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Understand (classify) Chern insulators systematically 

First, we try to systematically understand (classify) gapped 0+1D free 
fermion system with U(1) symmetry (fermion number conservation). 

• 0+1D free fermion system with U(1) symmetry is described by the 
following many-body Hamiltonian X 

Ĥ = Mab ĉa 
† ĉb 

ab 

It is fully characterized by a N × N hermitian matrix M = M† . So we 
will concentrate on the matrix M. Eigenvalues of M are called the 
single-body energy level. 

• The many-body ground state has all the negative single-body energy 
levels filled. 

• Gapped → M has no zero eigenvalue. Space of 0+1D gapped free 
fermion system with U(1) symmetry C̃0 = space of hermitian matrices 
with no zero eigenvalue. 
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Classify gapped phases of 0+1D free fermions with U(1) 

• Gapped phases of 0+1D free fermions with U(1) symmetry are labeled 
by π0(C̃0) = disconnected parts of the space of hermitian matrices with 
no zero eigenvalue. 

˜• Let C0 = the space of hermitian matrices with eigenvalue ±1. C0 and 
C0 are homotopic equivalent (one can deform into the other without 
closing gap, like “a point ∼ a ball”): πn(C̃0) = πn(C0) 
Gapped phases of 0+1D free fermions with U(1) symmetry are labeled 
by π0(C0) = disconnected parts of the space of hermitian matrices with 
eigenvalues ±1. 
- Hermitian matrices with eigenvalues ±1 has a form � � 

In 0 † U(m+n)Un+m U . C0 = × {(m, n)} where m = then+m U(m)×U(n)0 −Im 
number of −1 eigenvalues and n = the number of +1 eigenvalues. 
- For N = ∞, π0(C0) = Z is labeled an integer. 
Gapped phases of 0+1D free fermions with U(1) symmetry are 
classified by integer Z. The number of the fermions in the ground 
state. The result is also valid for interacting fermions. 
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Classify gapped phases of 1 + 1D free fermions with U(1) 

• Start with a large (universal) gapless system, such that other gapless 
systems can be viewed as partially gapped systems. 

• Find all different disconnected ways to gap the 
universal gapless system. Kitaev arXiv:0901.2686 

• Consider a gapless 1D free fermion �(k) = − sin k, which is gapless at 
k = 0 (right movers) and k = π (left movers). 
Double unit cell (half the Brillouin zone) → right movers and left 
movers are both a k = 0. � � 

- Continuum limit: Mone-body = iσ3∂x (acting on ψ = 
ψ1 )
ψ2R 

or Ĥmany-body = dx ψ†(x) iσ3∂x ψ(x) → 1D Dirac fermion 
- Can be gapped by adding the mass term Mone-body = iσ3∂x + mσ1 . 

• Universal gapless system Mone-body = iσ3 ⊗ In∂x acting on ψ(x), a 
2n-component wave function. 
- Gap by mass term Mone-body = iσ3 ⊗ In∂x + M, where M† = M, 
σ3 ⊗ InM = −Mσ3 ⊗ In and M has no zero eigenvalue 
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The space of gapped 1 + 1D free fermions w/ U(1) symm. 

is the space of the mass matrices that satisfy 
M† = M, M2 = 1, γ1M = −γ1M, γ1 = σ3 ⊗ In 

If iγ1∂x + Mgen has no zero eigenvalue, then we can deform Mgen = 
MA + fMC from f = 1 to f = 0, without encounter zero eigenvalue. 
• M must have n eigenvalues +1 and n eigenvalues −1. 

U(2n)The space of such M is :U(n)×U(n) 
†M = U (U† ⊕ Ũ†)(σ1 ⊗ In)(Un ⊕ Ũ 

n)U2n2n n n 

• M also must satisfy γ1M = −γ1M, the unitary rotations U(2n) and 
U(n) × U(n) must also keep γ1 invariant. 
- U2n = Un ⊕ Ũ 

n: U(2n) → U(n) × U(n). 
- U(n) × U(n) = σ0 ⊗ Un: U(n) × U(n) → U(n) 
• The space of gapped 1 + 1D free fermion systems with U(1) symmetry 

U(n) × U(n)C1 = = U(n), n →∞. 
U(n) 

• π0[U(n)] = 0 → There is only one trivial phase for gapped 1 + 1D 
free fermion systems with U(1) symmetry. 
Xiao-Gang Wen Highly entangled quantum many-body systems SPT order in free fermion systems 5 / 43 



–

Gapped d + 1D free fermion systems with U(1) symmetry 

• d + 1D gapless system Hone-body = iγ i ∂i + M (i = 1, · · · , d) 
• The gapping mass matrix satisfies 
M† = M, M2 = 1, γ i M = −γi M, (γ i )2 = 1, (γ i ) = (γ i )† , γ i γj = −γj γ i 

- d = 1: M† = M, M2 = 1, γ1M = −γ1M, γ1 = σ3 ⊗ In. 
- d = 2: M† = M, M2 = 1, γi M = −γi M, 

γ1 = σ3 ⊗ In, γ2 = σ1 ⊗ In. 
- d = 3: M† = M, M2 = 1, γi M = −γi M, 

γ1 = σ3 ⊗ σ0 ⊗ In, γ2 = σ1 ⊗ σ0 ⊗ In, γ3 = σ2 ⊗ σ3 ⊗ In. 

• For d = 3, M has a form M = σ2 ⊗ M̃, and M̃ satisfy 
M̃ † M̃ 2 γ3 ˜ = −γ3 ˜ γ3= M, = 1, M M, = σ3 ⊗ In. 
The space of d = 3 gapped sys. = the space of d = 1 gapped sys. 

The d-dimensional gapped phases = the d + 2-dimensional gapped 
phases, for free fermions with U(1) symmetry: Cd = Cd+2 

Symmetry class d = 0 1 2 3 4 5 6 7 
U(1) A Z 0 Z IQH states 0 Z 0 Z 0 
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Edge excitations 

• 2d bulk has even number of 2-component Direc fermions (R-L pairs) Z 
Ĥmany-body = d2 

x ψ†(x)( iσ3∂x + iσ1∂y + mσ2)ψ(x) Z 
+ d2 

x Ψ†(x)( iσ3∂x − iσ1∂y + Mσ2)Ψ(x) 

• The Edge excitations are described by the low energy part 
H = iσi ∂i + mσ2 (assuming M � |m|) 
Two different ways of gapping m > 0 and m < 0 
→ n = 1 state and n = 0 state. Edge is where m change sign. 

