8.323 Problem Set 8 Solutions

April 11, 2023

Question 1: Proofs of Spinor Identities (21 points)
(a) From the definition

i a\ M i o
O i S(A) = e~ sweo ™"

Prove the identity

Hint: use the identity
(297, 4] = ~(JP7 Y

By the Baker-Campbell-Hausdorff formula we have

eABe A = i %L”(A, B), LA, B) = [A,....[A[A B]..]

n=0 """

n times

We wish to use this with A = —%meW and B = y*. Following the hint, we use the identity
(297, 4#] = —(T# )y

We now compute

LA, B) = L"Y(A,[4,B]) = L'} <A, ;w,,g(ﬂ“)“w”> = L (TP (A A)
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In the last expression the power is taken in Lorentz space, i.e. [(w-J)"*, = (w-T ) a(w-T)% - (w-T) 0.
Substituting this into the BCH formula, we have
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(b) Prove the identity
ST — _,YOS—I,YO

From the definition, we start with

S(A) = exp <;wp,,zpf’T>



Now we use the conjugation of the gamma matrices, and ()% = —1.
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Substituting this in the exponential, we have
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In the third equality we use that ()2 = —1 exactly n — 1 times to pick up a factor of (—1)"~1.

(c) From the Lorentz transformation of v, show that 1) and ¢y transform as a scalar and vector.
We know that under a Lorentz transformation,

Ya(r) = Y (@) = 9o’ (M)hp(A™ ) = S(A)p(A"2)
Using the result from (b), the Dirac conjugate transforms as
P(a) = 1) = 9T (AT 2)S(A) Y0 = T (AT 2) (—1°S(A) 1070 = (A~ z)S(A)
Now we can compute
Pip(w) = PS(A) T S(A) (A z) = Pp(A )
Dyap(a) = pS(A)TIHS(A)Y (A e) = pS(AT S THAT (A 2) = AP, Py (A )

where in the last equality of the second line we use the result from (a). These are the transformation laws
for a scalar and vector.



Question 2: More Spinor Identities (8 points)
Without using any explicit form uf us and vg, show either one of

ul (k)us(k) = 2E6,, vl (K)vs(k) = 2E5,
In other words, show one of the following.

09 () = =, (), 1), ()04 () = o, () (19

The idea is to use the Dirac equation twice, once on u'(k) (or vT(k)), and once on u(k) (or v(k)).
The Dirac equation, in all its forms, is given by

mus (k) = ikus(k), us(k)m = us(k)ik
mvs(k) = —ikvs(k), vs(k)m = —v;(k)if
We thus compute:
01 (0) = — (70 (7Pt () 1) () = 5 (1 (K)o () + 7 ()3 Ko )
= o (k{11 00) = P (s () =~ (s () = 2,
()2 0) = 43 (5130 ) + 2 (070 0)) =+ () (K) = 28,

In the last step of both calculations we use the normalizations

ur(k)us(k) = 2imd,s, or(k)vs(k) = —2imd,s



Question 3: Stress Tensor and Hamiltonian for the Dirac Theory. (21 points)

(a) The Dirac action is translationally invariant. Use the Noether procedure the construct the conserved
currents ©O*”, i.e. the energy-momentum tensor.
The ‘charge’ density O for time translation is the energy density. Show that ©% indeed coincides
with the Hamiltonian density H derived in class, i.e.

0% = H = ith(y'0; — m)yY

We begin with the Lagrangian density £ = —it)(¢ —m)y
The Noether current for a transformation is given by

oL
H = 0Py — FH, oL =0,F"
T 00,040 "
Under an spacetime transformation x# — x* + € the Lagrangian density transforms as 6L = —€"0,L.

