
8.323 Problem Set 4 Solutions

March 7, 2023

Question 1: Properties of Wightman and Feynman Functions (20 points)
(a) For a free scalar field theory, using

UΛakU
†
Λ =

√
ωΛk

ωk
aΛk, UΛa

†
kU
†
Λ =

√
ωΛk

ωk
a†Λk

show that

UΛφ(x)U †Λ = φ(Λx)

We use the mode expansion for φ(x), and the transformation properties of the ladder operators:

UΛφ(x)U †Λ = UΛ

∫
d̄3k√
2ωk

(
ake
−ik·x + a†ke

ik·x
)
U †Λ, k0 = ωk

=

∫
d̄3k√
2ωk

(√
ωΛk

ωk
aΛke

−ik·x +

√
ωΛk

ωk
a†Λke

ik·x
)

=

∫
d̄3k

2ωk

√
2ωΛk

(
aΛke

−ik·x + a†Λke
ik·x
)

=

∫
d̄3k′

2ω′k

√
2ω′k

(
ak′e

−ik′·Λx + a†k′e
ik′·Λx

)
= φ(Λx)

where in the last line we make the change of variables k′ = Λk (with k′0 = ωk′), and use that the measure
d̄3k/2ωk is Lorentz invariant.

(b) Now in the subsequent parts, let us consider a general interacting theory, where the mode expansion
for φ given in lecture does not apply. But as far as the system is Lorentz and translation invariant,

UΛφ(x)U †Λ = φ(Λx), Uyφ(x)U †y = φ(x+ y)

are valid. Use this to prove that for the Wightman function G+(x.x′) := 〈0|φ(x)φ†(x′)|0〉, we have

G+(x, x′) = G+(x− x′)

Note that the same is true for the advanced, retarded, and Feynman two-point functions.
Using the translation-invariance of the vacuum, we have:

G+(x, x′) = 〈0|φ(x)φ†(x′)|0〉 = 〈0|Uyφ(x)U †yUyφ
†(x′)U †y |0〉

= 〈0|φ(x+ y)φ†(x′ + y)|0〉 = G+(x+ y, x′ + y)

Since y is arbitrary, we can take y = −x′, which gives the desired result:

G+(x, x′) = G+(x− x′, 0) := G+(x− x′)
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(c) Using UΛφ(x)U †Λ = φ(Λx) and the result of (b), show that one can write G+(x, x′) as

G+(x, x′) = θ(t− t′)G((x− x′)2) + θ(t′ − t)G∗((x− x′)2)

where G(y) is some function which satisfies

G(y) = G∗(y), for y > 0

We apply the same method in (b), except using Lorentz transformations instead of translations:

G+(x, x′) = 〈0|φ(x)φ†(x′)|0〉 = 〈0|UΛφ(x)U †ΛUΛφ
†(x′)U †Λ|0〉

= 〈0|φ(Λx)φ†(Λx′)|0〉 = G+(Λ(x− x′))

Therefore, we have G+(x−x′) = G+(Λ(x−x′)), i.e. our 2-point function is Lorentz invariant. For a given
vector vµ, there are 2 independent quantities we can build which are invariant under proper orthochronous
Lorentz transformations: v2 and θ(v0). This follows immediately from definition. Lorentz transformations
are (linear) transformations preserving a norm, and orthochronous restricts to those keeping the sign of v0

fixed. Note that preserving parity gives no additional invariant quantity, as with 3D rotations. Therefore,
we have the decomposition

G+(x, x′) = θ(t− t′)G1((x− x′)2) + θ(t′ − t)G2((x− x′)2)

Note further that G1 and G2 are not independent: complex conjugating this equation and observing
G+(x, x′) = G∗(x′, x), we have G1(y) = G∗2(y). Hence

G+(x, x′) = θ(t− t′)G((x− x′)2) + θ(t′ − t)G∗((x− x′)2)

Finally for y = (x− x′)2 > 0 one has x− x′ spacelike. Therefore, we can use an SO+(3, 1) transformation
to go to a frame where t′ > t, and a frame where t > t′. Since our expression is Lorentz-invariant, this
demands the desired result,

G(y) = G∗(y)

(d) Now take φ to be real, and show that for the Feynman function GF

GF (x, x′) = G((x− x′)2)

where the function G in the above equation is the same as that in part (c).
By definition, for φ real we have

GF (x, x′) = θ(t− t′)〈0|φ(x)φ(x′)|0〉+ θ(t′ − t)〈0|φ(x′)φ(x)|0〉 = θ(t− t′)G+(x, x′) + θ(t′ − t)G+(x′, x)

Now we substitute our result from (c) for G+.

