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1 Vector and Axial Symmetries

1.1 Chiralty

We work in the Weyl representation:
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This representation is useful for the purpose of chirality, because 7° is diagonal. The +1 eigenspace
corresponds to left-handed spinors %, spanned by Dirac spinors non-zero in the top 2 components.
Similarly, the —1 eigenspace corresponds to right-handed spinors ¥ g, spanned by Dirac spinors non-zero
in the bottom 2 components. Therefore, we a Dirac spinor can be written as
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Note that this is consistent with last recitation, where we have written the Dirac representation as the
direct sum of left and right-handed Weyl representations:

Dirac = (3,0) @ (0, 3) = Weyl, + Weylp

An arbitrary Dirac spinor can be projected onto its left /right-handed subspaces via projection operators:
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Because these are projectors, they satisfy:

P} =Py, P = Pp, PpPr = PrPr =0, P+ Pp=1
Slightly abusing notation by writing v¢1,/r = Pr,/g, some useful identities are:

Pyt =A"Pr, Py =9"Pp,  ¢r=1%Pr,  Yp=9P

These are very important in the Standard Model because it is a chiral theory: the particles mediating
forces couple differently to left and right-handed fermions.



1.2 Vector and Axial Transformations

Now consider the Lagrangian for a Dirac spinor,
L= —ip(§ —m)i

This is invariant under the vector transformation 1 (z) — €'t (z). The conserved quantity is the vector
current, ji, = ¢y#¢). From the decomposition above, we see that this rotates left and right-handed spinors
in the same way:

Y — e Y, YR — e"“Ypr

We may also consider the axial transformation v(x) — €!5(x). This rotates left and right-handed
spinors in opposite ways:

YL — €Y, YR — e PR
Note that the a Dirac mass term ma1) is not invariant under this transformation:
mp — maplem 006 = iy 00y = Pmy
Meanwhile, the kinetic term is invariant:
—ipdp — —i) e 0Pl = —inhe’ P PelTp = —igpe” 5 5 = iy

Therefore, this is a symmetry of £ only for a massless Dirac spinor m = 0. The conserved quantity is the
vector current, jfg = yHy51.

To shed more light on this, it is instructive to write the £ in terms of ¢, and ¥p:

VI = YP(PrL + Pr)Y = YPPLPLY + YPPrPry = Y PrdPrip + Y PLdPry = Y1V + vrdvr
mp = (P + Prp)Y = Y PPy + YPrPr = Ypibr + ¥R

The kinetic term decomposes into a kinetic term for 1y and a kinetic term for ¢z. The mass term
couples the left and right-handed Weyl spinors. When m = 0 the theory becomes decoupled, and the
Dirac Lagrangian reduces to a free 1, and free ¥g.

How now, do the vector and axial symmeties manifest? The massless Lagrangian £ = —i(¢Y @ +1rPVR)
has the symmetries ¢;, — €!*Le)r, and p — €'*LyR, where we rotate the left spinor by a7y, and the right
by ag independently. Equivalently, we may rotate left/right by the same €'V, or by opposites et@4.
These are the vector and axial symmetries. The coupling term m(¢ g + ¥ryr) is not invariant if we
rotate ¢, g differently.

1.3 The Chiral Anomaly

The moral of the previous section is that the Lagrangian for a massless Dirac fermion enjoys the vector
and axial symmetries. Noethers theorem tells us that the corresponding currents are conserved:

@J\F; = 6#@% =0

However, this symmetry is broken when we quantize the theory: if we couple a massless Dirac fermion to
an EM field, we find that the Noether current is not conserved:
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Here F* = 0,,A, — 0, A, is the electromagnetic field strength, which may be familiar to you from your
undergraduate EM class.

Generally, an anomaly is a symmetry of a classical theory, which is not a symmetry of the corresponding
quantum theory. The one we have just seen is called the chiral or Adler-Bell-Jackiw anomaly. It is
responsible for much physics, such as the very short lifetime of the neutral pion, by mediating the would-
be-forbidden process 70 — 7.

Where does Noether’s theorem break down? The anomaly is easiest to see using the path-integral, which
is the central object in a quantum theory. We can write

Z:/Dwae’LS[lz,w] :\/D’I/JID'lpleiS[d_}/qu

Given a symmetry of the action (¢,1) — (¢',%'), the Lagrangian density must change by only a total
derivative (i.e. a surface term):

iS[!, &) = iS[, 9] + / d'20,7" (x)
Noether’s procedure shows how to construct jf; such that Oﬂjﬁ(x) = 0. However, this is predicated on

the assumption that the path-integral measure is invariant under our symmetry, Dv/Dvy’ = Dy D). In
general this is not true. Instead,

DY/'DY = DYDPdet A" = DD A™ = DDA = Dy Dype [ dwinA
Putting everything together, we have
/ Dy DSl = / Da Dijf S ]
= / DipDipe— 1 e A iSW 91+ [ d'20,} (=)
— /D¢D¢jei5[w,w]ef d*z(0u4% (z)—In A)
For these to be equal, we must have that
gy =InA

That is, the current j/i is no longer conserved.

2  Weyl, Dirac, Majorana

Moved to next time.
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