Modern quantum many-body physics

Semi-classical approach

Xiao-Gang Wen (MIT)

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach



Classical motion of a particle and Newton's Law

The motion of electrons or holes in a semiconductor does not follow
Newton's law. They follow a generalized Newton law.

F=ma

THE MORE FORCE...
THE MORE ACCELERATION

This image is in the public domain.
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First-order equation of motion and phase-space Lagrangian

e If (x, p) fully characterize the state of a particle, then their equation of
motion is first-order:

x = 0pH(x,p), p=—0<H(x,p)  Why this form?
which can be obtained via phase-space Lagrangian
‘C(X7X7p7p):pk_H(X7p)a S: /dt ‘c(Xavap)

- A classical system is fully characterized by 1) EOM + Hamiltonian, or
by 2) phase-space Lagrangian.

- A phase-space point fully characterises a classical state.

- Phase-space Lagrangian contains only first order time derivative.

- From S to first-order equation of motion

35 = [ dt dpi — OpHlx,p)] +6x [ — 3:Hlx. )]
=0 =0
we got that above equation of motion.
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Phase-space Lagrangian description of Shrodinger equation

For a quantum system, its state is fully characterized
by a vector ¢) in a Hilbert space V:

1
|p) = ®2 | — first-order E.O.M i(/'ﬁm: Hmn®n

(Why ¢,, is complex? Why |¢ | related to probability?)
e Phase-space Lagrangian (taking i =1 unit)

L= i0bm — GiHntn = (0lig, — Hlo), = [ L
e From (Can we have non-linear Shrédinger equation?)
5S = / dt 67, [idm — Hmn®nl + 5¢nl—10h — &Hmnl
we get the equation of motion

id.)m — Hmn¢n7 _1¢Z — QZSTnHmn-

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach



Quantum — classical: Dynamical variational approach

e Given a Hamiltonian H, we can use variational approach to get an
approximate ground state, by minimizing (¢/|H|¢,1), where ¢! are the
variational parameters — approximate ground state \¢£é).

But how to get the low energy excited states?

e Dynamical variational approach (semi-classical approach):

- we assume the variational parameters has a time-dependence &/(t).

- The variational parameters ¢/ fully characterize the state, ie &/
parametrize a phase-space.

- The dynamics of £/(t) is given by the phase-space Lagrangian

— Hldeiry) = —ai(§")e" — AE")

£(£I7él) <¢)§
where
ia,(f’) = <¢’§/|35"</>§/>;

which is the vector potential in the phase-space.
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Most general phase—space description of classical system

From S = [dt L(¢', ¢!y = [ dt [~aE! — H], we get
6S = / de [—( aja,)(ngg’ + 306! — 6eloAEN)

- / At 66 [~ (12))€ + (Dsa1)E” — ) = / dt 5[~ byy€? — 0,
and the equation of motion
by’ = —257
- The above EOM conserve energy 0, H(¢/(t)) = 0.
e Choose an equivalent (redundant) trial wave function eie(fl)wg/):
L€ = —af! —0(¢") — A(E)) = [~ — 816" — A¢)

which gives rise to the same EOM. Phase space Lagrangian is a way to
lable/describe a physical system. Two phase space Lagrangians,
differing by a total time derivative of any function, label /describe
the same system — Gauge redundancy

byy = 0jay — 0ya; = “magnetic field” in phase-space
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Gauge “symmetry” and symmetry

Gauge redundancy (also called gauge symmetry by mistake)
and symmetry (real physical symmetry) in quantum system:

- If we give a single quantum state two names |a) and |b), then |a) and
|b) will have the same properties (since |a) = |b)). We say there is a
gauge redundancy or gauge symmetry, and the theory of |a) and |b) is a
gauge theory.

- If two orthogonal states |a) and |b) same properties, then we say there
is a symmetry between |a) and |b) (since (a|b) = 0).

Gauge “symmetry” is indeed a symmetry in classical system
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Differential form

e The phase space “vector potential” a; gives rise to a differential 1-form,
a=asde.
The phase space “magnetic field” by gives rise to a differential 2-form,
b = bydél A dé? /2! (assuming the sum of indices), where A is the
wedge product d¢/ A déd = —ded A del

e The physical meaning of the 2-form: for any 2-dimensional submanifold
M? C Myhase space, the pair b, M? give rise to a number:

(b, M?) = /M b= /W byyde'ded /21 = /MZ by, dxdy = number = flux.

which is called evaluate 2-form b on 2-manifiold V2.

So the 2-form b describes a “magnetic field” in the phase space
M

phase space-
e n-form: w, = w,l..,/ndé”l ARERW d£’"/n!
Evaluate n-form w, on n-manifiold M": (w,, M") = an wy, = number

e For a m-form and a n-form, we have w,, A w, = (=)™ "w, A wp,.
Xiao-Gang Wen (MIT)
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Generalized Stokes theorem in differential form

e Exterior derivative d maps a n-form to a n+ 1-form: w, — vp41
Vi1 = dw, = (Opwyy.p,)dEO A - A d€M /(n 4 1)1 (with sum of indices)
Vnil = Vgt dEO A - A dER /(0 4 1)1,

Vigeil, = (3[000/1...[" — 8,1w,0...,n + - ) n—+ 1)!

anti—symmetrize/(
- b/_j = 6,3J — 8Ja, — b= (8,aJ — aJa,)dE’de/2! = 8/3Jd§ldf‘l = da.
- dwpvm = (dwn)Vm + (=) "wnp(dvm).

e Generalized Stokes theorem dw, = / Wn

e Definition: w, is closed if dw, = 0.
Definition: w, is exact there is a n — 1-form 1,1 such that
wp = drp_1. Since dd = 0, an exact form is also a closed form.
- Two vector potential 1-forms differing by an exact 1-from are equivalent

e w, is exact iff an wp = 0 for any closed manifold M". w, is closed iff
Jiyn wn = 0 for any contractible closed manifold M".

e A magpnetic field is described by a closed (or exact?) 2-form b.
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Generalized Liouville’s theorm

e Generalized Liouville’s theorem
Consider a time evolution from t — £, &/ — ¢/, determined by the
equation of motion y oH
b = ——
1§ o€l

Then Pf(by(¢"))d"e" = Pf(biy(€'))d"e"  (bypdxdp = bgsdXdp)

In other words, the sympletic volume Pf(b;,(¢'))d"¢! is invariant
under time evolution.

