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2 Introduction to SCET 

2.1 What is SCET? 

The Soft-Collinear Effective Theory is an effective theory describing the interactions of soft and collinear 
degrees of freedom in the presence of a hard interaction. We will refer to the momentum scale of the hard 
interaction as Q. For QCD another important scale is ΛQCD, the scale of hadronization and nonperturbative 
physics, and we will always take Q » ΛQCD. 

Soft degrees of freedom will have momenta psoft, where Q » psoft. They have no preferred direction, 
so each component of pµ for µ = 0, 1, 2, 3 has an identical scaling. Sometimes we will have psoft ∼ ΛQCDsoft 
so that the soft modes are nonperturbative (as in HQET for B or D meson bound states) and sometimes 
we will have psoft » ΛQCD so that the soft modes have components that we can calculate perturbatively. 

Collinear degrees of freedom describe energetic particles moving preferrentially in some direction (here 
motion collinear to a direction means motion near to but not exactly along that direction). In various 
situations the collinear degrees of freedom may be the constituents for one or more of 

•	 energetic hadrons with EH c Q » ΛQCD ∼ mH ,  
2•	 energetic jets with EJ c Q » mJ = p » ΛQCD.J 

Both the soft and collinear particles live in the infrared, and hence are modes that are described by 
fields in SCET. Here we characterize infrared physics in the standard way, by looking at the allowed 
values of invariant mass p2 and noting that all offshell fluctuations described by SCET degrees of freedom 

2have p « Q2 . Thus SCET is an EFT which describes QCD in the infrared, but allows for both soft 
homogeneous and collinear inhomogeneous momenta for the particles, which can have different dominant 
interactions. The main power of SCET comes from the simple language it gives for describing interactions 
between hard ↔ soft ↔ collinear particles. 

Phenomenologically SCET is useful because our main probe of short distance physics at Q is hard 
collisions: e+e− → stuff, e−p → stuff, or pp → stuff. To probe physics at Q we must disentangle the 
physics of QCD that occurs at other scales like ΛQCD, as well as at the intermediate scales like mJ that 
are associated with jet production. This process is made simpler by a separation of scales, and the natural 
language for this purpose is effective field theory. Generically in QCD a separation of scales is important for 
determining what parts of a process are perturbative with αs « 1, and what parts are nonperturbative with 
αs ∼ 1. For some examples this is fairly straightforward, there are only two relevant momentum regions, 
one which is perturbative and the other nonperturbative, and we can separate them with a fairly standard 
operator expansion. But many of the most interesting hard scattering processes are not so simple, they 
involve either multiple perturbative momentum regions, or multiple nonperturbative momentum regions, 
or both. In most cases where we apply SCET we will be interested in two or more modes in the effective 
theory, such as soft and collinear, and often even more modes, such as soft modes together with two distinct 
types of collinear modes. 

Part of the power of SCET is the plethora of processes that it can be used to describe. Indeed, it is 
not really feasible to generate a complete list. New processes are continuously being analyzed on a regular 
basis. Some example processes where SCET simplifies the physics include 

−•	 inclusive hard scattering processes: e p → e−X (DIS), pp → Xl+l− (Drell-Yan), pp → HX, . . . 
(either for the full inclusive process or for threshold resummation in the same process) 

5  



2.2 Light-Cone Coordinates	 2 INTRODUCTION TO SCET  

•	 exclusive jet processes: dijet event shapes in e+e− → jets, pp → H + 0-jets, pp → W + 1-jet, 
−e	 p → e− + 1-jet, pp →dijets, . . . 

•	 exclusive hard scattering processes: γ∗γ → π0 , γ∗ p → γ(∗)p' (Deeply Virtual Compton), . . . 

•	 inclusive B-decays: B → Xsγ, B → Xujν̄, B → Xsj
+j− 

•	 exclusive B-decays: B → Dπ, B → πjν̄c, B → K∗γ, B → ππ, B → K∗K, B → J/ψK, . . . 
+•	 Charmonium production: e e− → J/ψ X, . . . 

•	 Jets in a Medium in heavy-ion collisions 

Some of these examples combine SCET with other effective theories, such as HQET for the B-meson, or 
NRQCD for the J/ψ. 

Before we dig in, it is useful to stop and ask What makes SCET different from other EFT’s? 
Put another way, what are some of the things that make it more complicated than more traditional EFTs? 
Or another way, for the field theory afficionato, what are some of the interesting new techniques I can learn 
by studying this EFT? A brief list includes: 

•	 We will integrate off-shell modes, but not entire degrees of freedom. (This is analogous to HQET 
where low energy fluctuations of the heavy quark remain in the EFT.) 