• For one edge ( iσ3∂x + iσ1∂y + yσ2)ψ2 = i∂t ψ2 

Can be solved by ψ2(x , y , t) = c(x , t)ψ̃2(y), and� � 
0 i(∂y − y) ˜( iσ1∂y + yσ2)ψ̃2(y) = ψ2(y) = 0. 

i(∂y + y) 0 
2 

We find ψ̃> = (e − y 
2 , 0) → i∂x c = i∂t c (k = −ω left mover).2 

• For the other edge ( iσ3∂x + iσ1∂y − yσ2)ψ2 = i∂t ψ2 
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The gapped phases of 4+1D free fermions with U(1) symm 

Those phases are classified by Z (ie labeled by an integer n ∈ Z) 
Edge excitations for n = 1 phase 
The bulk low-energy Hamiltonian: H = iγ i ∂i + mγ5 , i = 1, · · · , 4 
γ1 = σ1 ⊗ σ3, γ2 = σ2 ⊗ σ3, γ3 = σ3 ⊗ σ3, γ4 = σ0 ⊗ σ1, γ5 = σ0 ⊗ σ2 . 
Two different ways of gapping m > 0 and m < 0 → n = 0, 1. 
Edge is where m change sign. P 
• +Edge: [( iγi ∂xi ) + σ0 ⊗ σ1∂x4 + x4σ0 ⊗ σ2]ψ4 = i∂t ψ4.i=1,2,3 

iLet ψ4(x , x4) = ψ2(x
i ) ⊗ ψ̃2(x

4) and ( iσ1∂x4 + x4σ2)ψ̃2(x
4) = 0. 

−We find ψ̃> = (e 
(x 4

2
)2 

, 0) → iσi ∂xi ψ2(x
i ) = i∂t ψ2(x

i )2 
→ right-hand massless Weyl fermion P 
• −Edge: [( iγ i ∂xi ) + σ0 ⊗ σ1∂x4 − x4σ0 ⊗ σ2]ψ4 = i∂t ψ4.i=1,2,3 

iLet ψ4(x , x4) = ψ2(x
i ) ⊗ ψ̃2(x

4) and ( iσ1∂x4 − x4σ2)ψ̃2(x
4) = 0. 

−We find ψ̃> = (0, e 
(x 4

2
)2 

) → − iσi ∂xi ψ2(x
i ) = i∂t ψ2(x

i )2 
→ left-hand massless Weyl fermion 
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Is the handness of 3+1D Weyl fermion absolute? 

- Right-hand Weyl fermion: iσi ∂xi ψ
R = i∂t ψR 
2 2 

- Left-hand Weyl fermion: − iσi ∂xi ψ
L = i∂t ψL 
2 2 

To give Weyl fermion a mass → 

- Massive Dirac fermion = Right-hand Weyl ⊕ Left-hand Weyl: 
iσi ⊗ σ3∂xi ψ4 + mσ0 ⊗ σ2ψ4 = i∂t ψ4 

In the standard model, each family (e, µ, qr , qg , qb, ν) has 
7 right-hand Weyl fermions and 8 left-hand Weyl fermions, or 
8 right-hand Weyl fermions and 7 left-hand Weyl fermions, or 
15 right-hand Weyl fermions and 0 left-hand Weyl fermions. 

• The transformation ψL = iσ2(ψ2 
R )∗ changes iσi ∂xi ψ

R = i∂t ψR to2 2 2 
− iσi ∂xi ψ

L = i∂t ψL .2 2 

− i(σi ) ∗ ∂xi (ψ2 
R ) ∗ = i∂t (ψ2 

R ) ∗ → − iσi ∂xi iσ
2(ψ2 

R ) ∗ = i∂t iσ
2(ψ2 

R ) ∗ 

Charge conjugation of right-hand Weyl fermion 
= left-hand Weyl fermion 
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3+1D massive Majorana fermion 

¯• ψ4 = σ2 ⊗ σ2(ψ4)
∗ and ψ4 satisfy the same massive Dirac equation 

iσi ⊗ σ3∂xi ψ4 + mσ0 ⊗ σ2ψ4 = i∂t ψ4 

i(σi ) ∗ ⊗ σ3∂xi ψ4 
∗ − mσ0 ⊗ (σ2) ∗ ψ ∗ = i∂t ψ ∗ 

4 4 

iσi ⊗ σ3∂xi ψ̄ 
4 + mσ0 ⊗ σ2ψ̄ 

4 = i∂t ψ̄ 
4 

¯If we requires that ψ4 = ψ4 → massive 3+1D Majorana fermion. 
• 3+1D massless Weyl fermion: 2 complex components 
3+1D massive Dirac fermion: 4 complex components 
3+1D massive Majorana fermion: 4 real = 2 complex components 
• Rewrite the EOM of massive 3+1D Majorana fermion 
ψ4 = (ψ2 

R , ψ2 
L), ψL = iσ2(ψ2 

R )∗ , ψR = − iσ2(ψ2 
L)∗ 

2 2 
iσi ∂xi ψ

R − imψL = i∂t ψR 
2 2 2 

− iσi ∂xi ψ2 
L + imψR = i∂t ψL 

2 2 
which is iσi ∂xi ψ

R + mσ2(ψR )∗ = i∂t ψ2 
R .2 2 

The right-hand Weyl fermion gains a mass at the cost of U(1) symm. 
i θψRbreaking down to Z2 (EOM not inv. under ψR → e 2 ). The2 

electrons in superconductor are Majorana ferions. 
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U(1) anomaly: realize 3D massless Weyl fermion in 3D 

• We can give a massless right-hand Weyl fermion a mass if we break the 
U(1) symmetry down to Z2. → 
• Non-interacting 4+1D n = 1 insulator is trivial without the U(1) 
symmetry, but non-trivial with the U(1) symmetry. 

• For two gapped states of non-interating fermions, existance of a gapped 
boundary ↔ existance of a deformation path without closing gap. 

• A single 3+1D massless right-hand Weyl fermion with U(1) symmetry 
is anomalous → cannot be realized on a 3+1D lattice if we preserve the 
U(1) symmetry. 

