
 

6 FACTORIZATION FROM MODE SEPARATION  

for n1, n2, n3, . . . collinear modes in the sum on n. The collinear modes are distinct only if 

ni · nj » λ2 for i = j .	 (5.36) 

We may understand this result by a counter argument: If a momentum p2 = Qn2, then n1·p2 = Qn1·n2 ∼ λ2 

iff n1 · n2 ∼ λ2 . Hence p2 is n1-collinear, and n2 is not a distinct collinear direction from n1. If ni · n1 ∼ λ2 

then we say that ni is within the RPI equivalence class [n1] defined by the member n1. Distinct collinear 
directions correspond to the different equivalence classes, and we only sum over distinct directions in 
Eq. (5.35). 

Essentially all of the things we derived with one collinear direction get repeated when we have more 
than one collinear direction. 

•	 For each light-like ni we define an auxillary light-like n̄i where ni ·n̄i = 2. Collinear momenta in the ni 
direction are decomposed with the {ni, n̄i} basis vectors since the components have a definite power 
counting: (ni · p, n̄i · p, pni⊥) ∼ (λ2 , 1, λ). Note that the meaning of ⊥ depends on which ni-collinear 
sector we are discussing. 

•	 There is a separate RPI for each ni-collinear sector that only acts on the ni-collinear fields, and on 
objects decomposed with the {ni, n̄i} basis vectors. Here there is no simple connection to an overall 
Lorentz transformation because the fields in other sectors do not transform. 

•	 There is a collinear gauge transformation Uni for each type of collinear field. Only the fields in the 
ni-collinear direction transform (fields in other collinear sectors do not transform with Uni since such 
transformations would yield offshell momenta that are outside the effective theory). 

•	 Matching calculations generate multiple collinear Wilson lines Wni = Wni [n̄i · Ani ]. The definitions 
are identical to Eq. (4.51) with n → ni, n̄ → n̄i, including P → n̄i · P. They are again always 
built only out of the O(λ0) gluon fields, and correspond to straight Wilson lines. These matching 
calculations lead to operators in SCET that are gauge invariant under Uni transformations. 

+	 −As an example of the last point consider the process e e → γ∗ → two-jets. The QCD current is 
Jµ ¯= ψγµψ. By integrating out offshell fields to match onto SCETI we obtain the leading order current 

Jµ = (ξ̄n1 Wn1 )γ
µ(W † ξn2 ) .	 (5.37)SCET	 n2 

Here n1 and n2 are the directions of the two jets. The Wilson line Wn1 = Wn1 [n̄1 · An1 ] is generated by 
integrating out the attachment of n̄1 · An1 gluons to n2-collinear quarks and gluons, and analogously for 
Wn2 . The resulting operator in Eq. (7.29) is invariant under n1-collinear, n2-collinear, and ultrasoft gauge 
transformations. In general one can carry out all orders tree level matching computations to derive the 
presence of these Wilson lines. For situations with multiple lines in different directions these calculations 
are greatly facilitated by using the auxillary field method (see the appendices of [6, 8]). 

Factorization from Mode Separation 

One of the benefits of the SCET formalism is the clear separation of scales at the level of the Lagrangian 
and of operators that mediate hard interatctions. We will explore the factorization between various types 
of modes in this section. 
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Figure 9: The attachments of ultrasoft gluons to a collinear quark line which are summed up into a 
path-ordered exponential. 
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Figure 10: Eikonal i0 prescriptions for incoming/outgoing quarks and antiquarks and the result that 
reproduces this with an ultrasoft Wilson line and sterile quark field. 

6.1 Ultrasoft-Collinear Factorization 

Recall that only the n · Aus component couples to n-collinear quarks and gluons at leading order in λ. 
This is explicit in the Feynman rules in Figs. 6 and 7 where only nµ appears for the ultrasoft gluon with 
index µ. Furthermore due to the multipole expansion the collinear particles only see the n · k ultrasoft 
momentum of the n · Aus gluons. For example, if we consider Fig. 9 with only one ultrasoft gluon then the 
collinear quark propagator is 

n̄ · p n̄ · p n̄ · p 
2 = = , (6.1) 

n̄ · p n · (pr + k) + p + i0 n̄ · p n · k + p2 + i0 n̄ · p n · k + i0⊥ 

where in the last equality we used the onshell condition p2 = 0 for the external collinear quark. Together 
with the nµ from the vertex this result corresponds to the eikonal propagator for the coupling of soft gluons 
to an energetic particle. The appropriate sign for the i0 is determined by dividing through by n̄ · p and 
noting the sign of this momentum, which differs for quark and antiquarks. Accounting for attachments to 
incoming or outgoing particles this leads to the four eikonal propagator results summarized in Fig. 10. 