•	 Having multiple fields that are defined for the same particle 

ξn = collinear quark field,	 qs = soft quark field 

which are required by power counting and to cleanly separate momentum scales. 

•	 In traditional EFT we sum over operators with the same power counting and quantum numbers. In p t 
SCET some of these sums are replaced by convolutions, i CiOi → dωC(ω)O(ω). 

•	 λ, the power counting parameter of SCET, is not related to the mass dimensions of fields t 
•	 Various Wilson Lines, which are path-ordered line integrals of gauge fields, P exp[ig dsn · A(ns)], 
play an important role in SCET. Some appear from integrating out offshell modes, others from 
dynamics in the EFT, and all are related to the interesting gauge symmetry structure of the effective 
theory. 

•	 There are 1/E2 divergences at 1-loop which require UV counterterms. This leads to explicit ln(µ) 
dependence in anomalous dimensions related to the so-called cusp anomalous dimensions, and to 
renormalization group equations whose solutions sum up infinite series of Sudakov double logarithms,p 

k ak[αs ln
2(p/Q)]k . 

2.2 Light-Cone Coordinates 

Before we get into concepts, which should decide on convenient coordinates. To motivate our choice, 
consider the decay process B → Dπ in the rest frame of the B meson. This decay occurs through the 
exchange of a W boson mediating b → cūd, along with a valence spectator quark that starts in the B and 
ends up in the D meson. We are concerned here with the kinematics. Aligning the π with the −ẑ axis it 
is easy to work out the pion’s four momentum for this two-body decay, 

µpπ = (2.310 GeV, 0, 0, −2.306 GeV) c Qnµ ,	 (2.1) 
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µ 2where n = (1, 0, 0, −1) in a 0, 1, 2, 3 basis for the four vector. Here n = 0 is a light-like vector and 
Q » ΛQCD. This pion has large energy and has a four-momentum that is close to the light-cone. With a 
slight abuse of language we will often say that the pion is moving in the direction n (even though we really 
mean the direction specified by the 1, 2, 3 components of nµ). The natural coordinates for particles whose 
energy is much larger than their mass are light-cone coordinates. 

We would like to be able to decompose any four vector pµ using nµ as a basis vector. But unlike 
cartesian coordinates the component along n will not be n · p, since n2 = 0. If we want to describe the 
components (we do) then we will need another auxillary light-like vector n̄. The vector n has a physical 
interpretation, we want to describe particles moving in the n direction, whereas n̄ is simply a devise we 
introduce to have a simple notation for components. 

Thus we start with light-cone basis vectors n and n̄ which satisfy the properties 

n 2 = 0, n̄2 = 0, n · n̄ = 2 , (2.2) 

where the last equation is our normalization convention. A standard choice, and the one we will most often 
use, is to simply take n̄ in the opposite direction to n. So for example we might have 

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0, −1) (2.3) 

Other choices for the auxillary vector work just as well, e.g. nµ = (1, 0, 0, 1) with n̄µ = (3, 2, 2, 1), and 
later on this freedom in defining n̄ will be codified in a reparameterization invariance symmetry. For now 
we stick with the choice in Eq. (2.3). 

It is now simple to represent standard 4-vectors in the light-cone basis 
µ µn n̄

pµ = n̄ · p + n · p + pµ (2.4)⊥2 2  
µ 1 2where the ⊥ components are orthogonal to both n and n̄. With the choice in Eq. (2.3), p = (0, p , 0). , p ⊥

It is customary to represent a momentum in these coordinates by  

p +µ = (p , p  − , pp⊥) (2.5) 

2 2where the last entry is two-dimensional, and the minkowski p is the negative of the euclidean pp  (ie. in ⊥ ⊥
2 2= −pp our notation p ). Here we have also defined ⊥ ⊥

− p  + = p+ ≡ n · p , = p− ≡ n̄ · p. (2.6)p  

As indicated the upper or lower ± indices mean the same thing.  
Using the standard (+ −−−) metric, the four-momentum squared is  

− − − pp 2 + 2 2+ (2.7) + p p = p p  = p p  . ⊥ ⊥

We can also decompose the metric in this basis 
µ ̄ ν µ νn n n̄ nµν µν= + + g ⊥ .  (2.8) g 
2 2  

µν 
⊥ = Eµναβ ̄nαnβ/2.Finally we can define an antisymmetric tensor in the ⊥ space by E 
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2.3 Momentum Regions: SCET I and SCET II 

Lets continue with our exploration of the B → Dπ decay with the goal of identifying the relevant quark 
and gluon degrees of freedom (d.o.f.) for designing an EFT to describe this process. We’ll then do the 
same for a process with jets. 

