
8.323 Problem Set 10 Solutions

April 25, 2023

Question 1: Chiral Symmetry (15 points)
Consider the Dirac action with m = 0. (a) Show that the action is invariant under transformations

ψ → eiαγ
5
ψ

The Dirac conjugate transforms as:

ψ̄′ = ψ†e−iαγ5
γ0 = ψ†γ0eiαγ5 = ψ̄eiαγ5

where we use that {γ5, γµ} = 0. The second equality can be made more epxlicit by expanding the
exponential, anticommuting the γ0 through each term, and resummiong. Therefore, the massless Dirac
Lagrangian transforms as

L′ = −iψ̄′/∂ψ′ = −iψ̄eiαγ5γµeiαγ5
ψ∂µψ = −iψ̄γµe−iαγ5eiαγ

5
ψ∂µψ = −iψ̄ /∂ψ = L

Therefore, the action is invariant.

(b) Construct the Noether current for the above symmetry.
Under an infinitesmial chiral rotation, δψ = iαγ5ψ. Noting from (a) that the Lagrangian is invariant, the
Noether current is thus:

jµ5 =
∂L

∂(∂µψ)
δψ = ψ̄γµγ5ψ

(c) Find how the mass term mψ̄ψ transforms. Is it invariant?
The mass term transforms as:

mψ̄ψ → mψ̄′ψ′ = mψ̄eiαγ5eiαγ5ψ = e2iαγ5mψ̄ψ

Since α is arbitrary, this is not left invariant under the chiral rotation.
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Question 2: Quantizingf the Theory of Majorana Fermions (25 points)
Consider the theory of Majorana fermions discussed in Problem Set 9, written in terms of a 2-component
complex spinor ψL

LL = iψ†
Lσ

µ∂µψL − m

2
(ψT

Lσ
2ψL + ψ†

Lσ
2ψ∗

L)

where ψT denotes the transpose of ψ, and σµ = (1, ~σ).
(a) Write down the equal time canonical quantization relations.
For the Majorana Lagrangian above, the conjugate momentum to ψL is

πL = iψ†
L

Therefore, the canonical anticommutation relations are

{ψLa(t,x), ψLb(t,x
′)} = {ψ†

La(t,x), ψ
†
Lb(t,x

′)} = 0, {ψLa(t,x), ψ
†
Lb(t,x

′)} = δabδ
(3)(x− x′)

(b) Write down the equations of motion. In momentum space a general solution can be written as

ψL(x) = u(p)eip·x + v(p)e−ip·x

Using this notation, write down a complete basis of solutions in the rest frame p = 0.
The equations of motion are given by:

iσµ∂µψL −mσ2ψ∗
L = 0, −i∂µψ†

Lσ
µ −mψT

Lσ
2 = 0

Using the ansatz ψL(x) = u(p)eip·x + v(p)e−ip·x, we obtain the momentum space equation

[−pµσµuL(p)−mσ2v∗L(p)]e
ip·x + [pµσ

µvL(p)−mσ2u∗L(p)]e
−ip·x = 0

Both positive and negative frequency parts must vanish independently, which gives

pµσ
µuL(p) +mσ2v∗L(p) = 0, pµσ

µvL(p)−mσ2u∗L(p) = 0

Note that these are not independent: the first equation implies the second, as

pµσ
µvL = − 1

m
(p · σ)σ2(p · σ)∗u∗L = − 1

m
(p · σ)(p · σ̄)σ2u∗L = −mσ2u∗L

where in the first equality we use the complex conjugate form of pµσµuL(p)+mσ2v∗L(p) = 0, in the second
we use from Problem Set 9 that σ2σ∗σ2 = −σ2, and in the last equality we use that (p · σ)(p · σ̄) = m2.

Thus, without loss of generality, we look for solutions to pµσµuL(p) +mσ2v∗L(p) = 0. In the rest frame,
this becomes

uL(0) = σ2vL(0)
∗ =⇒ vL(0) = −σ2u∗L(0)

