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1 Path Integrals in QFT 

1.1 Bridge: to Infnite Degrees of Freedom 

As we’ve discussed, the path-integral formulation of QFT is tantamount to Gaussian integrals with a 
infnite number of degrees of freedom. It is thus important to discuss how calculus and linear algebra 
change when we go from a fnite number of degrees of freedom to an infnite number, often in a continuous 
domain. In this section we establish a dictionary between them. 

Degrees of freedom: 

• Finite vector → continuous function, i.e. ϕi → ϕ(x) 
When working with Gaussians, we had degrees of freedom ϕi. For i continuous, like a space or a 
time, this becomes a function ϕ(x). For our QFT purposes this will be a feld depending on space 
and time. Often we might want both continuous and discrete labels, such as a vector feld Ai(x). 
One can also view QM as a 0 + 1-dimensional QFT. Here the degree of freedom is time, and the 
‘felds’ are the positions Xi. 

Basic operations: P R 
• Sums → integrals, i.e. → dxi 

• Functions → functionals, i.e. f(ϕi) → F [ϕ(x)] 
The functionals of our interest include things like the action or Lagrangian. Generally they will be 

′ an integral of some function of ϕ(x), and can also be functions of other points x : Z Z 
F [ϕ(x)] = dxf(ϕ(x)), Hx ′ [ϕ(x)] = dxh(x, x ′ )ϕ(x) 

R 

Calculus: 

• (Partial) derivatives → functional derivatives, i.e. 
∂ 
∂ϕi 

→ 
δ 

δϕ(x) 
A normal derivative measures how much a function changes with respect to a fnite degree of freedom. 
A functional derivative measures how much a functional changes with respect to a function (infnite 
degree of freedom). This can be made explicit for some F [ϕ(x)] by perturbing by some test function 
η(x), and seeing how much F varies: Z 

F [ϕ(x) + ϵη(x)] − F [ϕ(x)] δF 
∆F [ϕ(x), η(x)] = lim = dxη(x)

ϵ→0 ϵ δϕ(x) 

It is instructive to compare this to a directional derivative, which we have for discrete ϕi, where we 
have some vector-perturbation ni. Xf(xi + ϵni) − f(xi) ∂f 

∆f(xi, ni) = lim = ni 
ϵ→0 ϵ ∂xii 
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We recover the partial derivative in the j-direction for ni = δij , and similarly we recover the 
functional derivative in the x0-th direction for η(x) = δ(x − x0). This measures the change in F 
when we add a small perturbation at x0. [DRAW FIGURE] R Q R 

• Integrals → path integrals, i.e. dϕi → Dϕ(x)i 
This is more intuitive. One has infnite degrees of freedom, so we have to integrate over each. One 
can think of integrating over the values of a feld each each point in spacetime. 

Linear algebra: 

• Matrices → operators, i.e. Aij → K(x, x ′ ) 
This should be familiar from quantum mechanics. A matrix is just a fnite dimensional operator. 
In the continuous case the vector space on which the operator acts is infnite-dimensional and each 
index becomes a continuous variable. 
The identity operator 1ij becomes the Dirac-delta, δ(x−x ′ ). We can also have diferential operators 
like ∂x, which don’t have a relevant fnite analog (it would look something like ∆ϕi = ϕi − ϕi−1, 
which generically does not have any meaning). R ′ ′′ )ϕ(x ′′ )• Matrix products: → operator products, i.e. Aij Bjkϕk → dx ′ dx ′′ A(x, x ′ )B(x , x 
Index sums become integrals. We can confrm that the Dirac-delta is the identity, since Z 

′′ )dx ′ A(x, x ′ )δ(x − x ′′ ) = A(x, x 

• Matrix inverses → Green’s functions, i.e. A− 
ij 
1 → GK (x, x ′ ) 

The matrix inverse is defned as the operator that, when multiplied with the original operator, yields 
the identity: X 

Aij A
−1 = δikjk 

j 

Using the above we take the continuous analog:Z 
′ ′′ ) = δ(x − x ′′ )dx ′ K(x, x ′ )K−1(x , x 

We recognize this as the Green’s function for the operator K. For instance for the Klein-Gordon 
operator we have Z 

dx ′ δ(4)(x − x ′ ′′ ) = δ(4)(x − x ′′ ) ′′ ) = δ(4)(x − x ′′ ) ′ )(−∂2 
′ + m 2)G(x , x ⇐⇒ (−∂2 + m 2)G(x, x x x 