There are different ways of finding the relevant infrared degrees of freedom. We could characterize all 
possible regions giving rise to infrared singularities at any order in perturbation theory using techniques 
like the Landau equations, and then determine the corresponding momentum regions. We could carry out 
QCD loop calculations using a technique known as the method of regions, where the full result is obtained 
by a sum of terms that enter from different momentum regions. Then by examining these regions we could 
hypothesize that there should be corresponding EFT degrees of freedom for those regions that appear to 
correspond to infrared modes that should be in the EFT. (Either of these approaches may be useful, but 
note that when using them we must be careful that the degrees of freedom are appropriate to our true 
physical situation, and do not contain artifacts related to our choice of perturbative infrared regulators 
that are not present in the true nonperturbative QCD situation.) Instead, our approach in this section will 
be based solely on physical insight of what the relevant d.o.f. are, from thinking through what is happening 
in the hard scattering process we want to study. More mathematical checks that one has the right d.o.f. 
are also desirable, and we will talk about some examples of how to do this later on. This falls under the 
ruberic of not fully trusting a physics argument without the math that backs it up, and visa versa. 

For B → Dπ in the rest frame of the B, the constituents of the B meson are the nearly static heavy 
b quark, and the soft quarks and gluons with momenta ∼ ΛQCD, ie. just the standard degrees of freedom 
of HQET. Since |ppD| = 2.31 GeV ∼ mD = 1.87 GeV the constituents of the D meson are also soft and 
described by HQET. The pion on the other hand is highly boosted. We can derive the momentum scaling 
of the pion constituents by starting with the (+, −, ⊥) scaling of 

pµ ∼ (ΛQCD, ΛQCD, ΛQCD) for constituents in the pion rest frame, 

and then by boosting along −ẑ by an amount κ = Q/ΛQCD. The boost is very simple with light cone 
coordinates, taking p− → κp− and p+ → p+/κ. Thus 

 Λ2  
∼ QCD 

, Q, ΛQCD (2.9)µ
cp 

Q  

for the energetic pions constituents in the B rest frame. This scaling describes the typical momenta of the  
µ
π = (0, Q, 0) + O(m 2 

πquarks and gluons that bind into the pion moving with large momentum p /Q), as in  

n
µ

π

The important fact about Eq. (2.9) is that 

− ⊥ + (2.10) p c » p c » p c .  

Whenever the components of p µc obey this hierarchy we say it has a collinear scaling. Its convenient to  
describe this collinear scaling with a dimensionless parameter by writing  

p µc ∼ Q(λ2 , 1, λ) (2.11) 
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Figure 1: SCETII example. Relevant degrees of freedom for B → Dπ with an energetic pion in the B rest 
frame. 

1where λ « 1 is a small parameter. This result is generic. For our B → Dπ example we have λ = ΛQCD/Q. 
This λ will be the power counting parameter of SCET. With this notation we can also say how the soft 
momenta of constituents in the B and D meson scale, 

pµ ∼ Q(λ, λ, λ) . (2.12)s 

Thus we see that we need both soft and collinear degrees of freedom for the B → Dπ decay. 
It is convenient to represent the degrees of freedom with a picture, as in Fig. 1. This picture has some 

interesting features. Unlike simpler effective theories SCET requires at least two variables to describe 
− + 2 + −the d.o.f. The choice of p and p as the axis here suffices since the ⊥-momentum satisfies p⊥ ∼ p p

and hence does not provide additional information. The hyperbolas in the figures are lines of constant 
p2 = p+p− . The labelled spots indicate the relevant momentum regions. We have included a hyperbola 
and a spot for the hard region where p2 ∼ Q2, but these are the modes that are actually integrated out 
when constructing SCET. (For B → Dπ they are fluctuations of order the heavy quark masses.) On the 
p2 ∼ ΛQCD

2 hyperbola in Fig. 1 we have two types of nonperturbative modes, collinear modes cn for the 
pion constituents, and soft modes s for the B and D meson constituents. Since these modes live at the 
same typical invariant mass p2 we need another variable, namely p−/p+, to distinguish them. This variable 

2Y +is related to the rapidity, Y , since e = p−/p+ . Put another way, we need both of the variables p and 
p− to define the modes for the EFT. 