GF (x, x′) = θ(t− t′)
(
θ(t− t′)G((x− x′)2) + θ(t′ − t)G∗((x− x′)2)

)
+ θ(t′ − t)

(
θ(t′ − t)G((x− x′)2) + θ(t− t′)G∗((x− x′)2)

)
= θ(t− t′)G((x− x′)2) + θ(t′ − t)G((x− x′)2) = G((x− x′)2)

where we use that θ(t− t′)θ(t′ − t) = 0, and θ(t− t′) + θ(t′ − t) = 1.
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Question 2: Particle Production by an External Source (60 points)
Consider a free scalar field theory with external ‘source’ J(x), whose Lagrangian density can be written

L = −1

2
∂µφ∂

µφ− 1

2
m2φ2 + J(x)φ = L0 + J(x)φ

where L0 is the Lagrangian density for a free scalar, and J(x) is a fixed function. We assume it has the
properties

J(t,x)→ 0, t→ ±∞, |x| → ∞

and its Fourier transform

J(p) =

∫
d4xe−ip·xJ(x)

is analytic in the complex ω-plane.

Since J(x) depends on time, the system does not have time translation symmetry. In particular, the
vacuum at past infinity |0,−∞〉 will be different from the one at future infinity |0,+∞〉. Suppose we start
with the vacuum state |0,−∞〉 at t = −∞. In the Heisenberg picture, the system remains in the same
state |0,−∞〉 at all times. At t = +∞, the system is then not in the ground state (as |0,−∞〉 6= |0,+∞〉),
and contains particle excitations. In other words, turning on a source J(x) has produced particles. Below
we will find the relation between |0,−∞〉 and |0,+∞〉, and calculate the probability of producing particles.

At t = ∓∞, since J = 0 we have a free theory, and φ can be written

φ(x)→ φin/out(x) :=

∫
d̄3k√
2ωk

(
ain/out(k)eik·x + a†in/out(k)e−ik·x

)
, t→ ∓∞

where

[ain/out(k), a†in/out(k
′)] = (2π)3δ(3)(k− k′)

We then define the past/future vacuum as

ain/out(k)|0,∓∞〉 = 0, 〈0,∓∞|0,∓∞〉 = 1

Particles (at past/future infinity) can be defined by acting a†in/out on this vacuum. For example, and

n-particle state at past/future infinity can be written as

|k1, . . . ,kn,∓∞〉 =

n∏
i=1

√
2ωki

a†in/out(ki)|0,∓∞〉

with the normalization for a single particle state

〈k,∓∞|k′,∓∞〉 = 2ωk(2π)3δ(3)(k− k′)

Due to the presence of the external source J(x), the past and future annihilation operators ain and aout

are different. The field φ(t,x) with −∞ < t <∞ interpolates between φin and φout.
(a) For general t, solve the classical equation of motion for this Lagrangian, and show that the solution

can be written in a form

φ(x) = φ0(x) + i

∫
d4x′G(x− x′)J(x′) (1)
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where φ0(x) is a solution of the homogeneous equation

(−∂2 +m2)φ0(x) = 0

and G(x− x′) is a Green function satisfying

(−∂2 +m2)G(x− x′) = −iδ(4)(x− x′)

We discussed various types of Greens functions. Which one should be used here?
The Euler-Lagrange equations pick up an extra term due from J(x)φ in the Lagrangian, and the equation
of motion is given by

(∂2 −m2)φ = −J

We substitute the form for φ(x) given above into the left-hand side of equation of motion, and show it
reproduces the source term.