• Can realize 3+1D 
massless right-hand 
Weyl fermion on a 
3D lattice if we 
break the U(1) 
symm. down to Z2 

4+1D n=1 insulator 4+1D n=1 insulator

Weyl fermion

Massless right−hand

Weyl fermion
Massless left−hand

Massless right−hand

Weyl fermion

Massive Majorana fermion
(supercoducting U(1)−>Z2)

U(1) symmetry anomaly, but no gravitational anomaly
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Put the chiral SO(10) GUT on lattice 

• In the SO(10) GUT in 3+1D, we have 16 massless right-hand Weyl 
fermion forming a 16-dim. spinner representation of SO(10). 
- Is such GUT anomalous or not? 
- Can we put puch such a chiral GUT on a 3+1D lattice? 
(The long standing chiral fermion problem) 

• We have seen that 16 massless right-hand Weyl fermion with U16(1) 
symmetry cannot be put on 3+1D lattice. But can be put on 3+1D 
lattice if we reduce the symmetry to Z 16 .2 

Can we put n massless d + 1D fermions with G symmetry on 
d + 1D lattice? Wen arXiv:1305.1045 

Yes if (1) there is a mass term that give all fermions a mass 
(which may break the symmetry G down to GΨ), and (2) 
πn(G /GΨ) = 0 for n ≤ d + 2. 
→ We can put SU(10) GUT on 3+1D lattice. 

• The above condition is only sufficient. What is a necessary and 
sufficient condition? 
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Spectrum: relation between spaces of gapped states of 
non-interacting fermions in different dimensions 

For two gapped states of non-interating fermions, existance of a gapped 
boundary ↔ existance of a deformation path without closing gap. 

• Let Mn be the space of gapped states of non-interacting fermions in 
n-dimensional space. Let Mn(α), α ∈ π0(Mn) be the αth component. 
Let α = 0 correspond to the trivial phase (the product states). 
- The space of gapped boundaries of a trivial state is the space of 
the based loops in Mn with base point in Mn(0) (which is the loop 
space ΩMn. Check Wiki) Gaiotto Johnson-Freyd, arXiv:1712.07950 

- Physically, the space of gapped boundary of a trivial state is (or 
homotopically equivalent to) the space of gapped states in one lower 
dimension: ΩMn(0) ∼Mn−1 

- For loop space, we have πk (ΩM) = πk+1(M). Thus the space Mn of 
the space of gapped states of non-interacting fermions satisfies 

πk (Mn) = πl (Mn−k+l ) → π0(Mn) = πl (Mn+l ). 
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Classify gapped phases of 0+1D free fermions 
with no symmetry Z f 2 symmetry 

• Fermion systems with no symmetry = Fermion system with Z f 2 
symmetry. They correspond to fermionic superconductors. 

• 0+1D free fermion system with Z f symmetry is described by the2 
following many-body Hamiltonian X X X1 1
Ĥ = Mab ĉa 

† ĉb + ( Δab ĉaĉb + h.c .) = Aαβ i η̂αη̂β +# 
2 4 

ab ab α,β 

η̂a,1 + i η̂a,2 † A> A ∗ ĉa = , {ĉa , ĉb} = δab, {η̂α, η̂β} = 2δαβ, = −A, = A. 
2 

- To see the relateion between M and A, let M = MS + iMA and Δ = 0. X 
Ĥ = 

i 
(η̂a,1Mab

S η̂b,2 − η̂a,2Mab
S η̂b,1) + 

i 
(η̂a,1Mab

A η̂b,1 + η̂a,2Mab
A η̂b,2) + # 

4 4 
ab 

Let us write M = i(MA − iMS ). We find that A is obtained by 
replacing 1 by σ0 and i by −ε in the bracket: 

A = σ0 ⊗ MA − (−ε) ⊗ MS = σ0 ⊗ MA + ε ⊗ MS 
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- To see the relateion between Δ and A, let M = 0 and Δ = ΔR + iΔI X 
Ĥ = 

i 
(η̂a,1Δ

R ηb,2 − η̂a,2Δ
R ηb,1) + 

i 
(η̂a,1Δ

I ηb,1 + η̂a,2Δ
I ηb,2) + h.c .ab ̂  ab ̂  ab ̂  ab ̂  

8 8 
ab X 

= 
i 
(η̂a,1Δ

R ηb,2 − η̂a,2Δ
R ηb,1) + 

i 
(η̂a,1Δ

I ηb,1 + η̂a,2Δ
I ηb,2).ab ̂  ab ̂  ab ̂  ab ̂  

4 4 
ab 

Let us write Δ = i(ΔI − iΔR ). We find that A is obtained by replacing 
1 by σ0 and i by −ε in the bracket: 

A = σ0 ⊗ ΔI − (−ε) ⊗ ΔR = σ0 ⊗ ΔI + ε ⊗ ΔR 

• The superconductor is fully characterized by a 2n × 2n anti-symmetric 
real matrix A. We will concentrate on A. Non-zero eigenvalues of iA 
appear in pairs ±�. Up to homotopic equivalence, we may assume 
non-zero eigenvalues of iA to be ±1. 
• Gapped → A has no zero eigenvalue. Space of 0+1D gapped 
non-interacting fermion systems with Z2 

f symmetry R0
0 =
∼ 

homotopic space 
of anti-symmetric real matrix matrices with ± i eigenvalues. 
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The classifying space R0 0⎛ ⎞ 
ε 0 · · · � � ⎜ ⎟ 0 10 ε · · ·⎠ O> where ε =A = OO(2n) ⎝ O(2n) . . −1 0. . . . .. . ⎛ ⎞ 

ε 0 · · · ⎜ ⎟ OO(2n)0 ε · · ·⎠ O> O> R0 = OO(2n)OU(n) ⎝ U(n) O(2n) → 0 = 
. . . OU(n) n→∞ . . . .. . 

OO(2n)• What is R0 = for n = 1? From {U(1)}1×1 = {cos θ + i sin θ} →0 OU(n) �n �o cos θ − sin θ 
= cos θ − ε sin θ = .{OU(1)}2×2 sin θ cos θ replace i by ε n� � � � o cos θ − sin θ cos θ sin θ {O(2)}2×2 = ,

sin θ cos θ sin θ − cos θ
det=1 det=−1 n� � � �o1 0 1 0 

Setting θ = 0, we find R0 = , as a set of O’s.0 0 1 0 −1 n� � � �o0 −1 0 1 
As a set of A’s, we have R0 = , = Z20 1 0 −1 0 
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Many-body picture of the classifying space R0 0 

† 1+ i η̂2a−1η̂2aˆ• Fermion-number-parity: Na = ĉa ĉa = 2Q Q Q2n→ P̂f = (1 − 2N̂ 
a) = (− i η̂2a−1η̂2a) = (− i)n η̂αa a α=1 