Now, we consider the case of multiple usoft gluon emission. Calculating within SCET the graphs in 
Fig. 9 gives Γ Ỹnun where Γ is the structure at the ⊗ vertex, and un is a collinear quark spinor. Here 

where all propagators are +i0. These eikonal propagators come from collinear quarks with offshellness 
∼ λ2, which is near their mass shell, and hence are a property of fields in the EFT itself (as opposed to the 
Wilson lines Wn which were generated by matching onto the EFT). This corresponds to the momentum 
space formula for an ultrasoft Wilson line Yn. In position space this formula becomes 

It satisfies a defining equation and unitarity condition: 

in · DYn = 0, Y † = 1. (6.4)n Yn 
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∑∞ ∑ (−g)mn ·Aa1(k ) · · ·n ·Aam(k )T am T˜ 1 m
Yn =

· · · a1

m=0 perms

(6.2)
n · k1n · (k1 + k2) · · ·n · (

∑
i ki)

0

Yn(x) = Pexp

[
ig

∫
ds n ·Aaus(x+ ns)T a

−∞

]
. (6.3)
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When we wish to be specific in the notation for our Wilson lines to show whether they extend from −∞ 
or out to +∞, and whether they are path-ordered or antipath-ordered, we will use the following notations 

† † †Here (Yn±)† = Yn', and the subscript on Yn± should be read as (Yn )± rather than (Y±)† . The + denotes 
Wilson lines obtained from attachments to quarks, and the − denotes Wilson lines from attachments to 
antiquarks. The Wilson lines obtained for various situations are shown in Fig. 10. 

The generation of the Wilson line Yn from the example above motivates us to consider whether all the 
leading order usoft-collinear interactions within SCETI (to all orders in αs and with loop corrections) can 
be encoded through the non-local interactions contained in the Wilson line Yn(x). To show that this is 
indeed the case we consider the BPS field redefinitions [6] 

(x)ξ(0) (x) A(0)µξn,p(x) = Yn (x), Aµ (x) = Yn (x)Y †(x) . (6.6)n,p n,p n,p n 

(0) †They include in addition cn,p(x) = Yn(x) cn,pYn (x) for the ghost field in any general covariant gauge. 
The defining equation for Yn implies the operator equation 

Y †in · DusYn = in · ∂. (6.7)n 

Also because the label operator P commutes with Yn the redefinition on n̄ · An in (6.6) implies that 

W (0)Y † , (6.8)Wn → Yn n n 

(0) (0)
where Wn is built from n̄ ·An fields. Implementing these transformations into our leading collinear quark 
Lagrangian we find 

where the last line is completely independent of the usoft gluon field. With similar steps we can easily 
(0)

show that the collinear gluon Lagrangian Lng in (4.55) also completely decouples from the n · Aus usoft 
gluon field. In summary, we see that the usoft gluons have completely decoupled from collinear particles 

(0) (0) (0)
in the leading order collinear Lagrangian Ln = Lnξ + Lng via 

(6.10) 

However, it is important to note that the usoft interactions for our collinear field have not disappeared, 
but have simply moved out of the Lagrangian and into the currents. We must make the field redefinition 
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0

Yn+ = P exp
(
ig

∫
ds n·Aus(x+ sn)
−∞

)
, Yn =−

∞
P exp

(
−ig
∫
ds n

0
·Aus(x+ sn)

)
, (6.5)

Yn
† =− P exp

(
−ig
∫ 0

−∞
ds n·Aus(x+ sn)

)
, Y †n+ = P exp

(
ig

∫ ∞
0
ds n·Aus(x+ sn)

)
.