The fields transform as 1) = —€"0,1). Putting everything together, we have
' = =iy (=€ 0) + L = € ("D — ipmuu (@ — m)p) = e b (Y — (@ —m))y
We find that j#* = ¢, 0" for the stress-energy tensor
OM = ith (410 — ™ (@ — m))p
In particular, the energy density is

0% = ip(1°0" + (§ — m))y = i (=1 0 + "0 + 7' 0 —m)y = (Y0 —m)p =H
ow that using the Dirac equation, the Hamiltonian can be written as
b) Sh h he D he Hamil b

H=i / Bayton
Express H in terms of the operators aj, af, e cfj.
The Dirac equation tells us that

0=ip(@ —m)y =ip(1°0 +7'0; —m)yy = (0 —m)y = —iy ) = ih O

Therefore,
H= / 320" = / By (V0 —m) =i / dBayt o
Now we substitute the mode expansion:

a3k
Y(x) = \/T—k
In terms of creation and annihilation operators, the Hamiltonian is thus
Pk K o . . 5 o
o [ TTuT(k)e ke Lol (k)et x] (—iky) [af(,us(k')e’k * Ck/Us(k') ik :c}
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H=1i [ dx
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a3k
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In the third equality we integrate over = to get a delta function in k and k’, and subsequently do the
integral over k. In the fourth equality we use the identities u(k)vs(—k) = v/ (k)us(—k) = 0. In the
fifth equality, we use {cj, CIS(T,} = 0,5(27m)36®) (k — k') to move the c-creation operator to the left, and the
normalization u;[(k)us(k) = vi(k)vs(k) = 2k%6,,. In the final equality, we identify

Ny = ailag, Ny = leg, Ey= —/d3k 26 (0)

(c) What is the vacuum energy density? Discuss the differences with that of a scalar.
The vacuum energy Eg is identified in (b). To get the vacuum energy density Eg, we use that 6(0) = i d3x1

and take the integrand:
el = —/dSk Qo = —4/d3k°"2“
We can compare this to a complex scalar field:

el = 2/d3k°"2“

A real scalar field has 2 degrees of freedom per momentum k, each of which is a harmonic oscillator with
negative vacuum energy wy/2. A Dirac field has 4 degrees of freedom per momentum k (u; 2, v1,2), each
of which is a harmonic oscillator with positive vacuum energy —wy /2. In particular, if we have 2 complex
scalars for each Dirac fermion, then the vacuum energy is exactly zero.



Question 4: Angular Momentum Operators (30 points)

The Dirac action is Lorentz invariant.

(a) Write down an infinitesimal Lorentz transformation for .

We consider an infinitesimal Lorentz transformation A#, = §*, — %wpa(j PaVE,
A spinor and its conjugate transform as

Sha(®) = U (x) — Ya(@) = Sa’ (M)hs(A™'2) — Yu(x)
= (5= (2027 (40) + o052 — 5500, 0,0)) = )
S (;(zﬂf’)aﬂ + 559508#) s(a)
() = U (2) — Ya(z) = Pa(A2)(STHA)) 4 — Palx)

= <1Z,B(m) + %wnxi(ﬁﬁ“@ 0 ) g gx”) (5 i 2w (277" > = ¥ale)

— —uplila) (52 + 880007

(b) Use the Noether procedure to construct the conserved charges M*" for with Lorentz transformations,
and show that M can be written in terms of a ‘spin’ part and ‘orbital angular momentum’ part,

MW = SHY 4 LH
Show that the orbital part L*” has the same form as that of a scalar
LM = /de(af“@O” — 27e%)
Where O is the energy-momentum tensor from 3(a). Show that the spin part S#” can be written as
S = — / dPrpt sy
We start with £ = —it)(# — m)v. Under the Lorentz transform in (a), £ transforms as
0L = —i(09(P — m)p + (@ — m)sy)
= iWpo [w (—;Ep" - g”:c") (@ —m)Y + (@ —m) <;EPU + x”8p> @b}
= —Wpe " 0P L + iw e thy” 0P + %wPU@(E’JU@ — PEPT N

_ 1 _
= —wpea 0" L + iwpo )"0 — Swoo(TP7) Ny Ot
= —wpe? 0L = —wpe0° (27 L)
Note that in the third line, the second term comes from the product rule, in particular by @ acting on the

x? of the previous expression. In the fourth line we use that [2f7 v#] = —(JP?)*,~". In the last line we
use the explicit form of (J#?)*,, and that w,, is antisymmetric.