(∂2 −m2)φ = (∂2 −m2)φ0(x) + (∂2 −m2)i

∫
d4x′G(x− x′)J(x′)

= −i
∫
d4x′(−∂2

x +m2)G(x− x′)J(x′)

= −i
∫
d4x′(−i)δ(4)(x− x′)J(x′) = −J(x)

In the second line we use that φ0 solves the homogeneous equation of motion. In the 3rd line we use
the defining property of the Greens function as satisfying the inhomogeneous equation of motion with
δ-source.

Here we should use the retarded Green’s function, as causality requires that the field φ(t,x) at time t can
only be influenced by the source at times t′ < t.

(b) Now consider the quantum theory, and promote φ to a quantum operator, with (1) now an operator
equation. Show that φ0 in this equation should be given by φin.

We evaluate (1) as we take t → −∞, with G = GR the retarded Green’s function. In this regime,
θ(t− t′) = 0 for all t′ on which J(x) has support. Hence, GR(x− x′) ∝ θ(t− t′) also vanishes for these t′.
We thus compute

φ(x)|t→−∞ = φ0(x) + i

∫
d4x′G(x− x′)J(x′) = φ0(x)

Finally, we know φ(x)|t→−∞ = φin(x). Combining these equations we have φ0(x) = φin(x), as desired.
Note that this equation only makes sense for t→ −∞, since this is the domain of φin(x).

(c) Evaluate (1) at t = +∞ to find the relation between aout(k) and ain(k).
Recall from class that the retarded Green’s function is

GR(x− x′) = θ(t− t′)
∫

d̄3k

2ωk

(
eik·(x−x

′) − e−ik·(x−x′)
)

For t → +∞, for all points in the support of J(t′,x′) we have θ(t− t′) = 1. Using this and the result of
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(b), we compute

φout(x) = φ(x)|t→∞(x) = φin(x) + i

∫
d4x′G(x− x′)J(x′)

= φin(x) + i

∫
d4x′

∫
d̄3k

2ωk

(
eik·(x−x

′) − e−ik·(x−x′)
)
J(x′)

=

∫
d̄3k√
2ωk

(
ain(k)eik·x + a†in(k)e−ik·x

)
+ i

∫
d̄3k

2ωk

(
eik·xJ(k)− e−ik·xJ(−k)

)
=

∫
d̄3k√
2ωk

[(
ain(k) + i

J(k)√
2ωk

)
eik·x +

(
a†in(k)− iJ

∗(k)√
2ωk

)
e−ik·x

]
Note that the 4-momenta are implicitly evaluated at k = (ωk,k), which is what we mean when we write
J(k) = J(k). In the last line, we also use that J(x) is real for a real scalar, so its Fourier transform
satisfies J(−k) = J∗(k).

Finally, we can compare this to the mode expansion

φout(x) :=

∫
d̄3k√
2ωk

(
aout(k)eik·x + a†out(k)e−ik·x

)
to relate the incoming and outgoing ladder operators,

aout = ain(k) + i
J(k)√

2ωk
, a†out = a†in(k)− iJ

∗(k)√
2ωk

(d) Using (c), show that the expectation value λ for the total number of particles produced is given by

λ =

∫
d̄3k

2ωk
|J(k)|2

The expectation value for the total number of particles produced is given by taking the expectation of
the outgoing number operator with respect to our state. In the Heisenberg picture our state is constant,
and is just |0,−∞〉. Therefore,

λ = 〈0,−∞|
∫
d̄3ka†out(k)aout(k)|0,−∞〉

=

∫
d̄3k〈0,−∞|

(
a†in(k)− iJ

∗(k)√
2ωk

)(
ain(k) + i

J(k)√
2ωk

)
|0,−∞〉

=

∫
d̄3k

J∗(k)√
2ωk

J(k)√
2ωk
〈0,−∞|0,−∞〉 =

∫
d̄3k

2ωk
|J(k)|2

(e) Show that we can write

aout(k) = S†ain(k)S

with S a unitary operator given by

S = eiB, B =

∫
d4xJ(x)φin(x)

