X)
 Any Monotonic Transform of a V(X)
 is still an Equivalent V(X)

For example, ranking the same for both: $V(X_1, X_2) = X_1^2 X_2 \iff 2 \log(X_1) + \log(X_2)$

Value Functions

Multidimensional Evaluation

Richard de Neufville © Slide 10 of 310

Does this apply to groups?

- Do all members in a group have same preferences?
- Possibly....
- In general, however:
 - Groups composed of stakeholders with different interests (builders, owners, users...)
 - > Their interests almost certainly diverge
- Can we expect them to agree?

Example Intransitivity for Groups

Voter	Choice Order for Candidate					
	Left	Center	Right			
Tom	1	2	3			
Diana	3	1	2			
Harriet	2	3	1			

• WHO WINS ELECTION?

- Left against Center: Left wins 2:1
- Center against Right: Center wins 2:1
- So: Left is preferred to Right? Wrong!!!
- Left against Right: Right wins 2:1 !!!

Where does this leave us?

- Under certain assumptions (conditions), Individuals can <u>rank</u> alternatives (from least to most preferred)
- This does not apply to groups
 - If they agree on a process (set of voting rules)
 - > Then, they might be able to agree on a result
 - Arrow's Impossibility Theorem (or Paradox) [No "fair" voting system, without a dictator, satisfies everyone's preferences...]

Concept of "best" not meaningful for design of complex systems => "preferred"

Take-Aways: Thoughts

- Evaluation is complex
 - Many metrics of performance
 - > Plus Uncertainties
- Concept of "Best" is problematic
 - Individuals may have a value function
 - But groups are unlikely to do so
 - > Especially stakeholders with different interests
- Preferred is more realistic concept
- Need to show dominating alternatives; Help Decision-Makers see trade-offs

Analysis of Outcomes

- What criteria?
- Target Curve, concept and construction
- Robustness?
- Tables of dimensions of preference

What can we expect to do?

- First, consider the nature of Problem for Evaluation and Choice
- Evaluation
 - Many dimensions, metrics of performance
 - Uncertainty about them, many states of metrics
 - Best is not defined
 - > We can screen out dominated solutions
- Choice
 - > Any single person, must see, make TRADEOFFS
 - Groups inevitably have to NEGOTIATE DEAL

Concept of "Dominance"

Idea: One alternative better than others on all dimensions

If alternatives are dominated, they can be discarded

Is Expected Value best measure?

"Expected Value" has been the index of choice for valuation...

Is this appropriate? sufficient?

Conclusion about E(V)

A useful single metric

But Insufficient

Cannot describe the range of effects

This is your A, B, C...

Multidimensional Evaluation

Richard de Neufville © Slide 19 of 319

Other dimensions to explore

The worst that could happen People are "risk averse", sensitive to loss With some notion of probability of loss

The best that might occur

> Upside also important

Capex (capital expenditure = investment)

Some measure of Benefit-cost

P_5 , P_{10} or VAR

- P₅, P₁₀ are values for 5%, 10% lowest end of a distribution. The percentage = probability losses do not exceed a particular level.
- VAR is a standard concept in finance = "Value at Risk"
 - ▷ P₁₀ = 10% VAR
- Motivated by lenders, who are mainly concerned about getting repaid

P₉₀, P₉₅ or Value at Gain

- We have developed this "VAG" concept as counterpart of "VAR"
- It represents the upside potential of a project

 Motivated by investors, interested in amount they may gain (not especially interesting to bankers...)

Target curve

- Target curve is the cumulative distribution of outcomes
- Going from worst case at x% probability
- To best case with y% probability
 combines VAR and "Value at Gain"

Slide adapted from Jijun Lin

Target Curve: Oceanic oil platform

About 30% Increase in Value from 2.7 to 3.5 Billion \$

Multidimensional Evaluation

Richard de Neufville © Slide 24 of 3¹/₂₄

Dominance in Target Curves

- If Target Curve always to right of another...
- Does it dominate?
- Yes... but
- Does it mean that one alternative always performs better than the other?
- No! Frequency of occurrence does not translate that way!
 - Best case for one may be bad for another

Concept of "Robustness"

- Popular Basis for Design ("Taguchi method")
- What is it?
- Robust design ≡ "a product whose performance is <u>minimally sensitive</u> to factors causing variability..."
- Robustness measured by standard deviation of distribution of outcomes

Illustration of Robustness

Richard de Neufville © Slide 27 of 3¹27

Do we want robustness?

- When might robustness be a good measure of performance?
- When we really want a particular result
 - > Tuning into a signal
 - Fitting parts together, etc

Is this what we want for maximizing value?

• No!! We want to limit downside but make upside as large as possible => higher σ

Robustness does not maximize expected value

Table of Dimensions of Choice:Hassan Satellite Case

Architectural Value Parameter (\$ million)	Rigid Fleet	Flexible Fleet I	Flexible Fleet II	Flexible Fleet III
E(NPV)	49.94	95.81	56.20	19.40
Std(NPV)	3.69	4.63	3.74	1.63
Flexibility Value	-	45.86	6.26	-30.55
Fixed cost, pay year 1	242	275	341	170
Fixed cost, pay year 6	242	-	-	170
PV(fixed cost) at year 1	392	275	341	276
Maximum possible gain	192	193	142	73
Maximum possible loss	162	68	131	86

Take-Aways: Method

"Expected Value" not sufficient Measure

Target Curve powerful visual image

- Shows Maximum and Minimum
- Compares alternatives

Tables usefully show

- Capex
- Benefit-Cost of "Expected Value / Capex"
- > Value of Flexibility = Increase in Expected Project Value due to Flexibility

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

IDS.333 Risk and Decision Analysis Fall 2021

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.