Therefore, the Noether current is:

§P = 8(86§>A) Py — FP = —itpyP 60 + wz, L
D

= (5D i 100 L
= W (—;Www + @Wx”)
where we recall the energy-momentum tensor
O = ip (Y — (@ — m))p = iy + L

We have an independent Noether current for each independent component of w,,,, of which there are 6.
Therefore, we can define j° = —%wWJ PRV for the conserved currents

Jery — %&ng[w}w — @l — @szlww + ZhOPY — P OPH
The Noether charges are
M = / P — / d | = pTSy 4 2O — a7 @] = S 4 L
where we identify
S = — / Bapiery, LY = / Pr(z0% — 27e"%)

Note that S*” and L*" are not separately conserved.

(c) Express the S*” in terms of the operators aj, afj, o cfj.

We need the mode expansion

B a3k
N vV 2wy

The process is straightforwards, very similar to 2(b). We substitute the mode expansion into S*¥, and
expand to get 4 terms. We perform the integral over x to get a 6®) (k — k') or 6 (k + k') for each term,
and perform the k’ integral to set k’ = k for the u/¥*u and vI¥*v terms, and set k' = —k for the
u'Y* v and v'X*y terms. The result is

()
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v d3k T 8 v W rT S v
- / o [t ()2 1) + 2t uf () 20, ()
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(d) From the expression in (c) for S¥, keep only the time-independent part, denoted S%. Define

Show that the one-particle states constructed by acting afj and clsj with k = 0 (i.e. in the rest frame)
on the vacuum are eigenstates of J% with eigenvalues corresponding to that of a spin—% particle.
We note that S# has time-dependent terms. This is fine, since only the combination M*” = S# 4 L*
is expected to be conserved. Thus in the analysis of angular momentum we may throw away these terms.
We further normal order our operator by placing annihilation operators to the right, to get Sk The
spatial components of this tensor are
a3k

59 = [ 5 [l 002 1) — el el 09572,09

Note that the second term picks up a —1 from normal ordering, because the operators are fermionic.

Now we compute the action of J2 = %S” SZ] on the 1-particle state ao \O>

a3k a3k ; ) )
e tT’0> 2 ka 2wy [ r(10X7u ! (k)} [ui’(k/)EUUS’(k )] aljakak/ Ay G, T‘0>
1 ,
=5 f ZZ] T 3. rt
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In the first line, note that any terms containing ¢’s vanish, since the lowering operator anticommutes with
a’ to annihilate the vacuum. In the second line we use that

aylaap agal|0) = 651 (2m)?6@) (K )ayl agap, |0) = 6718 (21)563) ()63 (k — K )ay |0)

In the third line we use that ug(0)u}(0) = i(if +m)lk=0 = m(i + 7%). Further noting that {°,7'} = 0,
we see that this commutes with £ = [y 49]. In the fourth line (and fifth line), we use the identity
ul(k)us(k) = 2F,s. Finally, in the fifth line we also use that

g 1 o 1 . ... S
TR, = _Eh Y, ] = —g(VWJVl’YJ — VYAt

= 5O 20 =3yy) = —2(-9+6-9) =5

1
3 2
Therefore, we see that the one-particle state ao |0> is an eigenstate of J? with eigenvalue s(s +1) = %, as
expected from a spin-1/2 particle.

The calculation is almost identical with the one-particle state CO ]O) one merely replaces a’s with c’s
and u’s with v’s. The one difference is in the third line, where instead we need to use the identity
v5(0)01(0) = i(if — m)|xk—o = m(—i + +°). However, this still commutes with X%, so the same proof
follows through.
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