We compute this using Baker-Campbell-Hausdorff:

S†ain(k)S = e−iBain(k)eiB = ain(k)− i[B, ain(k)]− 1

2
[B, [B, ain(k)]] + · · ·
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This series terminates after the second term, since [B, ain(k)] is a c-number:

[B, ain(k)] =

∫
d4xJ(x)[φin(x), ain(k)] =

∫
d4xJ(x)

∫
d̄3k′√
2ωk

[a†in(k′), ain(k)]e−ik
′·x

= − 1√
2ωk

∫
d4xJ(x)e−ik·x = − 1√

2ωk
J(k)

Therefore,

S†ain(k)S = ain(k) +
i√
2ωk

J(k) = aout(k)

(f) Use the result in part (e) to show that

S|0,+∞〉 = |0,−∞〉, S|k1, . . . ,kn,+∞〉 = |k1, . . . ,kn,−∞〉

This indicates that S is in fact the S-matrix operator of the system, i.e. for free theory states |α〉, |β〉

Sβα := 〈β,+∞|α,−∞〉 = 〈β,−∞|S|α,−∞〉

To show that the state S|0,+∞〉 is the incoming vacuum, we need to show that it is annihilated by all
ain(k), and has the correct normalization. We compute

ain(k)S|0,+∞〉 = SS†ain(k)S|0,+∞〉 = Saout(k)|0,+∞〉 = 0

Furthermore, S defined in part (e) is unitary (as both J and φ are real), so

〈0,+∞|S†S|0,+∞〉 = 〈0,+∞|0,+∞〉 = 1

Therefore S|0,+∞〉 can only differ from |0,−∞ by a phase, which we can absorb into our definition of S.
We have shown S|0,+∞〉 = |0,−∞〉.

Now we show the desired equality for n-particle states:

S|k1, . . . ,kn,+∞〉 =
√

2ωk1 · · ·
√

2ωknSa
†
out(k1) · · · a†out(kn)|0,+∞〉

=
√

2ωk1 · · ·
√

2ωknSS
†a†in(k1)S · · ·S†a†in(kn)S|0,+∞〉

=
√

2ωk1 · · ·
√

2ωkna
†
in(k1) · · · a†in(kn)|0,−∞〉

= |k1, . . . ,kn,−∞〉

In the 3rd line we use both S|0,+∞〉 = |0,−∞〉 and the result in (e).

(g) In the following parts we will compute the probability of computing n particles. Before doing that,
in this part we develop a technical tool to make that task easier. Show that we can write S as

S = eiB = eF eGe−λ/2

with λ as in (d), and

F = i

∫
d̄3k√
2ωk

J(k)a†in(k), G = i

∫
d̄3k√
2ωk

J(−k)ain(k)

Again we use the Baker-Campbell-Hausdorff formula, which in one of its forms states that

eF eG = exp

(
F +G+

1

2
[F,G] +

1

12
[F, [F,G]]− 1

12
[G, [F,G]] + · · ·

)
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We first compute the commutator of F and G:

[F,G] = −
∫

d̄3k√
2ωk

d̄3k′√
2ωk′

J(k)J(−k′)[a†in(k), ain(k′)]

=

∫
d̄3k

2ωk
J(k)J(−k) =

∫
d̄3k

2ωk
|J(k)|2 = λ

In the last line we use that J(x) is real, so J(−k) = J∗(k). This is a c-number, so all further commutators
with operators vanish. The Baker-Campbell-Hausdorff formula reduces to

eF eG = eF+G+λ/2 ⇒ eF eGe−λ/2 = eF+G

It remains to compute the right-hand side. We have

F +G = i

∫
d̄3k√
2ωk

(
J(k)a†in(k) + J(−k)ain(k)

)
= i

∫
d4xJ(x)

∫
d̄3k√
2ωk

(
e−ik·xa†in(k) + eik·xain(k)