• Eigendecompositions: 
These are defned in the same way ZX 

Aij vj − λvj → dx ′ K(x, x ′ )f(x ′ ) = λf(x) 
i 

While the eigenvalues stay numbers, eigenvectors now become functions. This should be familiar 
from quantum mechanics: the eigenvectors of the derivative operator K(x, x ′ ) = δ(x − x ′ ) d aredx 
just the exponential functions eλx with eigenvalues λ ∈ R: Z 

λx ′ λxdx ′ δ(x − x ′ ) 
d
e = 

d
e = λeλx 

dx dx 

• Determinants and traces: 
These are defned as usual: as the sum/product of the operator’s eigenvalues. In the continuous 
case, we will have an infnite sum (i.e. integral) or product. Often these will be infnite, but taking 
ratios of determinants or traces of operators gives something fnite. 
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1.2 Path-Integrals for Free Theories 

Note: for this section I would recommend opening the notes from the previous recitation and compare 
this to what I’ll be doing today. You will see that the procedure is almost identical. 

1.2.1 The Distribution 

All the hard work is behind us. We can use the same techniques we had for computing correlators of 
fnite Gaussian integrals to path-integrals. In particular, the Wick contractions we saw last week will give 
rise to Feynman diagrams. 

The path-integral for a feld theory in n dimensions is based on the following distribution: 

1 iS[ϕ] ϕ ∈ R1,n−1 p[ϕ(x)] = e ,
Z0 

where we defne the partition function Z0, for now thought of as a normalization constant Z 
iS[ϕ(x)]Z0 = D[ϕ(x)]e 

By free feld theory, we mean that the action is quadratic: Z � � Z 
i 1 

iS = d4 x (−∂µϕ∂µϕ − m 2ϕ2) = d4xϕ(∂2 − m 2)ϕ 
2 2Z � � 

δ(4)(x − y)(∂2 2)= 
i

d4xd4y ϕ(y) − m ϕ(x)x2 Z � � 
i 

(2π)4δ(4)(p − q)(−p 2)= d̄4pd̄4q ϕ(q) 2 − m ϕ(p)
2 Z 

2 = − 
1 

d̄4pd̄4q ϕ(q)K(q, p)ϕ(p), K(q, p) = i(2π)4δ(4)(p − q)(p + m 2)
2 

In the last line I write this in momentum space. This looks almost identical to a fnite Gaussian integral, 
where instead of ϕiAij ϕj we have ϕ(p)K(p, q)ϕ(q). In momentum space K is particularly simple, with no 
derivatives. Note that the δ(4)(p − q) makes this operator diagonal: we have no mixing between ϕ(p) and 
ϕ(q) unless p = q. If you made me write this as a fnite dimensional operator, it would morally be 

2 2 2 2 2Ajk = i(k2 + m 2)δjk = i diag(· · · , 4 + m , 1 + m ,m , 1 + m , 4 + m , · · · ) 

This way of viewing makes the Green’s function, or matrix inverse, particularly clear. Proceeding with 
the matrix analogy, the inverse is � � 

A−1 = jk 
−i 

δjk = diag
2 · · · , −i 

2 , 
−i 

2 

−i 
, ,

2 

−i 
2 , 

−i 
2 , · · · k2 + m 4 + m 1 + m m 1 + m 4 + m 

We thus can immediately write down the Green’s function, 

−i 
G(q, p) = δ(p − q) 

2p2 + m 

1.2.2 Correlators 

We seek to compute correlation functions of operators with respect to this ‘probability distribution’: Z 
1ˆGn := ⟨0|Tϕ̂(xn) · · · ϕ(x1)|0⟩ = DϕeiS[ϕ]ϕ(xn) · · · ϕ(x1)
Z0 
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Note that on the left, ϕ̂’s are operators acting on a Hilbert space, while on the right the ϕ’s are functions. 
These correlators give us information about fuctuations of the feld around the vacuum state. 

To compute these objects we introduce the generating functional Z � Z Z � 

Z[J ] = Dϕ exp 
i

d̄4pd̄4q ϕ(q)K(q, p)ϕ(p) + i d̄4p J(p)ϕ(p)
2� Z � 

= √ 
C 

exp 
i

d̄4pd̄4qJ(q)K−1(q, p)J(p) 
det K 2 

In the last line we have completed the square to perform the functional integral. This technique is almost 
identical to what we did for matrices. The factor of C is the product of all the 2π factors which follow 
from the Gaussian integral. 