- The phase space is a sympletic manifold characterized by
anti-symmetric tensor bj;: area element dS? = b;d¢! A dg7 /21

- It is different from the usual manifold characterized by symmetric
matrics tensor g;;: distance? element ds® = g;;d¢! - ¢/,

e A classical system is described by pair (Mnase space: H(E')),
a sympletic manifold and a function (Hamiltonian) on it.
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Change of variables

If we change the variables to 7/ = 7)/(¢/), we get

. . N . al__/ 7 7] 7
L(771>77/) - / dt [—3777/ - H(U’)] b;?j'r]J = _8777/7 b[{j - arj’aj] - ar]JaI]
where

Ui . . 8£J 8§J Ui ! /

a, :—1(¢]8n,\¢)) :—1<¢‘85J‘d)>87nl :a_/ainl. a, dT] *a/df
oK oK oK oK
b7J = (377/(8K 3T]J) 677J( Kaiﬂl) ( 7713}()8777J (an K)aiﬁl
a a/
ok oek ok oek ok oek
(85LaK)a i aUJ *( gLaK)a 7 877’ (8£LaK 8£K3L)8 10777J

exchange K<L

bl dn'dn’ = byde’ d¢’.
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Derive generalized Liouville’s theorm

e For the time evolution from t — £, {’ — f’, we have

anl _ h 4" i o 85/
§ = Det(:/) &, Ju= 37&]
For f =t +dt, & =¢! — b’KgTﬁ’((St, where b b’ = 6.
Jiyy=91— 8J(bIK)gTI—/<(St — bIKag;gISJ(St trac DCt(j) =1- 8/(bIK)%(St

e Assume for )/ variable, b}, is indenpendent of 7). Then, 9;(b'%) =0

A~

and Det(J) = 1. We have the Liouville’s theorm
d"y! = d"ii" or \/Det(b],(n"))d™" = \/Det(b],(ii'))d"#" (b" ind. of ')
e Change variables — Generalized Liouville's theorem
; on' o' P i’ OE" | o
\/Det(b/J)Det(a—gJ)Det(a—nJ)d n = \/Det(b,’J)Det(agJ )Det(aﬁJ)d 7j

Det(by(&1))d"¢! = y/Det(by(£1))d"E!
— Pf(byy(¢"))a"¢" = Pf(by(¢'))a"¢’
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Phase-space volume occupied by a quantum state

e For a classical theory every phase-space point represents a distinct
state. There is an oo number of states for a finite phase space.

e For a quantum system, |¢¢i(;)) and ‘¢£l(t)> are &

orthogonal (ie are different quantum states) only ¢

when ¢/ and ¢/ are different enough — 1
uncertainty of ¢/. There is a finite number of

states for a finite phase space.

e How many quantum states does a phase space region D" contain?
From the generalized Liouville's theorm and conservation of degrees of
freedom, we guess

B dngl
N = /D o (by)

We will confirm it later.
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Density of quantum states and the sympletic structure

e The number of quantum state in a region D" in n-dimensional phase
space can also be written in term of diferetial 2-form, b = by, d¢/ dg? /21,
that defines the sympletic structure of the phase space:

B d"fl pn/2

Example: For 2-dimensional phase space

b bydghagtjat bypdet de?
/Dz (2m) /Dz 27 N /D2 27

The number of quantum state in the region D? is equal to the number
of flux quantum (also called Chern number) through D? for the phase
space “magnetic” field byj.

¢ Quantization of “magnetic” field: If D" is closed (/e is the whole

phase space)

n/2
/ (2b)n/2 €Z (higher Chern number)
Dn ™
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An example: an anharmonic oscillator

e What is low energy spectrum of

k1 1

|tho) = (%)1/4 o2

The value of « is determined by minimizing the average energy

e Trial ground state:

ol D1 o 3+ 402 + 4av
g lAug) = Sy
We find
2
2% 6% v+ 63 (274 V729~ 4813)’ 3
a= i ZW+E+O(1/V2)
6 <27+\/729748 v3)3
1 3
(A = Z\/v+ — + 0(1/v?)

2 16v
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An anharmonic oscillator

e Dynamical trial ground state

1/4
ey = (2) 7 et dabey

™

a state with position x = £ and momentum k = £2 fluctuations.

L&' ¢h = <¢£’(t)|i% — Hltperry) = —ar(€)¢" — ()

where a; = —i (vl 2 [ver), A" = (e |Hler)
e The resulting equation of motion is given by
: OH
b¢? = by = 01a; — 0,2

el
e Calculate a; = i<w$/!8%,\1/)5/>:
: 12 . :
ap = —i/ dx <g> eflgzxe*%a(xfglya(x - 51)6152)(67%0[0(761)2 =0

™

a=—i / dx (2)1/2 e 16X g 3alx—E)? 018X g —jalx—€1)? ¢t
T
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An anharmonic oscillator

We find b;; = ¢j; and

- 1 1 3 1 3+4ad+4av
Feh = (22 -~y (1 12 | Lely4
e The corresponding equation of motion
has a form
: : 3
1_ 2 2 1 (133
g 2= —v(14 ) = ()

e The number of quantum states in a phase space region D?

detde? delde? dxdk
N:/ $ 5Pf(bu):/ 3 5:/ x
D2 27T D2 27T D2 27T

which is what we expected.
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An anharmonic oscillator

e The small motions around the ground state 5(’) — A collection of
Harmonic oscillators — low energy spectrum.

- This is why for many interacting systems, the low energy excitations are
non-interacting (like phonons in interacting crystals).

- This is why semi-classical approach works well for many systems.

e For small motion around the ground state ¢! = 0, £ = 0:

f=g 2=—v(14,)¢

A harmonic oscillator with mass m = 1,

H _ 3a4202v
spring constant K = =427+,

and frequency w = /v (1 + 5>).

e Re-quantizing the harmonic oscillator —

low energy spectrum for the Hamiltonian o 3
-6 4 2 0 2 4 v
k2 1 1
H:?+§VX2+1X4, k:—lax
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Geometric phase and related mathematics

§¢ = ajde! = —i<1/1£/\a%,|w£/)d§’ is the so call geometric phase.

e What is the geometric phase?
Consider [¢¢1) and [¢)¢1 s501), what is the phase difference between [¢)/)

and |1Z)£I+5£I>?