This relates vL to uL. We still have the freedom to specify the polarization uL(0). First, consider the
normalized eigenvectors ξ{s∈±} of σ3. That is, σ3ξ± = ±1, and ξ†sξr = δrs. We let this be our solution
space of uL(0), and set:

uLs(0) =
√
mξs, vLs = −

√
mσ2ξs, ξ+ =

(
1
0

)
, ξ− =

(
0
1

)
These are normalized so that u†Lr(0)uLr(0) = mδrs.
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(c) Verify the following expresssions give a complete basis of solutions for general p:

us(p) =
√
−p · σ̄ξs, vs(p) = −

√
−p · σ̄σ2ξs

where ξs, s = ± are respectively eigenvectors of σ3 with eigenvalues ±1.
By the discussion in (b), to check these spinors are solutions of the equations of motion, it is sufficient to
check that p · σuL(p) +mσ2v∗L(p) = 0. We compute:

p · σuL(p) +mσ2v∗L(p) = (p · σ)(−p · σ̄)1/2ξs +mσ2(−
√
−p · σ̄σ2ξs)∗

= −(−p · σ)1/2(−p · σ)1/2(−p · σ̄)1/2ξs +mσ2(
√
−p · σ̄)∗σ2ξs

= −m
√
−p · σξs +m(

√
−p · σ)ξs = 0

In the second line we use p·σ = −(−p·σ)1/2(−p·σ)1/2. In the third line, we use that
√
−p · σ

√
−p · σ̄ = m.

We also use that σ2(
√
−p · σ̄)∗σ2 =

√
−p · σ: this can be showed by expanding the square root as a Taylor

series, and repeatedly applying the identity σ2σ∗σ2 = −σ2 from Problem Set 9.

We show that us(p) give a complete basis of solutions for any p. Solutions only exist on the mass-shell,
so without loss of generality consider any fixed p = (ωp,p). It follows from the discussion in (b) that the
solution space is 2-dimensional. Furthermore,

u†+(p)u−(−p) = ξ+
√
−p · σ̄†

√
−p · σξ− = ξ+

√
−p · σ̄

√
−p · σξ− = mξ+ξ− = 0

Therefore, the u±(p) are always orthogonal. Since neither vanish for any p, they are always linearly
independent, and thus span the solution space for given momentum.

(d) Write down the mode expansion for the quantum operator ψL

The mode expansion is given by

ψL(x) =

∫
d̄3k√
2ωk

(
a
(s)
k uLs(k)e

ik·x + a
†(s)
k vLs(k)e

−ik·x
)

ψ†
L(x) =

∫
d̄3k√
2ωk

(
a
†(s)
k u†Ls(k)e

−ik·x + a
(s)
k v†Ls(k)e

ik·x
)

where the relation between uL(p) and vL(p) is given in part (b).

(e) Define the vacuum and construct the single particle states, with proper normalization. Discuss the
differences between the particles in this theory and those of the Dirac theory.
The vacuum is defined by the state annihilated by all the a(s)k ’s, i.e. a(s)k |0〉 = 0.
The single particle states are defined as usual (with Lorentz invariant inner product):

|k, s〉 =
√
2ωka

†(s)
k |0〉

Note that the theory for Majoranas (as constrasted with the Dirac theory) has only particles with no
antiparticles. Equivalently, each particle is its own antiparticle.
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Question 3: Gaussian Integrals for Grassmann Variables (16 points)
Show the following identities: ∫ N∏

i=1

(dθ∗i dθi)e
−θ∗i Aijθj = detA

∫ N∏
i=1

(dθ∗i dθi)θkθ
∗
l e

−θ∗i Aijθj = (A−1)kl detA

We first expand out the exponential as a Taylor series:

e−θ∗i Aijθj =
∞∑
n=1

(−1)n

n!

n∏
k=1

Aikjkθ
∗
ik
θjk =

∞∑
n=1

1

n!

n∏
k=1

Aikjkθjkθ
∗
ik

Note that any term of order k > N will vanish: there must be at least 2 of some θk, thus the term is
zero because θ2k = 0. Furthermore, any term with k < N vanishes when taking the 2N integrals, because∫
dθ 1 = 0. Therefore only the Nth order term survives:

∫ N∏
i=1

(dθ∗i dθi)e
−θ∗i Aijθj =

1

N !
Ai1j1 · · ·AiN jN

∫ N∏
i=1

(dθ∗i dθi)(θj1θ
∗
i1) · · · (θjN θ

∗
iN
)

=
(−1)N(N−1)/2

N !
Ai1j1 · · ·AiN jN

∫ N∏
i=1

(dθ∗i dθi)(θj1 · · · θjN )(θ
∗
i1 · · · θ

∗
iN
)

=
(−1)N(N−1)/2

N !
Ai1j1 · · ·AiN jN

∫ N∏
i=1

(dθ∗i dθi)εj1···jN εi1···iN (θ1 · · · θN )(θ∗1 · · · θ∗N )

=
1

N !
Ai1j1 · · ·AiN jN εj1···jN εi1···iN

∫
dθ∗NdθN · · · dθ∗1dθ1(θ1θ∗1) · · · (θNθ∗N )

=
1

N !
εi1···iN εj1···jNAi1j1 · · ·AiN jN = detA

In line 2, we have moved all of the θ’s to the left and θ∗’s to the right, picking up a total factor of
(−1)(N−1)+(N−2)+···+1 = (−1)N(N−1)/2. In line 3 we use that θi1 · · · θiN = εi1···iN θ1 · · · θN , and likewise
for the θ∗’s. In line 4 we change the order of the Grassmann variables again, picking up another factor
of (−1)N(N−1)/2 cancelling the factor from before. Note also that it doesn’t matter what order we place
the dθ∗i dθi’s, since pairs of Grassmann variables always commute with each other. In line 5 we do the
Grassmann integrals successively. Finally we recognize the Leibniz formula for the determinant.