• P̂f is always a symmetry for fermion system 

[P̂f , Ĥ] = 0 

We denote this symmetry as Z2 
f , since P̂2 = id.f 

• Assume A is “diagonal” ⎛ ⎞ 
±ε 0 · · · ⎜ ⎟0 ±ε · · · ˆA = ⎝ ⎠ → H = ± i η̂1η̂2 ± i η̂3η̂4 + · · · 
. . | {z } | {z }. . . . . . . † †2ĉ1 ĉ1−1 2ĉ2 ĉ2−1 

R0 = Z2 corresponds to ˆ = ±1 ground states of Ĥ.0 Pf 
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The U f (1) symmetry for non-interacting fermion systems 

ˆ• H commutes with the fermion-number operator 

† †X X X 
† 1 ĉa ĉa − ĉaĉa i

N̂ ≡ (ĉ ĉa − ) = ( ) = Qαβ η̂αη̂βa 2 2 4 
a a αβ 

where Q = ε ⊗ I , Q2 = −1, Q∗ = Q, Q> = −Q = Q−1 , ε ≡ iσ2 . 
i θ ˆ i π ˆZ f• The symmetry group {U f (1)} = {e N }. = { id, e N } ⊂ U f (1).2 

• [Ĥ, N̂] = 0 requires that 
AQ = QA, Q2 = −1. 

• Such a real anti-symmetric matrix A has the form 
A = σ0 ⊗ Ma + ε ⊗ Ms , where Ms is real symmetric and Ma real 
antisymmetric. We can convert such a 2n × 2n real antisymmetric 
matrix A into a n × n Hermitian matrix M = Ms + iMa, by replacing ε 
by i . This reduces the problem to the one that we discussed before 
(with fermion number conservation). 
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Z2 symmetry: Z2 × Z f 2 or Z f 4 symmetry 

• A Z2 × Z f or Z f transformation is generated by P̂f and Ĉ .2 4 
(1) Ĉ 2 = id → Z2 × Z2 

f . (2) Ĉ 2 = P̂f → Z4 
f . 

Note that Z f ⊂ Z f or Z2 × Z2 
f .2 4 

ˆ• Matrix representation of C : 

Ĉ η̂αĈ
† = Cαβ η̂β , Ĉ † = Ĉ−1 , η̂α 

† = η̂α, {η̂α, η̂β } = 2δαβ , . 

• (Ĉ η̂αĈ †)† = Ĉ η̂αĈ † = C ∗ η̂β → C ∗ = C .αβ 

• C must be an orthogonal matrix C > = C −1 to keep {η̂α, η̂β} = 2δαβ 

invariant. 

• C 2 = sC . (1) sC = + → Z2 × Z2 
f . (2) sC = − → Z4 

f . 

• A Z2 × Z f or Z f symmetry: Ĉ ĤĈ−1 = Ĥ implies that A satisfies2 4 

CA = CA, C 2 = sC . 
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U f (1) and Z2 symmetries 

• If we have both U f (1) and Z2 symmetries, then Ĉ N̂ = N̂Ĉ  and 

CQ = sUC QC , sUC = +. 

- U f (1) and Z2 × Z f symmetry:2 

AQ = QA, AC = CA, Q2 = −1, C 2 = 1, CQ = QC . 

Symmetry group G f = U f (1) × Z2. 

- U f (1) and Z f symmetry:4 

AQ = QA, AC = CA, Q2 = −1, C 2 = −1, CQ = QC . 

Uf (1)×Zf 
4Symmetry group G f = 

Zf . 
2 
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U f (1) and Z2 charge conjugation symmetries 

• If we have U f (1) and Z2 charge conjugation symmetries, then 
Ĉ ˆ N ˆN = − ˆC and 

CQ = sUC QC , sUC = −. 

- U f (1) and Z2 × Z f charge conjugation symmetry:2 

AQ = QA, AC = CA, Q2 = −1, C 2 = 1, CQ = −QC . 

Symmetry group G f = U f (1) o Z2. 
Classification: We have Q = ε ⊗ In and C = σ1 ⊗ In. For A to have 
U f (1) o Z2 symmetry, A = σ0 ⊗ Ã, and no condition on Ã. Same as no 
symmetry (or Z f symmetry).2 

- U f (1) and Z f charge conjugation symmetry: 4 

AQ = QA, AC = CA, Q2 = −1, C 2 = −1, CQ = −QC . 

Uf (1)oZf 
4Symmetry group G f = 

Zf . 
2 
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Time-reversal symmetry 

ˆ T̂ iT̂−1• The time-reversal transformation T is antiunitary: = − i . In 
ˆterms of the Majorana fermions, we have (just like Z2 symmetry C ) 

ˆ T̂−1 T > = T −1T η̂α = Tαβ η̂β, . 

ˆ• For fermion systems, we may have T̂ 2 = (sT )
N , sT = ±. (sT = − for 

electrons). This implies that T̂ 2ĉi T̂
−2 = sT ĉi and T 2 = sT . 

• Symmetry group: (1) sT = + → Z T . (2) sT = − → Z T .2 4 

T̂ ĤT̂−1 ˆ ˆ i P 
• The time-reversal invariance = H for H = 2 αβ Aαβ η̂αη̂β 

implies that 

T >AT = −A or AT = −TA, T 2 = sT . 

AT = −TA is different from the unitary Z2 symmetry. 
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Relations between U , C , and T 

• The time-reversal transformation T̂ and the U f (1) transformation N̂ 
i θN̂ ˆ Nmay have a nontrivial relation: T̂ e T −1 = esUT i θ ˆ 

, sUT = ±, or 
T̂ N̂T̂−1 = −sUT N̂. This gives us 

TQ = sUT QT . 

- = + → U f (1) (conservation of Sz spin in XY magnets).sUT spin 

- sUT = − → U f (1) (conservation of electric spin).charge 

ˆ ˆ• The commutation relation between T and C has two choices: 
NT̂ Ĉ = s ˆ 

Ĉ T̂ , sTC = ±, we haveTC 

CT = sTC TC . 

ˆ ˆ• The commutation relation between N and C has two choices: 
N̂Ĉ = sUC Ĉ N̂, sUC = ±, we have 

CQ = sUC QC . 

- sUT = − → C is a charge conjugation. 
sUT = + → C is not a charge conjugation. 
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–

Summary of symmetry groups with U f (1), C , and T 
Symmetry groups Relations total 52 groups 

GsC (C ) (2) ˆ
Ĉ 2 N= sC , sC = ±. 