® But [t)r) and |ther 5¢1) are not parallel: |ther 5e1) # ei5¢"l/)£/>.
They differnce cannot be characterized by a phase.

e But for small 6¢/, the leading difference is just a phase factor
(Per|verser) = 1+10(5E"),  (Peryserliber) = 1—10(5¢")
since, to the first order in §
0= 5<’l/)g'\’l/)g'> = (<¢§’+6§" - Wg")Wg’) + <’l/)g"(\"/)g'+5g'> - W)g'>)
= [(Veryser[Ver) — 1 + [(Ver[Veryser) — 1 = [(eryser[er) — 1] = imag
Therefore (Vi 1er se1) ~ e10008) or
i vaer) = € %Pler) + #(5¢")?,  geometric phase = 3¢ = a(¢')d¢!
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Is the geometric phase meaningless?

e Geometric phase ¢!%¢ = (Yer|erp5e1) = 129 But we can always
change the phase of |1/ 5e1) — [V 501)1 = e*ia";g’\l/)g/Jr{;g/), to make
the geometric phase to be zero: (Vg|ter se1) = emiade! giadd! — 1

- The move |¢)¢1) — [thg15¢1) is a generic transportation. \

- The move [¢)¢1) — |t)e1,5¢1)" is a parallel transportation. // \
It appears that we can always make geometric phase = 0,
and the geometric phase is meaningless. Th|s is wrongI \ !

e As we change the phase of [iz/): [1)er) — el W’gl the \ /
geometric phase (/e the connection) aIso changes al = al + Ol f

- We can always choose a f to make a’ = 0 along a particular path £l(e),
to make [1¢z/(;)) to have the same phase for all t — parallel
transportation along the path.

- But, we cannot find a f to make a’ = 0 for all ¢/, je to make all |er)'s
to have the same phase. Some part of geometric phase (or vector
potential) a’ is physical, and other part is not. The meaningful part is
the “magnetic field": by = 85131 — Ogja/, which is quantized.
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What is the geometric phase for spin-1/27

Consider a spin-1/2 state in n-direction |n) = <

e~ 1%/2cos(6/2)
e'?/?sin(0/2)

e Let us compare the phase of |n(6,¢)) and |n(0 + 60, ¢ + dp)):

(n(0,0)|n(0 + 60, + 6¢))

= 15 (n(0. )] g (0.2)) 56 -+ (n(6.2)| (0 ) G

=1+ 1iagdd + iapé(p ~ ol (a000+apd¢)

)

where i3 = {n(6, 2)| 3 (6, 2)) and 12, = (n(6, )| 2 In(6, 0))
- ei(@0d0+az00) — iadt! s the geometric phase as we change |n(f, )
to |n(0 + 60,0+ 0p)) = |n+ An).

- a = (ag, a,) is the connection (vector potential) of the geometric
phase. (Like the vector potential in electromagnetism.)
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The notion of the “flux” of the geometric phase

e Consider a loop |n(t)), t € [0,1], n(0) = n(1). The total geometric
phase of the loop

o 2000 = (n(0)|n(t1)) (n(t1)|n(t2)) (n(t ( 2)n(ts)) -+ (n(ty_1)|n(1))
— eiEa(t)-én(t) _ 1 Ja(t)-dn(t) _ 1 J a(t) d"(t dt

o If we change the phase of |n): [n) — elf( ")|n>, the total geometric
phase for a loop — the geometric flux — does not change.

e Computing the geometric flux:

$cagdl + a,dp = [;(dpa, — Dya9)d0de or $.a= [pda= [ b
where C = 0D, ie the loop C is the boundary of the disk D.

- b= 0ga, — O,ap is called the geometric curvature (magnetic field):
bAOAp = the total geometric phase for a small loop
(0,0) = (0 + Ab,0) = (6 + Ab, 0 + Ap) = (0,0 + Ap) = (0,¢).

e The total geometric phase for a loop fc a - dm and the geometric
curvature b are meaningful, since they are invariant under the gauge
transformation |n) — ¢'/("|n) and a — a + 9f.
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The geometric phase (the flux) for spin-1/2

From iay = <n(9,<p)\%|n(9,gp)) and ia, = (n(0, 99)\ 5n(0,¢)) and
0/2 . cos

m) = (200) = a0 =0, 2, =sin(0/2)sin(0/2) = =5

“Flux" of geometric phase: total geometric phase around a Ioop

For a loop (0, 0) — (0 + A0, 0) — (0 + A0, 0 + Ayp)

— (00,0 + Ap) — (0, 9):

1— cos(f + Af 1 — cos(f
7{ 2pd0 + a,dp = 0 + cos(0 AN p, 4 g 1=C0s0) 5,
[26,A0] 2 -

1 1
=3 sin(0)A0Ap = by,dfdy = EQ([AG7 Ayp]) = half solid angle.

e The total “flux” of the geometric phase on

any campact space 52 must be quantized
/ —bUdE "d¢? = 27 x integer

= 271 x Chern number.  Spin-1/2 has a Chern number = 1

= Chern number +1.

On torus the number states = Chern number (Landau levels counting)
Xiao-Gang Wen (MIT)
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The geometric phase of spin-1

e The geometric connection for spin-1/2 |ng 1) is
n—3
s=1 s=I 1—cos(6
(3, %,a, 2)=(0,1=<c(®)),

e The geometric connection for spin-1 |ng,—1) is
-1 -1
(a571,2571) = 2(a 2.2 ?) = (0,1 cos())

- This is because we may view |ns,—1) = [ng _1) @ |ng _

iA S=1
180 = (g, alnf, ) = (ng, sl ) x (n, s |l

How to visualize the geometric phase of spin-1

Different arrows in the plan at a point n e\ /3}1\\
N

on the sphere correspond to the different
phase choices e'?|ns, ;). We try to
choose ¢ for the spin-1 states along the
loop, such that |ns,—1) all have the same
phase. But after going around the loop,
the phase miss match is the total geometric phase along the loop.
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Classical motion of spin-1/2: two views

The phase-space action
1 1
S= / dt[—§(1 —cosf)p — V(0,9)] = / dt[§ cosfp — V(0,0)] + ...

e Near the equator, cost = 5 — 0 = L;:

S = [ dtlLed — V(5 - Lo o)

- The uniform phase-space magnetic field — (=6, ) = (L, ¢) = (p, x)
the usual canonical coordinate-momentum pair.

e A particle moving on 52 with a uniform magnetic field by, of total flux
27. It is the motion in the lowest Landau level assuming fuw. is large.
Modified Newton law F = v x B (not F = ma).