From last week’s discussion we can immediately write down the formula for computing correlators: � � � � 
1 ∂ ∂ ⟨ϕ(pn) · · · ϕ(p1)⟩ = −i · · · −i Z(J)

Z(0) ∂J(pn) ∂J(p1)X J=0 

= K−1(pa, pb) · · · K−1(pc, pd) 
Wick 

In the frst line we have obligatory factors of −i for each derivative due to our convention to have an i 
in front of J(p) in the integral. In the last line, we sum over all Wick contractions of {p1, p2, . . . , pn}, 
best thought of as indices in parallel with the matrix case. If at any point you get confused about this, 
I suggest rephrasing your question in terms of Gaussian integrals. Note that here I work in momentum 
space, where K−1 is particularly simple, acting without derivatives. This is what is conventionally done 
in QFT. If you insisted I work in position space, the same process goes through, the only diference being 
the form of K−1(y, x) compared to K−1(q, p). To go back to position space, you can also just take the 
Fourier transform of the correlation function with respect to each of the momenta. 

Most important is the 2-point function, for which there is a single Wick contraction to consider. We 
collect all our results: 

−i 
K−1(q, p) = GF (q, p) = ⟨0|Tϕ(q)ϕ(p)|0⟩ = δ(p − q) 

p2 + m2 − iϵZ 
−i ik·(x−y)K−1(x, y) = GF (x, y) = ⟨0|Tϕ(x)ϕ(y)|0⟩ = d̄4k e 

k2 + m2 − iϵ 

That is, the inverse of the kinetic term, the Feynman Green’s function, and the 2-point correlator are all 
identical. We call this object the propagator. 

Example: let us compute the 4-point function of a free scalar theory. We can copy the Wick contractions 
almost verbatim from last week’s example: 

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ + ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ + ⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ 
= K−1(x1, x2)K

−1(x3, x4) + K−1(x1, x3)K
−1(x2, x4) + K−1(x1, x4)K

−1(x2, x3) 

[DRAW DIAGRAMMATICALLY] 

2 Interactions and The Feynman Calculus 

2.1 Adding Interactions 

Everything we have done is for a free theory, where we have only a quadratic term in our feld ϕ. Free 
theories lead to Gaussian path-integrals, which is one of the very few cases where we can perform the 
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path-integral explicitly. We saw this above. Adding interactions will lead to 2 major difculties: 

• More complicated Lagrangians. Generically, an action will have cubic and higher-order terms, such 
as a ϕ4 theory: 

L = −∂µϕ∂µϕ − m 2ϕ2 + λϕ4 

For generic cases like this, we can only compute the path-integral perturbatively, expanding around 
a free theory assuming small λ. The convergence of this series is a tricky business. 

• A diferent vacuum. We denote the vacuum of a free theory by |0⟩, and the interacting theory by 
|Ω⟩. These are diferent states: adding terms to the Lagrangian changes the vacuum. Since free 
theories are exactly solvable, we understand |0⟩ much better than |Ω⟩. Perturbation theory will 
allow us to understand fuctuations about |Ω⟩ in terms of those about |0⟩. 

Now we turn to the evaluation of the correlator of an interacting theory: 

Gn := ⟨Ω|Tϕ(x1) · · · ϕ(xn)|Ω⟩ 

We will do this in perturbation theory, in principle to an arbitrary order. Again the key ingredient will 
be Wick’s theorem. Nothing about what we do is unique to feld theories: the same process holds for 
matrix theories, if we add higher order terms to our Gaussian integrals. 

To do this, we split our action into a free and interaction piece: Z � � 
1 1 

S = S0 + SI , S0 = d4 x − ∂µϕ∂
µϕ − m 2ϕ2 

2 2 

From class, we have the central ‘magic formula’ of Gell-Mann and Low which relates correlators about 
the interaction vacuum to those about the free vacuum: Z 

⟨0|Tϕ(x1) · · · ϕ(xn)eiSI |0⟩ 
Gn = , SI = − dtHI⟨0|TeiSI |0⟩ 

Perturbation theory, then, is the process of expanding the eiSI exponential to a given order and computing 
correlators. By now, you know 2 methods to compute these correlators, which give us 2 ways of doing 
perturbation theory. They amount to doing the same thing, which are Wick contractions. 

1. Hamiltonian framework: using the free-feld expansions of ϕ into creation and annihilation operators 

2. Path-integral framework: view these as correlators of a Gaussian density, and perform the Gaussian 
integrals explicitly. 

This formula contains all the physics, and is something all of you should remember. The rest is just 
combinatorics, and will be handled in the next recitation. 

5 



 

 
 

 

  
  

 

 

  
 

 

MIT OpenCourseWare
https://ocw.mit.edu 

8.323 Relativistic Quantum Field Theory I 
Spring 2023 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

4

https://ocw.mit.edu/terms
https://ocw.mit.edu

	Path Integrals in QFT
	Bridge: to Infinite Degrees of Freedom
	Path-Integrals for Free Theories
	The Distribution
	Correlators


	Interactions and The Feynman Calculus
	Adding Interactions