The example in Fig. 1 is what is known as an SCETII type theory. Its defining characteristic is that 
the soft and collinear modes in the theory have the same scaling for p2, they live on the same hyperbola. 
This type of theory turns out to be appropriate for a wide variety of different processes and hence we give 
it the generic name SCETII. Essentially this version of SCET is the appropriate one for hard processes 
which produce energetic identified hadrons, what we earlier called exclusive hard scattering and exclusive 
B-decays. 

1Please do not be confused into thinking that you need to assign a precise definition to λ. It is only used as a scaling 
parameter to decide what operators we keep and what terms we drop in the effective field theory, so any definition which is 
equivalent by scaling is equally good. In the end any predictions we make for observables do not depend on the numerical 
value of λ. The only time we need a number for λ is when making a numerical estimate for the size of the terms that are 
higher order in the power expansion which we’ve dropped. 
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When looking at Fig. 1 we should interpret the collinear degrees of freedom as living mostly in a region 
about the cn spot and the soft degrees of freedom as living mostly in a region about the s spot. An obvious 
question is what determines the boundary between these degrees of freedom. In a Wilsonian EFT the 
answer would be easy, there would be hard cutoffs that carve out the regions defined by these modes. But 
hard cutoffs break symmetries. For SCET the cutoffs must be “softer regulators” so as to not to break 
symmetries like Lorentz invariance and gauge invariance. Dimensional regularization is one regulator that 
can be used for this purpose. If we were only trying to distinguish modes with the invariant mass p2 then 
the dim.reg. scale parameter µ would suffice for the cutoff between UV and IR modes, and we would be set 
to go. But in SCET we also need to distinguish modes in another dimension, µ does not suffice to separate 
or distinguish the s and cn modes of Fig. 1. We will see how to do this later on without spoiling any 
symmetries. In general it will require a combination of subtractions that localize the modes in the regions 
shown in the figure, as well as additional cutoff parameters. The bottom line is that the physical picture 
in Fig. 1 for where the modes live is the correct one to think about for the purpose of power counting. But 
when integrating over loop momenta in a virtual diagram involving one of these modes we integrate over 
all values with a soft regulator to avoid breaking symmetries. 

Lets consider a second example involving QCD jets. Jets are collimated sprays of hadrons produced 
by the showering process of an energetic quark or gluon as it undergoes multiple splittings. The splitting 
is enhanced in the forward direction by the presence of collinear singularities. The simplest process is 
+ +e e− → dijets, which at lowest order is the process e e− → γ∗ → qq̄ with each of the light quarks q and 
q̄ forming a jet. Let qµ be the momentum of the γ∗, then in the center-of-momentum frame (CM frame) 
q µ =  (Q, 0, 0, 0) and sets the hard scale. If there are only two jets in the final state then by momentum  
conservation they will be back-to-back along the horizontal ẑ axis:  

ultrasoft particles

n-collinear 

       jet

n-collinear 

       jet

nμnμ
21

p

a b

The x − y plane defines two hemispheres a and b, and we consider a process with one jet in each of them.  
The energy in each hemisphere is Q/2 and is predominantly carried by the collimated particles in the jets.  
To describe the degrees of freedom we need two collinear directions. We align n µ 

1 with the direction of the  
first jet and n µ 

2 with the second. (These directions can be defined by using a jet algorithm to determine  
the particles inside a jet, or indirectly from the process of calculating a jet event shape like thrust.) 

Lets first consider the energetic constituents of the n1-jet. Since these constituents are collimated they 
have a ⊥-momentum that is parametrically smaller than their large minus momentum, p⊥ ∼ Δ « p− ∼ Q. 
In order that we have a jet of hadrons and not a single hadron or small number of hadrons we must have 
Δ » ΛQCD. Thus the jets constituents have (+, −, ⊥) momenta with respect to the axes n1 = (1, −ẑ) and 
n̄1 = (1, ẑ) that have a collinear scaling 

Δ2  
∼ , Q, Δ = Q(λ2 , 1, λ) . (2.13) p µn1 Q 

As usual the scaling of the +-momentum is determined by noting that we are considering fluctuations 
2 + 2about p = 0, so p ∼ p /p− . Here the power counting parameter is λ = Δ/Q « 1. Note that the jet ⊥
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constituents have the same scaling as the constituents of a collinear pion, but carry larger offshellness p2 . 
If we make Δ so large that Δ ∼ Q then we no longer have a dijet configuration, and if we make Δ so small 
that Δ ∼ ΛQCD then the constituents will bind into one (or more) individual hadrons rather than the large 
collection of hadrons that make up the jet. Another way to characterize the presence of the jet is through 