- A spin-S — a sphere with a uniform magnetic field of 27 Ncpern flux,
where Nchern = 25 — lowest Landau level has 25 + 1 = Ncpern + 1-fold
degeneracy on a shere.

Lowest Landau level has Ncperm-fold degeneracy on a torus.

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach



Global view of geometric phase: S! fiber bundle
Why the “magnetic field” b is quantuized (/e cannot be deformed to 0)7
only after we pick the phase of |/)(¢7)). Different choices of b
phases are equivalent — the notion of S! fiber bundle: e
normalized quantum states e!?|¢)(¢7)) form the fiber S*. ss\seci

- A S* fiber bundle is (locally) S x phase-space. base space
bundle. Pick a phase = pick a cross section.
e Trivial S bundle = S* x base-space (globally).
No smooth cross section. Trivial and non-trivial bundles describes
different classes of classical systems that cannot deform into each other.
An example: fiber = R — Mobius strip:
a non-trivial R bundle on base-space S*

The physical states are characterized by a point £/ on the phase-space,
e The phase space ¢’ is the base space. The equivalent
- the ¢/-labeled quantum states [1/(¢7)) is a cross section of the S*

Non-trivial S* fiber bundle has different topology from S* x base-space.
e Vector bundle: fiber = vector space.

No non-zero smooth cross section.
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Spin-1/2 example: geometric phase and fiber bundle

e All possible spin-1/2 states (or qubit states)

ib
(a+ib)| D) + (c + id)| }) = (jiid) 2 PR+ d? =1

form a 3-dimensional sphere S (a sphere in 4-dimensional space).

e But since [¢)) ~ ¢!?|¢)), all possible spin-1/2 states
(or qubit states) actually form a 2-dimensional sphere ;
S?. Zlez=mn:amap S® — S? — |n): spin-1/2 [ D ,_
in n direction. - ;

e 53 locally looks like St x S?: S3 is a non-trivial
fiber bundle with fiber S* and base space S:

pt — ST 2y 63 29, 62 ot

O
1)

e If we pick a phase ¢ for each |n), we may get one cross section of the

o () o ()

- No smooth cross section — non-trivial fiber bundle # fiber x base space.
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The patch-picture of fiber bundle

The “megnetic field” b in the phase space of a spin is a closed 2-form,
but not a exact 2-form, depite b = da, since the connection 1-form a
has singularities on the sphere S? (the phase space). There is no
continous 1-form a, such that b = da, since this will imply that

/b/ da/ a=0>0
s2 s? 952

- b is exact iff the S'-fiber boundle is trivial (ie Chern number = 0)

- A fiber boundle is trivial iff it has no continuously y
defined connection a (/e the vector potential a/). & .::y :
I MC"\ BAC

e Any S'-fiber boundle can be described by collection of h
continous connections a4 on patchs Dy that cover the c
whole base space. On the overlap of two patchs, Dy and Dpg, the two
gauge connections, as and ag are gauge equivalent ag = aa + dfga.

- Locally on each patch, the S*-fiber boundle looks like Dy x S*, with
cross section [14(¢)), ¢/ € Da. On the overlap of two patchs, the two
cross sections, [14(¢')) and [vg(¢")), are related by U(1)
transformation [¢5(£)) = elBalya(¢)) — U(1)-bundle.
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The obstruction to have globally defined connection

Can we deform the gauge transformations eifen€) on the overlaps to 1,
and turn a patchwise defined connection to a globally defined one?

e Consider a U(1)-bundle on S2. We divide S? into —
two patchs with trivial topology (/e two disks). 4-"’( e )
The overlap is the equator S*. The transformation

— ifBA(gD) 1 H ‘ h“" Southern
Ulp)=e on the S* connects the connections N\
s 2

on the two patchs as = ay — iU~YAU = ay + dfsy
correct form incorrect form

e The non-trivial winding number of the transformation U : S* — U(1),
due to m1(U(1)) = Z, is the obstruction to have globally defined
connection — non-trivial U(1)-bundle on S? with

Chern number = winding number.

- On S3 there is no non-trivial U(1)-bundle, but on S? x S* or

St x St x 52 there is non-trivial U(1)-bundle.

- On S* there is non-trivial SU(2)-bundle, since m3(SU(2) = 53) = 7.
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The motion of a neutron in a non-uniform magnetic field

Geometric phase is a quantum effect that can affect equation of motion

Consider a spin-1/2 neutron moving in a strong non-uniform spin
magnetic field B(x). The neutron magnetic moment is

tn = —1.91304272(45)1p, where iy = % in Sl unit (or uy = 2;];C
in CGS unit). The interaction between the magnetic moment and the
magnetic field, —p,B - o, will force the neutron spin to be anti-parallel

to the magnetic field B at low energies.

e What is the classical theroy (such as equation of motion and
Lagrangian) that describes the motion of the above low energy neutron?

e What is the quantum Hamiltonian A that describes the quantum
motion of the above low energy neutron?

Our first guess:

e Classical: mx = —9V(x)and L =p % — tmp*> - 9V(x),
where V(x) = —|u,B(x)| is the effective potential energy.

A

Quantum: H = —2—;7"82 + V/(x) Is this guess correct?
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Schrodinger equation and coordinate basis

e Schrodinger equation (basis independent): 19:|¢)) = H(p, %)[1))
e In a coordinate basis [¢)) = [ dx ¢(x)|x), it becomes

1000(x, t) = H(—18, x)(x, t) = (f 2;,782 + V(x))zb(x, t)

e In the above, we have assumed that there is no geometric phase for
|x),ie the phase change from |x) to |x + 0x) is 0.

e But for our neutron problem, the phase change from |x) to [x + dx) is
not 0. How to to compute the phase change?

- For our neutron problem, |x) is actually |x) @ |n(x)).

- The phase change from |x) @ |n(x)) to |x + 0x) ® |n(x + dx)) is given
by a-dx:

! 7)X — (n(x)|n(x +6x)) — ia(x) = (n(x)|d|n(x))

e If there is a geometric phase for |x), ie a phase change ela(x)0x from
|x) to |x + dx) , what will the Schrédinger equation look like?
- The result H = —2%%82 — |unB(x)| is valid only when the direction of

B(x) does not change.
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How geometric phase affects Schrodinger equation?

o If we choose a new basis |x)y, = ¢'?)|x). |x)4, will have an non-zero
geometric phase: The phase change from [x)u, to [x + 0x)4, is
ei[d)(x+6x)7</>(x)] = eia(x)‘5X where a = 8¢(x)

e What is the Schrodinger equation in the new basis

= [dx ¢¥(x)[|x) = [ dx Pew(x)|x)ew or !Xy, = 1h(x)
i0)(x, ) = Hip(x, 1) = He *Myy,
e 1M igup(x, t) = e 1K) Aol
10w (X, 1) = Foutiow,  How = ¢ 100 Jolo(0),
e My (8, x) is obtained from H(8, x) by replacing & in H by
e 1) Pei?x) = 9 1+ i9p(x) = D + ia(x).