L(0)
=nξ

1
ξn,p′

(
in ·D + iD/n⊥

n/
iD/

in̄ · nDn
⊥

)
¯
ξn,p

2

=
1

ξn,p′

(
in ·Dus + gn ·An,q + (P/ + gA/⊥ n,q )W⊥

n/
W †(P/ + gA/
P ⊥ n,q )⊥

)
¯
ξn,p

2

=
(0)
ξn,p Y′

† in ·Dus + gY n ·A(0)
n,qY

†

(0) 1
+(/

(
P + gY A/ Y †)⊥ n,q YW (0)Y †⊥ P

YW (0)†Y †(/P⊥ + g /A
(0)
n,q⊥)

)
/̄n
Y ξ(0)

2 n,p

=
(0)
ξn,p′

(
in · ∂ + gn ·A(0)

n,q + (P (0)/ + gA/⊥ n,q )W (0) 1
⊥ P

W (0)†(/P⊥ + g /A
(0)
n,q⊥)

)
/̄n
ξ(0)

2 n,p , (6.9)

L(0)
n

[
ξn,p, A

µ
n,q, n ·A (0) (0) (0)µ

us

]
= Ln

[
ξn,p, An,q , 0

]
. (6.10)
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everywhere, including external operators and currents, as well as on interpolating fields for partons and 
hadrons. The field redefinition on the interpolating fields that describe incoming and outgoing states 
will determine whether the final usoft Wilson lines are Y+, Y+

† , Y−, or Y † since these interplolating field − 
operators are localized either at −∞ or +∞. 

Eg.1: Consider our standard heavy-to-light current. Performing the field redefinitions we have 

W (0)Y †Jµ = ξ W Γµhv = ξ(0)Y †Yn Γµhv (6.11)n, n n n 
(0)
W (0)ΓµY † = ξ hv .n n 

¯The last line gives us our first factorization result. Since ξn is an outgoing quark, here Yn 
† = Y+

† . As 
is necessary for effective theories, we will need to include a Wilson coefficient encoding higher energy 
dynamics, but we can already clearly see how different scales have separated into distinct gauge invariant 

(0) †quantities (ξn,pW (0)) and (Yn hv) at the level of operators. We can demonstrate this ultrasoft-collinear 
factorization diagrammatically by considering the time ordered product of two currents TJµ(x)J†ν (0) 
(whose imaginary part is related to the inclusive decay rate). Rather than having diagrams with ultrasoft 
gluons coupling to collinear lines they decouple into distinct parts: 

Eg.2: Consider a current that is a global color singlet within the n-collinear sector 

(0)
W (0))Γµ(W (0)†ξ(0)Jµ = (ξ W )ΓµW †ξn = (ξ ) . (6.12)n n n 

Here all the usoft gluons have cancelled using Yn 
†Yn = 1, so all the usoft gluons decouple at leading order. 

Diagramatically we can imagine this current producing an energetic color singlet state like a collinear pion 
(ignoring the fact that we’re in SCETI for a moment): 

=⇒  

This decoupling is called color transparency, the long wavelength usoft gluons only see the overall color 
charge of the energetic fields in the pion, and hence cancel out for this color singlet object. 

+Eg.3: As a third example, consider our operator for e e− → dijets. Here we have two types of collinear 
fields, n1 and n2, and the BPS field redefinitions give Yn1 and Yn2 ultrasoft Wilson lines: 

This result involves the product of three factored sectors (n1-collinear)(ultrasoft)(n2-collinear). Here the 
† †lines are both outgoing, Yn1 = Yn1+ and Yn2 = Yn2−. 
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¯J = (ξn1Wn1)Γ(Wn
†
2
ξn2) =

(
ξ̄(0)
n1
W (0)
n1

)(
Yn
†
1
Yn2

)
Γ
(
W (0)
n2

†ξ(0)
n2

)
. (6.13)
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(0)
Remark: It is possible to formulate a gauge symmetry for the decoupled collinear fields via Un = 

Yn 
†(x)Un(x)Yn(x), that then acts on the collinear (0) fields without ultrasoft components. However, there 

is not new content to this gauge symmetry beyond the ones we considered earlier. 