GsT (T ) (2) ˆ
T̂ 2 N= sT , sT = ±. 

G sUC (U, C ) (4)sC 

ˆ
Ĉ 2 N ˆ C −1 ˆ= s C N̂ ˆC , = sUC N, sC , sUC = ±. 

G sUT (U, T ) (4)sT 

ˆˆ i θ N̂ T̂ −1 sUT i θ N̂ ˆ NT e = e , T 2 = sT , sUT , sT = ±. 
G sTC (T , C ) (8)sT sC 

ˆ ˆ ˆ
T̂ 2 N ˆ N ˆ N= s C 2 C ˆ ) T̂ ˆT , = sC , T = (s C , = ±.TC sTC , sT , sC 

G sUT sTC sUC (U, T , C )sT sC 

(32) 

ˆˆ i θ ˆ N NC N̂ Ĉ −1 ˆ ˆ N T̂ −1 sUT i θ ˆ T̂ 2= sUC N, T e = e , = sT , 
ˆ ˆ

Ĉ 2 N ˆ N= s C ˆ ) T̂ ˆC , T = (s C , = ±.TC sT , sC , sUT , sTC , sUC 

• Topological insulator Electrons with U f (1)-charge and T : 
symmetry group G−

−(U, T ) = (U f (1)charge o Z4 
T )/Z2 

f 

• Topo. Sz superconductor Electrons with U f (1)-spin and T : 
symmetry group G− 

+(U, T ) = (U f (1)spin × Z4 
T )/Z2 

f 

• Topological T superconductor Electrons with T : 
symmetry group G−(T ) = Z4 

T 

˜ ˜• Topological T superconductor Electrons with T : 
symmetry group G+(T ) = Z T (T̃ = T × π-spin-rotation)2 
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–

Including the Z f 2 FNP symmetry and fermionic symmetry 

The fermion systems always has FNP Z f 
2

symmetry groups in the above list, some conatin Z f 2
some do not conatin Z f 2

symmetry. But for the 
and are complete; 

and are incomplete. 
Symmetry groups Total fermion symmetry groups G f 

GsC (C ) G+(C ) × Z f , G−(C ) ⊃ Z f 2 .2

GsT (T ) G+(T ) × Z f , . f⊃G (T ) Z− 22

G sUC (U, C )sC 
G sUC (U f , C ) ⊃ Z f sC 2 

G sUT (U, T )sT 
G sUT (U f , T ) ⊃ Z f sT 2 

G sTC (T , C )sT sC 2G + , others ⊃ Z f ++ 
f(T C ) Z×, 2

G sUT sTC sUC (U, T , C )sT sC 2G sUT sTC sUC (U f , T , C ) ⊃ Z f sT sC 

If the full symmetry group is G f 
22 = Gb × Z f , then the Z f 

Symmetry of fermion systems is described by 

is missing. 

f f→ →1 Z G2 → Gb → 1 

or by the full symmetry group G f 2 

2 

and its central Z f 
cen 

, Z f ⊂ G f ) 

subgroup: 

(G f 
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–

Some 0d superconductors 

• Superconductors with no symmetry (G f = Z f )2 
Classifying space R0 = space of real anti-symmetric matrices A with0 
eigenvalue ± i (ie with A2 = −1). 
• T superconductors with symmetry G−(T ) = Z T = G f 4 

TA = −AT , T 2 = −1 

Classifying space R1 = space of real anti-symmetric matrices A,0 
A2 = −1, that anti commute with an orthogonal matrix that square to 
−1. 
• T̃ superconductors with symmetry G+(T ) = Z T (G f = G+(T ) × Z2 

f )2 

TA = −AT , T 2 = 1 

Classifying space R0 = space of real anti-symmetric matrices A,1 
A2 = −1, that anti commute with an orthogonal matrix that square to 
1. 
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–

Some 0d topological superconductors 

• Sz , T superconductors with G− 
+(U, T ) = (U f (1) × Z T )/Z2 = G f 4 

QA = AQ, Q = ε ⊗ I , TA = −AT , TQ = TQ, T 2 = −1, T = ε ⊗ TM 

- A has the form A = σ0 ⊗ Ma + ε ⊗ Ms → M = Ms + iMa = M† . 

TM M = −MTM , T 2 = 1.M 

Classifying space C1 = space of hermitian matrix M, M2 = 1, that 
anti-commute with an unitary matrix whose square is 1. 

In comparison 

• Insulators with symmetry G f = U f (1). 
Classifying space C0 = space of hermitian matrix M, with M2 = 1. 

• The above C0 and C1 agrees with our previous definition of classifying 
space Cd using γ-matrices. 
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–

0d insulator with U f (1)-charge and time-reversal symm. 

• Insulator with symmetry G−
−(U, T ) = (U f (1) o Z T )/Z2 = G f 4 

QA = AQ, Q2 = −1, TA = −AT , TQ = −TQ, T 2 = −1. 
ρi A = −Aρi , ρ1 = T , ρ2 = TQ, ρ1ρ2 = −ρ2ρ1, ρ2 = ρ2 = −1.1 2 

Classifying space R2 = space of real anti-symmetric matrices A,0 
A2 = −1, that anti commute with two anti-commuting orthogonal 
matrices that square to −1. 
• Insulator with symmetry G− 

+(U, T ) = U f (1) o Z T = G f 2 
˜(Here time reversal is T = Telec × π-spin-rotation) 

QA = AQ, Q2 = −1, TA = −AT , TQ = −TQ, T 2 = 1. 

ρi A = −Aρi , ρ1 = T , ρ2 = TQ, ρ1ρ2 = −ρ2ρ1, ρ2 = ρ2 = 1.1 2 

Classifying space R0 = space of real anti-symmetric matrices A,2 
A2 = −1, that anti commute with two anti-commuting orthogonal 
matrices that square to 1. 
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–

The classifying spaces Rq 
p and Rp 

• Classifying space Rq
p is formed by anti-symmetric real matrix A 

satisfying (i , j = 1, · · · , p + q) 

ρi A = −Aρi , A2 = −1, 
ρ> 
i = ρ−1 , ρi ρj = −ρi ρj , ρ2 

i |i=1,··· ,p = 1, ρ2 
i |i=p+1,··· ,p+q = −1.i 

• Classifying space Rp is formed by symmetric real matrix A satisfying 

ρi A = −Aρi , A2 = 1, 

ρ> 
i = ρ−1 , ρi ρj = −ρi ρj , ρ2 

i |i=1,··· ,p = 1.i 
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–

Properties of the classifying spaces Rq 
p 

= Rq+1• Rq
p p+1 

˜- From A ∈ Rp
q that satisfies 

˜ ˜ ˜Aρ̃i = −ρ̃i A, A2 = −1, ρ̃j ρ̃i + ρ̃i ρ̃j |i=6 j = 0, 

ρ̃i 
2|i=1,...,p = 1, ρ̃i 

2|i=p+1,...,p+q = −1, 

we can define 

Ã ⊗ σ3 = I ⊗ σ1A = , ρi |i=1,...,p = ρ̃i ⊗ σ3 , ρp+1 , 

ρi |i=p+1+1,...,p+1+q = ρ̃i−1 ⊗ σ3 , ρp+1+q+1 = I ⊗ ε. 