Hew = H(® + ia,x) = ———(8 + ia)> + V.

2mp

The above is derived for a = 9¢. But we assume it remains valid for
general a — How geometric phase affects Schrodinger equation
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Effective Hamiltonian for neutron in spin magnetic field

where

B(x)

ia(x): <n(x)’a’n(x)>7 n:_|B(x)|7

V(x) = —|unB(x)|.

a(x) comes from geometric phase and V/(x) is potential energy.

e V/(x) generates a potential force F = —dV on the particle.

e We will see that a(x) generates a Lorentz force F o< v x b on the
particle, as if there is a “orbital magnetic field” b= 0 x a.

The geometric phase gives rise to an effective orbital magnetic
field.
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Obtain classical equation of motion
Afk) I_‘,‘J“\'_"’i
e Consider wavepacket with ]A

space-time dependent spin

« 1/4 i —Llo(x—x
k) = (5) 1 elhoxem datonl|n(xp))

™

Phase space Lagrangian (H = —%82 — unB - o)

m

d .
L= (Wno() ko(0) 5 [Pxo(0)ko(£)) = (Wo(2) ko(0) [H W01 ko))

. 2
=-a % —a ko— a(x) 'Xo—2,2n — |1n B(x0))
=0 0 —i{nf0x|m)
= —xo - ko — a(xo) - X ko + |nB(x0)]
= —Xo - Ko 0 0 2mn Hn 0
2

~ po-Xo —a(xo) %o — PO — V(xo). (=1 unit)
2mp,
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Obtain classical equation of motion

For S= [dt[p-x—a(x) % — £ — V(x)]

~ 2m,
From [ dt §(ai(x)x') = [ dt [6x/(0;ja;)x" — 4;(x)0x]
0S5 = / dt (5,0,‘[5(i — %] + (5Xi[_/-7i - (8,'3j)5<j + (8ja,-)>'<j — 0; \/]
we obtain the phase space equation of motion

)'<i = ﬂ, [5,‘ = —(8,-aj - 8ja,-)>'<j —8,‘\/ - —bijkj - 81'\/

mp

Lorentz force

Spin twist gives rise to simulated vector potential
a(x) = —i(n(x)|0d|n(x)) — simulated magnetic field.
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Geometric phase  orbital magnetic field

- Equation of motion for x> = z
mpz = —0,V — x[0,ax — Oxaz| — y|0.a, — 0y a,|
- Compare with the equation of motion in a magnetic field B
Mz = —0,V + ;(kBy VB,
e e

e e
- = zV : Z*Ax - X*Az - *Az - z*A .
0,V + x(0 c 19) c ) y(ayc 19) c y)

o We find that a = —€A (or a= — £ Ain i # 1 unit, [a] = Length™ ).

C

e The geometric meaning of magnetic field

Q

h 1
#ofﬂuxquanta_/dS-B/C_j{ dx.iA:_f dx -
JS € oS hc 21 Jos

= geometric phase around a loop/2m
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Simulate orbital magnetic field by twisted spin

When an electron move in a background twisted spins, the electron spin
may following the direction of the background twisted spins —
geometric phase = simulated magnetic field.

The geometric phase around a loop/27 = The number of flux
quanta of the simulated magnetic field through the loop.

e Note that hc/e = 4.135667516 x 107 15T m?.

- If there is one flux quantum per (1078m)?, then
B = 4.135667516 x 10715/(108)2 = 41T
(About the highest static magnetic field produced)

- For electron hoping in a non-coplannar magnet, the geometric phase
from the spin-twist is of order 1 per unit cell:
There is one flux quantum per (10~9m)?, or the simulated magnetic
field by the spin-twist geometric phase is
Bepin = 4.135667516 x 1071°/(1079)? = 4100T
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Geometric phases in energy bands of a crystal

e Hopping Hamiltonian Si
Hma;nﬁ - Z _tﬁﬁn(sm,nJrAm

An
n lable unit cell, a, 8 label orbitals

e Plane wave state (x, = ma; + map + nzas) Sl »
/l/)k(nvﬁ) - wﬁ(k)eik.xnv Z Hma;nﬁ wk("?ﬁ) - ekwk(m‘/ O‘)'
n,g
e The energy bands ¢ are eigenvalues of M,z(k) Si bands

S Mas(k)s(k) = extalk),
B

An T\
“apN

;_ N

e Number of bands = f %4{&
number of orbitals "-.
in a unit cell. Ny

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach



Dynamics of an electron in semiconductor

The standard theory

A

e Quantum dynamics: H(p) = ¢(p), p= —i0 —
A plane wave e'k*q, (k) = e kx| (k))
%(

3 e(k k
evolves as ek *¢ )>

With potential term, the Hamiltonian is changed to
H(p, %) = e(p) + V(X), where [p', ¥] = —i;
H(p, %) = e(—10) + V(%)
e Classical dynamics: %(é) =i([H,0]) —
_OH(p.x) . _ OH(p,x)
ox op
w >

U1

e The standard theory is wrong.
Xiao-Gang Wen (MIT)
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Obtain classical EOM of an electron in a band
Alk) II‘:JAH
i i |-4— -_'_\,—ﬁ
e Consider wavepacket with
i

space-time dependent spin

(0}

/4 —La(x—x
ko) = () ehore 10 (ko)
Phase space Lagrangian (% # 1 unit)

. d
£ - <wxo(t),ko(t)’1hdt H‘T/]XO ko(t >

. : - . h2k2
=0 X0 —i (10 19
. - . 12 k?
= —hxg - ko — ha(ko) - ko — 5 0 + |,u,,B(X0)|
mp
p2
~ po - xo — a(po/h) - po — 2;;” — V(x0)
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Obtain classical EOM of an electron in a band

e The k-space connection (vector potential) in Brillouin zone.
1d(k) = (¥ (k)| Okl (k))

e For S = [ dt [p-xf:"a(p/h)~ fﬁf V( )]
From [ dt 6(3i(p/h)p’) = [ dt [6p/(0p,5:)p" — &i(p/R)5p']
05 = [ dt opi[x" — L — (0, 8))p + B (Ok,31)P'] + OX'[—pi — Oi V]
we obtain the phase space equation of motion
X = ,% N0 — 0 = Piy i by, b=V

Velocity correction

where by, = O dj — 8kj§; is the k-space
“magnetic” field (geometric curvature).