To obtain the second equation, we differentiate both sides of the first equation by Alk. On the left hand
side we get ∫ N∏

i=1

(dθ∗i dθi)e
−θ∗i Aijθj (−θ∗l θk) =

∫ N∏
i=1

(dθ∗i dθi)e
−θ∗i Aijθjθkθ

∗
l

On the right-hand side we can Jacobi’s formula, δ detA = detA Tr(A−1δA) = (A−1)kl detA, for δA zero
everywhere except the kl-th entry. Therefore,∫ N∏

i=1

(dθ∗i dθi)e
−θ∗i Aijθjθkθ

∗
l = (A−1)kl detA
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Question 4: Yukawa Theory (24 points)
Consider the Yukawa theory discussed in lecture,

L = −1

2
(∂φ)2 − 1

2
m2φ2 = iψ̄(/∂ −m)ψ = gφψ̄ψ

Denote the propagator of a φ particle by a dashed line, and that of ψ by a solid line (with arrow). We
will call p the particle excitation of ψ, and p̄ the antiparticle excitation of ψ.
(a) Consider the process

p̄+ p̄→ p̄+ p̄

Draw the lowest order Feynman diagrams, and write down the corresponding scattering amplitude.
Take the initial and final states to have momenta and polarizations (p1, s1) (p2, s2) and (p′1, s

′
1) (p

′
2, s

′
2)

respectively.
We identify the Mandelstam variables s = −(p1 + p2)

2, t = −(p1 − p′1)
2, and u = −(p1 − p′2)

2.
There is an t-channel and a u-channel diagram. Using the Feynman rules, the amplitude is:

M = ig2

[
v̄s1(p1)vs′1(p

′
1)v̄s2(p2)vs′2(p

′
2)

(p1 − p′1)
2 +m2

φ − iε
−
v̄s1(p1)vs′2(p

′
2)v̄s2(p2)vs′1(p

′
1)

(p1 − p′2)
2 +m2

φ − iε

]

= −ig2
[
v̄s1(p1)vs′1(p

′
1)v̄s2(p2)vs′2(p

′
2)

t−m2
φ + iε

−
v̄s1(p1)vs′2(p

′
2)v̄s2(p2)vs′1(p

′
1)

u−m2
φ + iε

]

φ

p̄p̄

p̄ p̄

φ

p̄p̄

p̄ p̄

Figure 1: p̄p̄→ p̄p̄ scattering

(b) Consider the process

p+ p̄→ φ+ φ

Draw the lowest order Feynman diagrams, and write down the corresponding scattering amplitude.
Take the initial and final states to have momenta and polarizations (p1, s1) (p2, s2) and p′1, p′2.

There is an t-channel and a u-channel diagram. Using the Feynman rules, the amplitude is:

M = g2

[
v̄s2(p2)(mp + i(/p1 − /p′1))us1(p1)

t−m2
p + iε

+
v̄s2(p2)(mp + i(/p1 − /p′2))us1(p1)

u−m2
p + iε

]

We have made use of the expression for the fermion propagator, − 1

i/k −m+ iε
=

m+ i/k

k2 +m2 − iε
.
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p

φp

p̄ φ

p

φp

p̄ φ

Figure 2: pp̄→ φφ scattering

(c) Consider the process

p+ φ→ p+ φ

Draw the lowest order Feynman diagrams, and write down the corresponding scattering amplitude.
Take the initial and final states to have momenta and polarizations (p1, s1), p2 and (p′1, s

′
1), p′2.

There is an s-channel and a u-channel diagram. Using the Feynman rules, the amplitude is:

M = g2

[
ūs′1(p

′
1)(mp + i(/p1 + /p2))us1(p1)

s−m2
p + iε

+
ūs′1(p

′
1)(mp + i(/p1 − /p′2))us1(p1)

u−m2
p + iε

]

p

φ

p p̄

φ

p

φ

p p̄

φ

Figure 3: pφ→ pφ scattering
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