6.2 Wilson Coefficients and Hard Factorization 

As is standard in effective field theories, the high energy behavior of the theory is encoded in Wilson 
coefficients C. In SCET the Wilson coefficients can depend on the large momenta of collinear fields that 
are O(λ0). Because of gauge symmetry the momenta appearing in C must be momenta for collinear 
gauge invariant products of fields. We can write C(P, µ) where the large momenta is picked out by the 
label operator P which acts on these products of fields. For example, including this operator with our 
heavy-to-light current yields 

† 
(ξ Wn)Γ

µhvC(P ) = C(−P, µ)(ξnWn)Γ
µhv (6.14)n

† 
(noting that P > 0 so we have picked a convenient sign). We have included parentheses around ξnWn 
because C(−P , µ) must act on this product, since only the momentum of this combination is collinear 
gauge invariant. It is convenient to write this result as a convolution between a real number valued Wilson 
coefficient and an operator depending on a new label ω 

where C(ω, µ) encodes the hard dynamics and O(ω, µ) encodes the collinear and ultrasoft dynamics. Thus 
the hard dynamics is factorized from that of collinear fields, and this in general leads to convolutions since 
they both have n̄ · p momenta that are O(λ0). 

We can show see that this hard-collinear factorization is a general result that can be applied to any 
SCET operator. Recall the following relations for W 

in̄ · DnWn = 0 , Wn
†Wn = 1 , in̄ · Dn = WnPWn 

† , 1/(in̄ · Dn) = Wn(1/P)Wn 
† . (6.16) 

These conditions imply the operator equations (for any integer k) 

(in̄ · Dn)
k = Wn(P)kW † . (6.17)n 

If in general the hard dynamics leads to a function f of a large momentum P, then we have f(P) if it acts 
on a n-collinear gauge invariant product of fields, and this relation shows that we can always represent this 
by a convolution of a Wilson coefficient f(ω) which includes a δ(ω − P) as part of the collinear operator. 
(If we act on fields that transform under a collinear gauge transformation then the same is true but with 
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(ξnW )ΓµhvC(P†) =

∫
dω C(ω, µ)

[
(ξnWn)δ(ω − P†)Γµhv

]
=

∫
dω C(ω, µ)O(ω, µ) (6.15)

and we have for a general function f(P) or f(in̄ ·Dn)

f(P) =

∫
dω f(ω) [δ(ω − P)] , (6.18)

f(in̄ ·Dn) = Wnf(P)W † =

∫
dω f(ω) [Wδ(ω − P)W †n] .
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f(in̄ · Dn) and the extra Wilson lines are included in the operator.) For example, with our current for 
+e e− → dijets we have 

Note that since the Yn Wilson lines commute with Pµ we can perform the ultrasoft-collinear factorization 
by field redefinition after having determined the most general possible Wilson coefficient, and the results 
will be the same as we obtained prior to discussing Wilson coefficients. In general the function C(ω1, ω2) 
will be constrained by momentum conservation for the process under consideration, and any nontrivial 
dependence must be determined by matching calculations. 

6.3 Operator Building Blocks 

Our discussion of hard-collinear factorization in SCET in the previous section motivates setting up a more 
convenient notation for building operators out of products that are collinear gauge invariant. For the 
collinear quark field we define a “quark jet field” (SCETI) or “quark parton field” (SCETII) 

χn ≡ Wn
†ξn , (6.20) 

χn,ω ≡ δ(ω − n̄ · P)(Wn
†ξn) , 

+where the last expression has a definite O(λ0) momentum. With this notation our e e− → dijets operator 
becomes 

For the gluon field we define a “gluon jet field” (SCETI) or “gluon parton field” (SCETII) as 

where the label operators and derivatives act only on the fields inside the outer square brackets. We can 
show that a complete basis of objects for building collinear operators at any order in λ is given by the 
three objects [14] 

Bµ Pµχn , n⊥ , n⊥ . (6.23) 

Any other operators can be expressed in terms of these three objects. This basis is nice because the two 
gluon degrees of freedom in Bµ can be taken as the physical polarizations. Indeed the expansion of Bµ 

n⊥ n⊥ 
in terms of gluon fields yields 

µq
Bµ ⊥= Aµ − n̄ · An,q + . . . , (6.24)n⊥ n⊥ n̄ · q 

where the ellipses denote terms with ≥ 2 collinear gluon fields. In addition to the building blocks in (6.23), 
operators will also of course involve functions of P = n̄ · P that appear as Wilson coefficients. 