The k-space connection (ie the k-space magnetic
field) also modifies the equation of motion

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach



The correct classical EOM of an electron in a band

2
L:p-x+§A<x>-x—5(p/h)-p V()
= X — . k] — -V
k- x — a(x) % — a(k) - k] = -~ V(x)
The real equation of motion in semiconductor
. oV . Oe .
pi= — E 4+ - B,Jx = F;, x,-za—p,—i-h lb,-j(k)pj

F; include both potential force and Lorentz force.
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Compare with Newton's law

From the EOM
Oe

fl&
Oki

ki=h"Fi %= hoto e o+ bi(k)kg = Wt o+ bt hy(k)F

and assume H = % + V(x), we obtain

X = h*2(8k,.8kj H)FJ + hilg,'j/;_j + hfzak,B,-ijF,
or X' = (9p,0p,H)F; + DjF; + (05, Dy) F;Fi
= m™'F; + DyiFj + (95, Dy) F F

where p; = hk;, D;j = h~'b;.
We obtain correction to the Newton law DjF; + (9, D;)F;F).

p’ /m2c% & c2p2 | visti ;
5~ \/m*c* + c*p* is the relativistic correction.
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AC conductivity (from classical Drude model)

First way to include a friction force
Fi — Fi —~x'
We obtain
%1 = m (= 4%") 4 Dy(F; — 9%7) + 05 Dy(F; — 159)(Fi — 1)
- Assume 0, Dj; = 0 and go to w-space x = X, e 1wt

[~w?(8 +yDy) — iwym ™ 35]xl, = [m™*0; — iwD;]F;
X, = [~w?(m+ymD) — iwy]"}(1 — iwmD)F,
Vo = [y — iwm(1 +~D)]"}(1 — iwmD)F,

Effect of Dj; disappear for DC conductance, for the first way to model
dissipation Fiiction = —7Xx'.
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AC conductivity (from classical Drude model)

Second way to include a friction force
Fi— Fi —y0pH = Fi —ym™p;
Still assume 0, Dj; = 0:
x = 0pH + D(F —ym™'p) = (1 —+D)m 'p + DF
p=F— ym_lp.
- Go to w-space x = x, e ¢t —iwp, = F, —ymp,
Ve = —lwx, = (1 — 'yD)mflpw + DF,

- 1
=(1—~D)m 17m71 ——F.+DF,
1
= (1-~D)———F, + DF,
Y — lwm

= (1 — iwDm)(y — iwm)~'F,
Effect of Dj; also disappear for DC conductance, for the second way to
model dissipation Feiction = —Y0Op, H. But the result is different from
the first way Faiction = —7X'.
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Transport: Boltzmann equation

Hydrodynamics in phase space:
In the third way to model dissipation, we find that Dj; has effect on DC

conductance!
e Phase space is parametrized by ¢/ = x', x?, x>, k', k?, k3

. . . oH
L' ¢y = —nag! — H, hb&? = ~ el biy = 01a; — 0ja

where the phase space curvature (/ = x*, x%, x3, k*, k? k3) is given by
bj 0 0 —6;\ [ bj 0 o; by
e=(55) (6 )% 8) -G 5)

0jj
log Det (b'-

y

U) = Trlog (ZU ([;U) = 2b;ibji + O(bixbyg)?
ij v

b

)
bj 05\ _ . P o2
Pf —(5,‘1' E = Pf(b, b) =1+ b,'jbj,' + O(b,'kbkj) .
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Density distribution in phase space

e To set up phase space hydrodynamics, we first introduce phase space
density distribution

dngl
AN = g(e"PF[b(EN] =7
8PN 5y
g is the number per orbital.
e Local equilibrium distribution
1
I _ .
go(é- ) - 65(51)“_[(5,)7#] + 17 fOf ferm|0ns
1
A
g(&') = BENHE) ] — 1’ for bosons
go(¢) = C_B(él)[H(fl)_"], for classical particles
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Hydrodynamic equation of motion

e Consider a small cluster of gas, that evolve from time t to t
dngl dngl
Pf[b(¢& :
Gy = €PN 5
Due to Liouville's theorm Pf[b(¢/)]d ¢! = Pf[ (€N]d"E!, we have
g(e)=g(&) or g[E ()] =0
We obtain hydrodynamic equation
d ! o ag yi o ag
&g[f (t)]=0 — a‘*‘f 018 = ot
e Consistent with the conservation of particle number (7' = gé’):

a I I 1 A n _
a"‘ I+ f( )[3/Pf( )]j -l- f(B)aI[Pf(b)j] =0

See Appendix at the end of this note for derivation.

AN = dN  or  g(¢")Pflb()]

— hbo,Ho g =0

- When Pf[b(¢')] = 1, say when either b; =0 or E,-J- = 0, the conservation
of particle number reduces to 0g + 0,7 =0.
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Go to & x, k phase space

L=nlk-x—a(x)-x— a(k)-k] — E(k,x), E(k,x)=e(k)+ V(x)

. OE j o~ 9B b ki
hki = =55 = Dby ¥ ki = e+ by ()l
:—EB,'J'

e (x, k)-density distribution function

3 3
g(x.k.0): AN = g(x. k. 1) Pf(b, ) L XLk

(2m)3
g is the number per orbital, and Pf(b, b) = 1 + b;ibj; +
e Local equilibrium distribution
1 .
go(x, k) = FONE*R) ] 51" for fermions
1
go(x, k) = N OECTETC SR for bosons
go(x, k) = e POIE(kx)=p(x)] for classical particles
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Adding dissipation relaxationtime approximation

Impurity scattering — dissipation.
e We model large Ak redistribution caused by impurities in k-space by

og og (9g . Og 1
Zs k- (o —
T I TR VLR P C L)
- i—f = %(g — go) corresponds to the change of g caused by scattering

process in k space.

e Local chemical potential ;/(x) and local temperature T(x):
- 6g (g go)/T should conserve the x-space particle density
= [ Pf(b, b d’k g. Thus the local chemical potential ;(x) in gp

( ™)
is chosen to make gp to satisfy

Sn(x) = / Pf(b, B)d3k (g — go) = 0.