2 2the jet-mass m , since a jet will have Q2 » m » Λ2 For our example here we can make use of the J J QCD. 
a-hemisphere jet-mass,  2 

2 µ + − m ≡ p ∼ p p ∼ Δ2 « Q2 . (2.14)Ja i n1 n1 
i∈a 

For the constituents of the n2-jet we simply repeat the discussion above, but with particles collimated 
about the direction, n2 = n̄1 = (1, ẑ). A choice that makes this simple is n̄2 = n1 = (1, −ẑ), since then we 
can simply take the n1-jet analysis results with + ↔ −. Using the same (+, −, ⊥) components as for the 
n1-jet we then have 

Δ2 
µp ∼ Q, , Δ = Q(1, λ2, λ) . (2.15)n2 Q 

Again a measurement of the b-hemisphere jet-mass can be used to ensure that there is only one jet in that 
region jet-mass,  2 

2 µ + − m ≡ p ∼ p p ∼ Δ2 « Q2 . (2.16)Jb i n2 n2 
i∈b 

Finally in jet processes there are also soft homogeneous modes that account for soft hadrons that 
appear between the collimated jet radiation (as well as within it). The precise momentum of these degrees 
of freedom depends on the observable being studied, and the restrictions it imposes on this radiation. In 

+ 2 2our e e− → dijets example we can consider measuring that m and m are both ∼ Δ2 . In this case the Ja Jb 
homogeneous modes are “ultrasoft” with momentum scaling as 

Δ2 Δ2 Δ2 
µp ∼ , , = Q(λ2, λ2, λ2) . (2.17)us Q Q Q 

2To derive this we consider the restrictions that mJa 
∼ Δ2 imposes on the observed particles, noting in 

particular that with a collinear and ultrasoft particle in the a-hemisphere we have 

2 2(pn1 + pus)2 = p + 2pn1 · pus + p ∼ Δ2 . (2.18)n1 us 

− − + +The term 2pn1 · pus = pn1 pus plus higher order terms, so pus ∼ Δ2/p− 
n1 ∼ Δ2/Q, which is the ultrasoft 

+momentum scale given in Eq. (2.17). Any larger momentum for p is forbidden by the hemisphere mass us 
measurement. The scaling of the other ultrasoft momentum components then follows from homogeneity. 

If we draw the degrees of freedom, then for the double hemisphere mass distribution measurement 
+ + −of e e− → dijets in the p -p plane we find Fig. 2. Again we have labelled hard modes with momenta 

p2 ∼ Q2 that are integrated out in constructing the EFT (here they correspond to virtual corrections at 
the jet production scale). In the low energy effective theory we have two types of collinear modes cn and 
cn̄, one for each jet, which live on the p2 ∼ Δ2 hyperbola. Finally the ultrasoft modes live on a different 

2 2hyperbola with p ∼ Δ4/Q2 . The collinear and ultrasoft modes all have p � Q2λ2 and are degrees of 
freedom in SCET, while modes with p2 » Q2λ2 are integrated out. When we are in a situation like this 
one, where the collinear and homogeneous modes live on hyperbolas with parametrically different scaling 
for p2, then the resulting SCET is known as an SCETI type theory. Note that the cn and us modes have 
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+Figure 2: SCETI example. Relevant degrees of freedom for dijet production e e− → dijets with measured 
hemisphere invariant masses m2 and m2 .Ja Jb 

p+ momenta of the same size, whereas the cn̄ and us modes have p− momenta of the same size. The names 
collinear and ultrasoft denote the fact that these modes live on different hyperbolas.2 Once again these 
degrees of freedom capture regions of momentum space, which are centered around the spots indicated and 
each of them extend into the infrared. 

It is important to note in this dijet example that Δ4/Q2 � Λ2 , so in general the nonperturbative QCD

ultrasoft modes can live on an even smaller hyperbola p2 ∼ ΛQCD
2 than the perturbative contributions from 

ultrasoft modes that have p2 ∼ Δ4/Q2 . An additional p2 ∼ Λ2
QCD hyperbola is shown in green in Fig. 2. 