)
= i

∫
d4xJ(x)φin(x) = iB

Putting everything together, we have the desired result,

eF eGe−λ/2 = eiB = S

(h) Use the results of (f) and (g) to find the vacuum to vacuum probability,

P0 = |〈0,+∞|0,−∞〉|2

P0 is the probability of no particle production.
We compute

P0 = |〈0,+∞|0,−∞〉|2 = |〈0,−∞|(S†)†|0,−∞〉|2 = e−λ|〈0,−∞|eF eG|0,−∞〉|2

Note that G is a linear combination of ain’s, so eG|0,−∞〉 = e0|0,−∞〉 = |∞〉. Similarly, F is a linear

combination of a†in’s, so 〈0,−∞|eF = 〈0,−∞|. We thus find

P0 = e−λ|〈0,−∞|0,−∞〉|2 = e−λ

(i) Use the results of (f) and (g) to show that

〈k1, . . . ,kn,+∞|0,−∞〉 = inJ(k1) · · · J(kn)e−λ/2

We compute:

〈k1, . . . ,kn,+∞|0,−∞〉 = 〈k1, . . . ,kn,−∞|S|0,−∞〉 = e−λ/2〈k1, . . . ,kn,−∞|eF eG|0,−∞〉
= e−λ/2

√
2ωk1 · · ·

√
2ωkn〈0,−∞|ain(k1) · · · ain(kn)eF |0,−∞〉

=
e−λ/2

n!

√
2ωk1 · · ·

√
2ωkn〈0,−∞|ain(k1) · · · ain(kn)Fn|0,−∞〉

In line 1, we use from (f) that S|k1, . . . ,kn,+∞〉 = |k1, . . . ,kn,−∞〉, and the decomposition of S in (g).
In line 2, we use from (b) that eG|0,−∞〉 = |∞〉. In line 3, we Taylor expand eF explicitly, and keep only
the term Fn, as all other terms vanish (a term vanishes unless the number of creation operators equals
the number of annihilation operators).
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To finish the computation, we note that

ain(kn)Fn = Fnain(kn) + [ain(kn), Fn]

= Fnain(kn) + in
∫

d̄3k′1√
2ωk′1

· · · d̄
3k′n√
2ωk′n

J(k′1) · · · J(k′n)[ain(kn), ain(k′1) · · · ain(k′n)]

= Fnain(kn) + n
iJ(kn)√

2ωkn

Fn−1

acting both sides on the state |0,−∞〉, the first term on the right vanishes. We can use this result to
simplify our previous equation:

〈k1, . . . ,kn,+∞|0,−∞〉 =
e−λ/2

n!

√
2ωk1 · · ·

√
2ωkn〈0,−∞|ain(k1) · · · ain(kn)Fn|0,−∞〉

=
e−λ/2

(n− 1)!

√
2ωk1 · · ·

√
2ωkn−1iJ(kn)〈0,−∞|ain(k1) · · · ain(kn−1)Fn−1|0,−∞〉

By iterating this step n times in total, we obtain the desired result,

〈k1, . . . ,kn,+∞|0,−∞〉 = inJ(k1) · · · J(kn)e−λ/2〈0,−∞|0,−∞〉
= inJ(k1) · · · J(kn)e−λ/2

(j) The probability dP of finding exactly n particles, with one particle each in the ranges d3ki around ki,
1 ≤ i ≤ n, can be shown to be

dP = |〈k1, . . . ,kn,+∞|0,−∞〉|2
n∏
i=1

d̄3ki
2ωki

Use this formula to show that the probability of finding exactly n particles is

Pn = e−λ
λn

n!

This is a Poisson distribution with average particle number λ.
We compute

Pn =
1

n!

∫ n∏
i=1

d̄3ki
2ωki

|〈k1, . . . ,kn,+∞|0,−∞〉|2 =
1

n!

∫ n∏
i=1

d̄3ki
2ωki

|J(k1) · · · J(kn)|2e−λ

=
1

n!
e−λ

(∫
d̄3k

2ωk
|J(k)|2

)n
= e−λ

λn

n!

Note that the integration over phase space contains a factor of 1/n! to avoid overcounting identical
particles. In the second equality we use the result from (i).
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