We can check that A ∈ Rq+1 
p+1 

Aρi = −ρi A, A2 = −1, ρj ρi + ρi ρj |i 6=j = 0, 

ρ2 
i |i=1,...,p+1 = 1, ρ2 

i |i=p+1+1,...,p+1+q+1 = −1, 
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–

Properties of the classifying spaces Rq 
p 

- For a A ∈ Rq+1 
p+1, we always choose a basis such that 

ρp+1 = I ⊗ σ1 , ρp+1+q+1 = I ⊗ ε. Then we have 

A = Ã ⊗ σ3 , ρi |i=1,...,p = ρ̃i ⊗ σ3 , ρp+1 = I ⊗ σ1 , 

ρi |i=p+1+1,...,p+1+q = ρ̃i−1 ⊗ σ3 , ρp+1+q+1 = I ⊗ ε. 

We find Ã ∈ Rq
p. 
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–

Properties of the classifying spaces Rq 
p and Rp 

• Rq = Rq+20 
˜- From A ∈ R0 

q that satisfies 

Ãρ̃i = −ρ̃i Ã, Ã2 = −1, ρ̃j ρ̃i + ρ̃i ρ̃j |i 6=j = 0, 

ρ−1ρ̃2 = −1, ρ̃> = ˜ i , j = 1, · · · , qi i i 

we can define 

A = Ã ⊗ ε, ρi |i=1,...,q = ρ̃i ⊗ ε, ρq+1 = I ⊗ σ1 , ρq+2 = I ⊗ σ3 . 

We can check that A ∈ Rq+2 

Aρi = −ρi A, A2 = 1, ρj ρi + ρi ρj |i 6=j = 0, 

ρ2 = 1, ρ> = ρ−1 , i , j = 1, · · · , q + 2 i i i 

- We can also show the reverse, by choosing a basis such that 
ρq+1 = I ⊗ σ1 , ρq+2 = I ⊗ σ3 . 
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Clifford algebra Cl(0, 8n) 

16 dimensional real symmetric representation of Clifford algebra Cl(0, 8): 

γi γj + γj γi = 0, γ2 = 1.i 
i 6=j i=0,...,8 

γ1 = ε ⊗ σ3 ⊗ σ0 ⊗ ε, γ2 = ε ⊗ σ3 ⊗ ε ⊗ σ1 , 

γ3 = ε ⊗ σ3 ⊗ ε ⊗ σ3 , γ4 = ε ⊗ σ1 ⊗ ε ⊗ σ0 , 

γ5 = ε ⊗ σ1 ⊗ σ1 ⊗ ε, γ6 = ε ⊗ σ1 ⊗ σ3 ⊗ ε, 

γ7 = ε ⊗ ε ⊗ σ0 ⊗ σ0 , γ8 = σ1 ⊗ σ0 ⊗ σ0 ⊗ σ0 , 

where ε = iσ2 . Also γ = γ1γ2γ3γ4γ5γ6γ7γ8 = σ3 ⊗ σ0 ⊗ σ0 ⊗ σ0 

anticommute with γi : γγi = −γi γ, and γ2 = 1. 

• Cl(0, 16): 

Γi Γj + Γj Γi = 0, Γ2 = 1.i 
i 6=j i=0,...,16 

where Γi = γi ⊗ 1, Γi+8 = γ ⊗ γi (32-dimensional representation). 
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–

Properties of the classifying spaces Rq 
p and Rp 

• Rq
p = Rq 

p+8 

From Ã ∈ Rp
q that satisfies 

Ãρ̃i = −ρ̃i Ã, Ã2 = −1, ρ̃j ρ̃i + ρ̃i ρ̃j |i 6=j = 0, 

ρ̃2 
i |i=1,...,p = 1, ρ̃2 

i |i=p+1,...,p+q = −1, 

we can define 

˜A = A ⊗ γ, ρi |i=1,...,p = ρ̃i ⊗ γ, ρp+i |i=1,··· ,8 = I ⊗ γi , 

ρi |i=p+8+1,...,p+8+q = ρ̃i−8 ⊗ γ, 

We can check that A ∈ Rq 
p+8 

Aρi = −ρi A, A2 = −1, ρj ρi + ρi ρj |i 6=j = 0, 

ρ2 
i |i=1,...,p+8 = 1, ρ2 

i |i=p+8+1,...,p+8+q = −1, 

= Rq+8• The above implies that Rq
p = Rq

p+8 p . 
Rq 

p = Rq−p+2 and Rp = Rp+8. 
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–

Go to higher dimensions (complex cases) R 
• d-dimensional complex cases: Ĥ = dd 

x ĉ†(γi i∂i + M)ĉ . 
We consider symmetries that anti-commute with M and (γ i i∂i ): 

M† = M, M2 = 1, Mρa = −ρaM, ρ† = ρ−1 , ρaρb + ρbρa = 2δab;a a 

Since (γ i i∂i )ρa = −ρa(γ i i∂i ), we have 
† γ2γi ρa = −ρaγi , γ = γi , i = id, γi γj + γj γi = 2δij , γi M = −Mγi .i 

Thus the classifying space is Cp+d . 
If the symmetry commute with single-body Hamiltonian (matrix), we 
can consider the common eigenspace, and “ignore” the symmetry. 
• We can show that Cp = Cp+2. Let M̃ ∈ Cp, satisfying 

M† = M, M2 = 1, Mρa = −ρaM, ρaρb + ρbρa = 2δab. 

Let M̃ = M ⊗ σ3 , ρ̃i = ρi ⊗ σ3 , ρ̃p+1 = I ⊗ σ1 , ρ̃p+2 = I ⊗ σ2 . 
Then M̃ ∈ Cp+2. 