If Δ4/Q2 ∼ Λ2 then the yellow and green hyperbolas are not distinguishable by power counting, and QCD 
hence are equivalent. If on the other hand we are in a situation where Δ4/Q2 » Λ2 then when we QCD 
setup the SCETI theory both the perturbative ultrasoft modes with p2 ∼ Δ4/Q2 and the nonperturbative 
ultrasoft modes with p2 ∼ Λ2 will be part of our single ultrasoft degree of freedom. This is convenient QCD 
because we can first formulate the Δ/Q « 1 expansion with the cn, cn̄ and us d.o.f., and only later worry 
about making another expansion in QΛQCD/Δ

2 « 1 to separate the two types of ultrasoft modes that 
would live on the yellow and green hyperbolas. 

If we compare Fig. 1 and Fig. 2 we see that it is the relative behaviour of the collinear and soft/ultrasoft 
modes that determine whether we are in an SCETI or SCETII type situation. (There are also SCETII 
examples which involve jets with ⊥ measurements rather than jet masses, and we will meet these later on 
in Section 11.3 and 11.4.) Much of our discussion will be devoted to studying these two examples of SCET, 
since they are already quire rich and cover a wide variety of processes. In general however one should 
be aware that a more complicated process or set of measurements may well require a more sophisticated 
pattern of degrees of freedom. For example, we could have soft or collinear modes on more than one 
hyperbola, or might require modes with a new type of scaling. Indeed, this is not even uncommon, the 
collider physics example of pp → dijets in the CM frame requires both SCETII type collinear modes for the 
incoming protons, and SCETI type collinear modes for the jets. Nevertheless, after having studied both 
SCETI and SCETII we will see that often these more complicated processes do not really require additional 
formalism, but rather simply require careful use of the tools we have already developed in studying SCETI 

2In certain situations in the literature to use the names hard-collinear and soft to denote the same thing, and we will find 
occasion to explain why when discussing how SCETI can be used to construct SCETII. 
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Figure 3: Another SCETI example. Relevant degrees of freedom for B → Xsγ in the endpoint region. 

and SCETII. 
A comment is also in order about the frame dependence of our degrees of freedom. In both of our 

examples we found it convenient to discuss the degrees of freedom in a particular frame (the B rest frame, 
+or e e− CM frame). Typically there is a natural reference frame to think about the analysis of a process, 

but of course the final result describing the dynamics of a process will actually not be frame dependent. 
Thus it is natural to ask what the d.o.f. and corresponding momentum regions would look like in a different 
frame. A simple example to discuss is a boost of the entire process along the ẑ axis. All the modes then slide 
along their hyperbolas (since p2 is unchanged). The important point is that the relative size of momenta of 
different d.o.f. is unchanged by this procedure: the p+ momenta of collinear and ultrasoft modes in SCETI 

+will be the same size even after the boost, and the p momentum of a soft particle will always be larger 
+than the p momentum of a collinear particle in SCETII. In B → Dπ such a boost can take us to the 

pion rest frame, where its constituents are now soft, and the constituents of the B and D are now boosted. 
Some components of the SCET analysis may look a bit different if we use different frames, but the final 
EFT results for decay rates and cross sections will obey the expected overall boost relations. In general it 
is only the relative scaling of the momenta of various degrees of freedom that enter into expansions and 
the final physical result. The relative placement of the spots for our d.o.f. in SCETI and SCETII is not 
affected by the ẑ boost. 

Before finishing our discussion of d.o.f. we consider one final example. For the purpose of studying 
SCETI it is useful to have an example with one jet rather than two, so the d.o.f. become simply cn and us. 
This can occurs for the process B → Xsγ or for B → Xueν̄. The underlying processes here are the flavor 
changing neutral current proess b → sγ or the semileptonic decay b → ueν̄. For these inclusive decays 
we sum over any collection of hadronic s tates Xs or Xu that can be produced from the s or u quark. 

2 2In the B rest frame, the total energy of the γ or (eν̄) is E = (m − m )/(2mB ) and ranges from 0 to B X 
2 2(m − m )/(2mB ) where mHmin is the smallest appropriate hadron mass, either mHmin = mK∗ or mπB Hmin 

for Xs or Xu respectively. An interesting region to consider for the application of SCET is 
2 2Λ2 
X « Q2 = m (2.19)QCD « m B 

where the photon or (eν̄) recoils against a jet of hadrons which are the constituents of X. For B → Xsγ 
the picture is (double line being the b-quark, yellow lines are soft particles, and red lines are collinear 
particles): 
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