No particle diffusion in x-space.
- Impurity scattering conserve the energy density in x-space

ne(x) = [ Pf(b, b) (g;')‘ E(x k)g. The local temperature T (x) satisfies

dne(x) = | Pf(b, b)d3k E(x, k)(g — &) = 0.
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Linear responce in steady state

e Steady state: % =0or x + k - dg =—1(g— &)
with EOM for particles /ik; = hbux h¥; = & + hbj(k)k;
and go(x, k) = 1/(eﬁ(x)[e(k)+V( ) /L(X)] +1)

e When 0,V =0, bjj =0, Oep=0, 0xf(x)=0
go satisfies the EOM, since k = 0, % = % =0

e Linear responce: first order in

k~ 8.V, bj,  Oxgo~0x(V—p), %B, Jdg=g— g

K
e Linear response for steady state
0g + Th™ 10k €0,08 = —T[h 10y €D 80 + ki, g0]
or g+ Tvoog = —7[v'Oxg0 + kiOkgol, V' =h Oke.

- Make another assumption X" £ <« = % Since hik; = eE; — hb,-jvf:

TV'
1

T
%(e i thV )akigb? 80 = Cﬁ(x)[e(k)fﬁ(x)] + 1

5g - 7Tviax,'g0 +
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2D conductivity from k-space “magnetic” field E,-j

Assume real space magnetic field bj; = 0 and T(x), fi(x) are
independent of x:
0g = TeE; Oe 8go = reE;v ,8go
"hok; de Oe
The current (Pf(b;;, b;) = Pf(0, b;) = 1)
i d3k o d3k ,ago

J :/Wexg:/(zﬂ)3(ev + eb; iteE;)(go + TeEiv 86)

Note that (try to show this in 1-dimension)

N S d3k  Oe(k) B Pk 9Go[e(k)]
/ @3 w=| 2r)7 ok ()= | T

where 0Gp(€)/0de = go(€). Keeping only linear E; term

; L &>k 080
J:/ exg:/[hbugoJrTevJva}Ej

(2m)3 (2m)3 €

e Conductivity: A3k ")
J— J 080
i / (2m)3 [ h b,Jgo ety Oe }
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Quantized Hall conductance in 2D

For a filled band, gp =1

2 2 2
O'H = A7k iB;'go = Ei'nCherni
u (2r)2 n Y / h

where (let b; = ¢;;b)
A2k - © d’k 03 03, :
NChern = /B.Z. ?b = /B.Z. 27{'(6/(}/ — aikx) = Integer,
13; = (¥(k)|0k ¥ (k)).

We have a quantized Hall conductance. ncpern is Chern number.

We have a Chern insulator if the total Chern number of the filled
bands is non-zero.

e How to make a Chern insulator?
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Complex hopping to break time-reversal and parity symm.

e Conductance j, = 0, E, jx = E, = 0.

Under time reversal t — —t:
E—E, j— —j, 04— —0x

Under parity (x,y) — (x, —y):
(EXa Ey) — (EXv *Ey)a (.ij.jy) — (.ij *J'y)a Oxy = —Oxy

e Use complex hopping to generate uniform flux
and break time-reversal and parity symmetries.
— Chern insulator i

Staggered flux breaks time-reversal symmetry
but not parity symmetry.
— not Chern insulator

e Next we compute the hopping matrix in k-space

Mag(k) = — Z tﬁé’e*im"'k
An
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m-flux, Dirac fermion, and its geometric connection 3(k)

1 1
Hopping matrix in k-space (a; = 2x, ay=y): plot n(ky, k)
—2tcos(ay - k) —t— te iark —2tcosk, —t— te?ik
M(k) = iar-k - —2ik
—t — te!® 2t cos(as - k) —t—te " 2tcosk,

e M(k) =v(k)-o: ¢ ==*|v(k)|. The vector field v(k) on B.Z.:

vy = —t — tcos(2ky), vy, = —tsin(2ky), v, = —2tcos(ky).

lv| = t/2 + 2cos(2ky) + 4 cos?(k,) = t+/4cos?(ky) + 4 cos?(ky).

e Eigenstate in conduction band |n(k)), plot n(k, k,)
n(k) = v(k)/|v(k)|, has geometric connection

i3j(k) = (n(k)|0k|n(k)): by, = Ok &, — 8ky§X #0
¢ dk-a=m, ¢, dk-ad=m — two 7-flux tubes.

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach



7 /2-flux state: complex hopping — Chern insulator

1
a i/ T2/ 0 ‘~‘K
! T2, v
T : ' —Ts AT
— 1 [N
é é o
1 g g e
11 4 B

Hopping matrix in k-space (a1 = 2x, a» =y): M(k) =
—2t cos(a - k) —t—te tak _ jpelak /g i@ktark)
—t —teldrk _jpfemiak _ i l@ktark) 2t cos(as - k)
e M(k)=v(k)-o: e ==+|v(k)|. The vector field v(k) on B.Z.:
vy = —t — tcos(2ky) — t'sin(k,) + t'sin(k, + 2ky),
v, = —tsin(2ky) — t’' cos(ky,) — t' cos(ky, + 2ky), v, = —2t cos(k,)

e Eigenstate in conduction band |n(k)), t=1t
n(k) = v(k)/|v(k)|, has geometric connection g§
15i(k) = (n(K)| 0, In(k)): ey = Ok, 3, — Ok 55 # 01

— The wrapping number (Chern number) =1
Chern insulator (IQH state)
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How to compute the Chern number

e Geometric phase ¢ = ¢, dk - d(k) = 1Q

o= 7{ dk - a(k) = 2w x wraping num.
0B.Z.