• IQH states in 2D (1980): 
π0(C2) = Z. vonKlitzing-Dorda-Pepper, PRL 45 494, (80) 
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- Topo. d + id/p + ip SC in 2D (1999):
R0

0+2 = R0 → π0(R0) = Z.
Senthil-Marston-Fisher cond-mat/9902062
Read-Green cond-mat/9906453

- Topological p-wave SC in 1D (2001):
R0

0+1 = R1 → π0(R1) = Z2.
Kitaev cond-mat/0010440

- Topological insulator in 2D (2005):
R2

0+2 = R2 → π0(R2) = Z2.
Kane-Mele cond-mat/0506581

- Topological insulator in 3D (2006):
R2

0+3 = R1 → π0(R1) = Z2.
Moore-Balents cond-mat/0607314; Fu-Kane-Mele cond-mat/0607699

–

Go to higher dimensions (real cases) R 
• d-dimensional real cases: Ĥ = i dd 

x η>(γi ∂i + M)η, where 
M = M∗ = −M> , M2 = −1, Mρa = −ρaM, ρaρb + ρbρa = ±2δab; 
Symmetry also requires (γ i ∂i )ρa = −ρa(γi ∂i ) → 

γ>γi ρa = −ρaγi , i = γi , γi γj + γj γi = 2δij , γi M = −Mγi . 
RqClassifying space = p+d = Rq−p−d+2. 
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–

Go to higher dimensions (real cases) R 
• d-dimensional real cases: Ĥ = i dd 

x η>(γi ∂i + M)η, where 
M = M∗ = −M> , M2 = −1, Mρa = −ρaM, ρaρb + ρbρa = ±2δab; 
Symmetry also requires (γ i ∂i )ρa = −ρa(γi ∂i ) → 

γ>γi ρa = −ρaγi , i = γi , γi γj + γj γi = 2δij , γi M = −Mγi . 
RqClassifying space = p+d = Rq−p−d+2. 

- Topo. d + id/p + ip SC in 2D (1999): 
R0 = R0 → π0(R0) = Z.0+2 
Senthil-Marston-Fisher cond-mat/9902062 
Read-Green cond-mat/9906453 

- Topological p-wave SC in 1D (2001): 
R0 = R1 → π0(R1) = Z2.0+1 
Kitaev cond-mat/0010440 

- Topological insulator in 2D (2005): 
R2 = R2 → π0(R2) = Z2.0+2 
Kane-Mele cond-mat/0506581 

- Topological insulator in 3D (2006): 
R2 = R1 → π0(R1) = Z2.0+3 
Moore-Balents cond-mat/0607314; Fu-Kane-Mele cond-mat/0607699 
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–

Gapped phases of non-interacting fermions 
Real cases (blue entries for interacting classification): 
Symm. 
group 
G f 

Uf (1) o Z T 
2 ZT × Z f 2 2 Z f 2 

Z T 
4 

Z T 
4 × Z2 

Uf (1)oZ T 
4 

Z2 
Z f oZT 
4 4 
Z2 

Uf (1)oZ T ×Z f 4 4 
Z 2 
2 

SUf (2) 
SUf (2)×ZT 

4 
Z2 

Rp |for d=0 

O(l+m) 
O(l)×O(m) 
×Z 

O(n) O(2n) 
U(n) 

U(2n) 
Sp(n) 

Sp(l+m) 
Sp(l)×Sp(m) 
×Z 

Sp(n) Sp(n) 
U(n) 

U(n) 
O(n) 

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 
class AI BDI D DIII AII CII C CI 
d = 0 Z Z2 Z2 0 Z 0 0 0 
d = 1 0 (Z2) Z (Z8) Z2 (Z2) Z2 0 Z 0 0 
d = 2 0 0 Z (Z) Z2 Z2 0 Z 0 
d = 3 0 0 0 Z Z2 Z2 0 Z 
d = 4 Z 0 0 0 Z Z2 Z2 0 
d = 5 0 Z 0 0 0 Z Z2 Z2 
d = 6 Z2 0 Z 0 0 0 Z Z2 
d = 7 Z2 Z2 0 Z 0 0 0 Z 

Example 
insulator 

w/ coplanar 
spin order T̃ 

supercond. 
w/ coplanar 
spin order T̃ 

supercond. 
(no symm.) 

supercond. 
w/ time 
reversal T 

insulator 
w/ time 
reversal T 

insulator 
w/ time 

reversal and 
intersublattice 

hopping 

spin 
singlet 

supercond. 

spin 
singlet 

supercond. 
w/ time 
reversal T 

Ryu-Schnyder-Furusaki-Ludwig arXiv:0912.2157, Kitaev cond-mat/0010440 
Complex cases: Wen arXiv:1111.6341 

Symm. group Cp |for d=0 class p\d 0 1 2 3 4 5 6 7 example 

Uf (1) 

Zf 
4 

U(l+m) × Z
U(l)×U(m) A 0 Z 0 Z 0 Z 0 Z 0 

(Chern) supercond. 
with collinear 

insulator spin order 

Uf (1) × Z2 
T 

Zf × ZT 
4 2 

U(n) AIII 1 0 Z 0 Z 0 Z 0 Z 
supercond. w/ real pairing 

and Sz conserving 
spin-orbital coupling 
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–

Classifying spaces Rp 

p mod 8 0 1 2 3 4 5 6 7 

Rp 
O(l+m) × Z

O(l)×O(m) O(n) O(2n) 
U(n) 

U(2n) 
Sp(n) 

Sp(l+m) × Z
Sp(l)×Sp(m) Sp(n) Sp(n) 

U(n) 
U(n) 
O(n) 

π0(Rp ) Z Z2 Z2 0 Z 0 0 0 
π1(Rp ) Z2 Z2 0 Z 0 0 0 Z 
π2(Rp ) Z2 0 Z 0 0 0 Z Z2 
π3(Rp ) 0 Z 0 0 0 Z Z2 Z2 
π4(Rp ) Z 0 0 0 Z Z2 Z2 0 
π5(Rp ) 0 0 0 Z Z2 Z2 0 Z 
π6(Rp ) 0 0 Z Z2 Z2 0 Z 0 
π7(Rp ) 0 Z Z2 Z2 0 Z 0 0 

• Let Md be the space of gapped d + 1D fermion systems. 
Then Md ∼ ΩMd+1 → πn−1(Md ) = πn(Md+1) 
ΩM is the loop space of M: the space of the based 
loops in M. For example: point ∼ ΩS2 , Z ∼ ΩS1 . 