To see that Eq. (6.23) gives a complete basis we start by noting that the ⊥ covariant derivative is 
redundant. If we consider it sandwiched by Wilson lines, then 

iD⊥µ ≡ W †iDµ Wn = Pµ + gBµ (6.25)n n n⊥ n⊥ n⊥ . 
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∫
dω1 dω2C(ω1, ω2) χ̄n,ω1Γχn,ω2 . (6.21)

Bµn⊥ ≡
1

g

[
1

∫
¯dω1 dω2 C(ω1, ω2) (ξn1Wn1)δ(ω1 − n̄1 · P†)Γδ(ω2 − n̄2 · P)(Wn

†
2
ξn2) . (6.19)

Wn
†[in · µ¯ Dn, iD ]Wn , (6.22)

n̄

Bµ
· P n⊥

P̄

]
= [ †)] ,n⊥, ω Bµ δ(ωn⊥ −
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To show this we manipulate the operator as follows 

The outer square brackets indicate that deriviatives act only on objects inside. In the second line we used 
n̄ ·P = Wn

†in̄ · DnWn, and in the last line we used that fact that within the square brackets [in̄ · DnWn] = 0 
so that we could write the result as a commutator. 

We can also remove in · ∂ derivatives by using the equations of motion for quarks and gluons. For 
instance the collinear quark equations of motion can be written as 

⊥ 1 ⊥
in · ∂χn = −(gn · Bn)χn − (iD/ ) (iD/ )χn , (6.27)n n n̄ · P 

where Dµ is given in terms of basis objects by (6.25), and where n⊥ 

The gluon equations motion allow us to elliminate n · Bn in terms of basis objects as 

where the ellipses denote a term that involves two Bn⊥s. The gluon equation of motion also allow us to 
eliminate in · ∂Bµ in terms of the basic building blocks, much like for the quark term. Finally, objects like n⊥ 
gBµν ≡ [1/(n̄ · P) W †[iDµ , iDν ]W ] and gBµ ≡ [1/(n̄ · P) W †[iDµ , in·Dn]W ] can again be eliminated ⊥⊥ n⊥ n⊥ ⊥2 n⊥
in terms of the building blocks with manipulations similar to those in (6.26), and with the use of (6.29). 

We do still need all of the original ultrasoft fields and operators, including ultrasoft covariant derivatives 
and field strengths. The ultrasoft equations of motion (equivalent to the QCD equations of motion) can 
be used to reduce the basis for these operators. It is worth remarking about the connections between 
our building blocks in Eq. (6.23) and the ultrasoft operators that come from RPI and gauge covariance. 
Multiplying the identities in (5.32) with Wilson lines on both sides we find 

iW †iDµ Wn = iDµ + iDµ = Pµ + gBµ + iDµ 
n ⊥ n ⊥ us ⊥ n⊥ n⊥ us ⊥ , 

iW †in̄ · DWn = n̄ · P + in̄ · Dµ . (6.30)n us 

Thus factors of Pµ and n̄ · P that appear in operators will be connected to higher order operators with n⊥ 
these ultrasoft covariant derivatives. 
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µWn
†iD W Wn n = Pµ +n

[
n
† µiD W⊥ ⊥ n⊥ n

= Pµ +n⊥

][ 1 µn̄
n̄

· PW †
· P niD Wn⊥ n

]
= Pµ +n⊥

[ 1 µW †
n̄ · P nin̄ ·DniD Wn⊥ n

=

]
Pµ +n⊥

[ 1 · µW † µ µn
· P n[i¯ Dn, iD ]Wn⊥ n +

¯

]
= P g

n n⊥ B . (6.26)n⊥

1
n · Bn ≡

g

[
1
W †[in̄ ·D , in ·D ]W . (6.28)
P n n n n

]

2
n · Bn =

Pν
− n⊥
n̄ · P

Bn⊥ν +
2

g2TA
n̄ · P

∑
f

[
χ̄fnT

An̄/χfn
]

+ . . . , (6.29)
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