3k, [ DA
ok,

e Geometric curvature B = Ok dy — Ok, ax.
o= ¢ dk-a(k)= / d%kB,
oD D
/ d?kB = 27 x Chern number
JB.Z.

e Compute geometric curvature:
Bokeok, = 1n- ([n(k + 6kex) — n(k)] x [n(k + Skyy) — n(k)])

~ 1
B(k) = En - [Ok.n(k) x O, n(k)]
e Compute Chern number (the wrapping number):

(477)1/ d?k n - [0k, n(k) x Ok, n(k)] = Chern number
B.7
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I 1 T

1 A A L T

(SRR gty | o

1 é Y e
i b —Ts AT
T | o

1 PN PN | ,"’ ]
b b K

1 A 1 A -

Hopping matrix in k-space (a; = 2x, a»=y):
_ [—2tcos(ax- k) —t — re—iark
M(k) = ( e st ) )

e M(k)=v(k)-o: e=+|v(k)|. The vector field v(k) on B.Z.:
vy = —t' — tcos(2ky), v, = —tsin(2ky), v, = —2tcos(ky).

e Eigenstate in conduction band |n(k)), "fk‘g@
n(k) = v(k)/|v(k)|, has geometric connection ' "
13;(k) = (n(k)|O|n(k)): by, = Ok, 8, — Ok,dx #0 ﬂ -

— The wrapping number (Chern number) = 0

Atomic insulator
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Chern number of the bands

(b) (©)

+1
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Appendix: Hydrodynamic equation and continuity equation

(for by  const.)

e Hydrodynamic equation

gl =0 — 28 ¢195— %8 _wyHae—o0

ot ot

e Continuity equation conservation of particle number (b;; = const.):

ggtr—i—@jlfo current: J' = gé' = —g bYo,H
They are equivalent:
0 0
0= +017" = 55— b01g0,H — bg0,0,H
t 8 ~—

=0
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Appendix: continuity equation (for b,  const.)

e Assume for phase space coordinates ¢/, by = const.

Hydrodynamic EOM: % +§'5/§ = % —bYo,HHE =0
Conitnuity equation: % +9,7"'=0, J'= gf’, 5’ — —bMd,H
e Change of coordinates ¢/ = ¢/(¢!): (scaler, vector, tensor)
. o, o oc!
N=gE, 9 =248, ¢ £J gl =% 74
g(&)=¢&(&"), o a7 § = 8515 oe7
odk oét - u_ 0¢"o¢’ i
= o 5Pk b
9g" ¢ ek agL

- The subscript and superscript indecate how the quantity transforms
under the coordinate transformation.

e The form of the hydrodynamic EOM remain unchanged:
8g _ Og

—l—fé? =5

b“(?JHa,g =0
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Appendix: continuity equation (for b,  const.)

e The form of the continuity equation is changed:

og 8fK 85’ L 78g I 4 85K 35’ L
8t+a§l< agtj) ot PO (a"agt>‘7

S 6;;( oc )t

T ot Loek
In fact: da%(@ ng) = Det'/2(b”)dxDet'/?(byy), since the RHS
o) o &l ~
= Det(%5)Det/2(5)ox LDet(g—fJ)Detl/z(b, J)} Det( % )8KDet( )
We also have (let M, = gg)
Det(MM)éDet(M,;) = Det(M”)Det(M; + M) — 1

= Det () + MIK(SMKJ) —1= MIK5MK/
Continuity equation: (not just dt g 19,7 =0)

er I+ —|0/Pf(b)| T’ = + —=—=0,|Pf(b)J"| =0

8 407"+ s OPTBLT = P L PH(ET
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Appendix: continuity equation

Hydrodynamic equation

og 1 p o 08 1 P 1
+ —0 b = — — 0y |Pf(b b~0o,H
ot * pr(h) 1 [Pf(b)T"] ot Pi(h) i [Pf(b) g JH]
og 1 1 A
== —bY01g0;H — gO;H —0;|Pf(b)b
BT 180, ~ g0sH oo 1 [Pf(b)b"™]

=0
We first note that 0 = 8M(bIKbKL) = (aMbIK)bKL + b’K(é?MbKL) —
0= 8/\//le + bIK(aMbKL)bLJ
This allows us to obtain

0 [Pf(b)bM]  bKLO bk o bMob ik L
~ _ p? 90 = == IR pIK(9, by )b
Pf(b) 2 1 2 ( ! KL)
bKLbIJ o
— al(aL;K 8KaL) — b’Kb“c’),(aKaL — aLaK)

= bKLb’JalﬁLaK + b’KbLJG,OLaK = bKLbUO,@LaK + bLKb’JﬁL&aK =0

We recover the hydrodynamic equation g—f — bY9,g0,H
Xiao-Gang Wen (MIT)
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Appendix: Adding dissipation  difffusion in phase space

The enviromental influence only change &' slightly each time.
Diffusion current

Thee = ,yugggj =—Yog. (Should 4" be symmetric?)
New EOM (new continuity equation)

g 1 A 1 A

— + ——0,|Pf(b — ——0;|Pf(b)J4is| =0

ot PF(b /[ ( )gf] Pf(h) /[ (b) dff]
g | gl M

or —+¢&0,g=—=0|Pf(b)y"-0

9t §0ig P(B) 1 [Pf(b)y" 08|

- But the above difusion model does not satisfy detail balance. It assume
the transition rates caused by environmntal influence between two
states A, B to be the same in either direction: t4_.g = tg_,a. Such a
transition rates give rise to equilibrium probability distribution that
satisfies P4 = Pp regardless the energy difference E4 — Eg of the two
states. This coresponds to T = oo case. Indeed the above diffusion
model tends to make g to be uniform in phase space, which is the
T = oo case.
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Appendix: Adding dissipation  difffusion in phase space

How to find a difussion model that satisfy detail balance?

How to find a difussion model that make g to evolve into the
equilibrium distributions for a finite temperature T:

1
| o .
(&) = FHE A1 for fermions
1
I —
(&) = BHE) A 1’ for bosons
go(¢h) = e ALHEN ], for classical particles
Diffusion current
jdliff = —Ygd,(log g + BH), for classical particles

jdliff = —v"g(1 - g)a,[log(g™* — 1) + BH], for fermions
T = —7"g(1 + g)ds[~log(g ™' +1) + BH], for bosons
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Appendix: Hydrodynamics in phase space with diffusion

For classical particles (high temperature limit g < 1)

or + €018 = Lm0 [PHE 50,085 + )]
For fermions
52+ 8'0g = =0/ [PH(B)y" g (1~ £)0s(log 15— + GH)]
t " Pf(b) l1-¢g
For bosons
8—’5’; +Elog = Pf(B)a, [PF(B)yg(1 + £)0(log - S+ M)

e The equilibrium distribution gy satisfies the above EOM.

e The above diffusion term only incorporates the particle number
conservation, not energy conservation, since we consider an open
system and assume T to be fixed.

How to include energy conservation for a closed system?

Xiao-Gang Wen (MIT) Modern quantum many-body physics Semi-classical approach
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