- Consider a 2D system Hg that form a cylinder. As we go around the 
cylinder, g goes around a loop in M2. We may also view the cylinder as 
a 1D system. Thus we obtain a map ΩM2 →M1. 

• Md ∼ Rq−p+2−d → Rp = ΩRp−1, πn−1(Rp) = πn(Rp−1) 
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–

Why classification is useful apart from deep understanding? 

• K -theory classification is constructive, which allow us to constructive all 
possible free-fermion gapped phases. 
- An universal model for complex classes of topological phases of 
non-interacting fermions Hone-body = γi ⊗ In i∂i + M, {γi , γj } = 2δij 
- An universal model for real classes of top. phases of non-interacting 

jfermions Hone-body = i(γi ⊗ In∂i + AR ), {γi , γ } = 2δijR R R 

• Example in 2D: Fermion hopping on honeycomb lattice → two 
2-component massless Dirac fermions (R,L pairs) 

Hone-body = iσ1 ⊗ σ0∂x + iσ3 ⊗ σ3∂y , complex case 

= i(σ1 ⊗ σ0∂x + σ3 ⊗ σ3∂y ). complex case 

To obtain one-body Hamiltonian in Majorana basis, we replace 1 by σ0 

and i by −ε in the above bracket, to obtain (see page 14 of this file) 

Hone-body = σ0 ⊗ σ1 ⊗ σ0∂x + σ0 ⊗ σ3 ⊗ σ3∂y . real case 
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–

Why classification is useful apart from deep understanding? 

n-layers of honeycomb lattice → 2n 2-component massless Dirac 
fermions (n 4-component massless Dirac fermions) 

Hone-body = iσ1 ⊗ σ0 ⊗ In∂x + iσ3 ⊗ σ3 ⊗ In∂y , complex case 

HR 
one-body = i(σ0 ⊗ ε ⊗ σ0 ⊗ In∂x + σ0 ⊗ σ1 ⊗ ε ⊗ In∂y ), real case 

• Adding a proper mass term according to the K -theory classification → 
a designed free-fermion gapped state. 

Hone-body = iσ1 ⊗ σ0 ⊗ In∂x + iσ3 ⊗ σ3 ⊗ In∂y + M, complex case 

HR = i(σ0 ⊗ σ1 ⊗ σ0 ⊗ In∂x + σ0 ⊗ σ3 ⊗ σ3 ⊗ In real caseone-body ∂y + AR ), 
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–

A continuum model for 2d top. insulator (U f (1) o Z T 
4 /Z f 2 ) 

Choose n = 1: 

HR i(σ0 ⊗ σ1 ⊗ σ0∂x + σ0 ⊗ σ3 ⊗ σ3∂y + A), A = A ∗ = −A> 
one-body = . 

• U f (1)-symmetry Q = ε ⊗ σ0 ⊗ σ0 , which satisfies 

Qσ0 ⊗ σ1 ⊗ σ0 = σ0 ⊗ σ1 ⊗ σ0Q, Qσ0 ⊗ σ3 ⊗ σ3 = σ0 ⊗ σ3 ⊗ σ3Q, 

QA = AQ, Q2 = −1. 

T -symmetry T = σ3 ⊗ ε ⊗ σ0: 

T σ0 ⊗ σ1 ⊗ σ0 = −σ0 ⊗ σ1 ⊗ σ0T , T σ0 ⊗ σ3 ⊗ σ3 = −σ0 ⊗ σ3 ⊗ σ3T , 

TA = −AT , T > = T −1 , T 2 = −1, TQ = −QT . 
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–

A continuum model for 2d top. insulator (U f (1) o Z T 
4 /Z f 2 ) 

• The conditions on A 

Aσ0 ⊗ σ1 ⊗ σ0 = −σ0 ⊗ σ1 ⊗ σ0A, Aσ0 ⊗ σ3 ⊗ σ3 = −σ0 ⊗ σ3 ⊗ σ3A, 

Aσ3 ⊗ ε ⊗ σ0 = −σ3 ⊗ ε ⊗ σ0A, Aε ⊗ σ0 ⊗ σ0 = ε ⊗ σ0 ⊗ σ0A, 

- From the last relation: A = #σ0 ⊗ σµ ⊗ σν +#ε ⊗ σµ ⊗ σν . 
- Adding the first relation: A = #σ0 ⊗ σ3,ε ⊗ σν +#ε ⊗ σ3,ε ⊗ σν . 
where σε = ε. 
- Adding the second relation: A = #σ0 ⊗ σ3 ⊗ σ1,ε +#σ0 ⊗ ε ⊗ σ0,3 

+#ε ⊗ σ3 ⊗ σ1,� +#ε ⊗ ε ⊗ σ0,3 . 
- Adding the conidtion A> = −A: 
A = #σ0 ⊗ σ3 ⊗ ε +#σ0 ⊗ ε ⊗ σ0 +#σ0 ⊗ ε ⊗ σ3 +#ε ⊗ σ3 ⊗ σ1 . 
- Adding the third relation → A must has a form A = mσ0 ⊗ σ3 ⊗ ε 
m > 0 is one phase and m < 0 is another phase (maybe since n = 1). 

• We know the two phases are different, but we do not know which is 
trivial and which is non-trivial. Within the field theory, we cannot know. 
Only after adding lattice reularization, we can know. 
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• A Dirac fermion realization of 2d topological insulator with symmetry 
U f (1) o Z T /Z2 

f , Majorana fermion basis:4 

HR = i(σ0 ⊗ σ1 ⊗ σ0∂x + σ0 ⊗ σ3 ⊗ σ3∂y + mσ0 ⊗ σ3 ⊗ ε)one-body 

Q = ε ⊗ σ0 ⊗ σ0 , T = σ3 ⊗ ε ⊗ σ0 . 

- Complex fermion basis (σ0 → 1 and ε → − i for the first position): 

HR = i(σ1 ⊗ σ0∂x + σ3 ⊗ σ3∂y + mσ3 ⊗ ε)one-body 

Q = − iσ0 ⊗ σ0 , T =?. 

The T action is explicit only in Majorana fermion basis. 

Do we have an universal physical probe to detect all 
non-interacting fermionic topological phases? 

• Boundary states are universal physical probe that can detect all 
topological phase, but not one-to-one. 

Holographic principle of topological phases: Boundary completely 
determine the bulk, but bulk does not determine the boundary. 
The bulk = the anomaly of the boundary effective theory 
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