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Lecture 21 (Nov. 22, 2017)

21.1 SO(3) versus SU(2)

As we saw, if we study only the representations of SO(3), we will only find representations with
integer spin. However, by considering the Lie algebra so(3) ∼= su(2), we found representations
with half-integer spin. These should properly be considered as representations of SU(2), which is
a double cover of SO(3), but has the same Lie algebra. Linear representations of SU(2) include
both integer and half-integer spins, while linear representations of SO(3) include only integer spins.
As representations of SO(3), the half-integer spin representations are what are called projective
representations, meaning that they satisfy the group structure only up to a phase:

D(R1)D(R2) = eiξ(R1,R2)D(R1R2) . (21.1)

The elements of SU(2) are in two-to-one correspondence with the elements of SU(3), which
is why we say that SU(2) is a double cover of SO(3). The two SU(2) matrices U and −U both
correspond to the same SO(3) matrix R. This can be seen directly from the expression

1
Rij = tr σjU

†σiU , (21.2)
2

which expresses a 3× 3 rotation matrix R in terms

(
of a 2

)
× 2 unitary matrix U . On the homework,

you will prove that R defined in this way is a proper rotation matrix.

21.2 Addition of Angular Momentum

Given two systems 1 and 2, with angular momenta j1 and j2, respectively, what are the possible
total angular momenta for the combined system? We first must choose a basis for the combined
Hilbert space H1 ⊗H2. We will choose the basis

|j1,m1; j2,m2〉 = |j1.m1〉 ⊗ |j2,m2〉 . (21.3)

We know how to write down operators on this tensor product Hilbert space. For example, the
total angular momentum is

J = J1 + J2 := J1 ⊗ 12 + 11 ⊗ J2 , (21.4)

where the rightmost expression makes the meaning completely clear, and the middle expression is
a convenient shorthand that suppresses the products with the identity. Note that this combined
operator satisfies the angular momentum commutation algebra, [Ji, Jj ] = iεijkJk. (If we took the
difference of two angular momenta, rather than the sum, then the result would not satisfy the
angular momentum commutation algebra.) Note also that

J i j
1, J2 = 0 , (21.5)

because the spin operators on one subsystem

[
act

]
trivially on the other subsystem.

We have
J2 = J2

1 + J2
2 + 2J1 · J2 , (21.6)

from which we see that [
J2,Ja,z

]
6= 0 , (21.7)
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where a = 1, 2. Thus, we see that the eigenvalue of J2 is not a good quantum number in the basis
we have chosen, in the sense that the basis we have chosen is not an eigenbasis of J2.

However, because J satisfies the angular momentum commutation algebra, we know that J2

and Jz can be simultaneously diagonalized. What are the allowed eigenvalues of J2, Jz , given J1

and J2? As an example, if we consider two spin-1

( )
systems, there are four states in the combined2

Hilbert space, which can be written in the form

1|j1 =
2
,m1, j2 =

1
,m2〉 =

2
|++〉, |+−〉, |−+〉, |−−〉 . (21.8)

Clearly,
Jz|++〉 = |++〉 , (21.9)

which implies that m = +1 for |++〉. Similarly, we find m = −1 for |−−〉, and m = 0 for both
|+−〉 and |−+〉. These organize into a singlet j = 0,

1√ (
2
|+−〉 − |−+〉) , (21.10)

and a triplet j = 1,
|++〉 ,

1√ (
2
|+−〉+ |−+〉) , (21.11)

|−−〉 .

In general, we want to know what the coefficients are for the change of basis from |j1,m1; j2,m2〉
to the new basis |j,m; j1, j2〉, i.e., the coefficients

〈j1,m1; j2,m2|j,m; j1, j2〉 . (21.12)

These are known as Clebsch–Gordon coefficients. We now discuss some general properties of
Clebsch–Gordon coefficients:

1. The Clebsch–Gordon coefficients are zero unless m = m1 +m2. To see this, note that

Jz − J1,z − J2,z = 0 (21.13)

as an operator. In particular,

(Jz − J1,z − J2,z)|j,m; j1, j2〉 = 0 . (21.14)

Then,
〈j1,m1; j2,m2|(Jz − J1,z − J2,z)|j,m; j1, j2〉 = 0 . (21.15)

Acting with Jz to the right and with Ji,z to the left, this gives us

(m−m1 −m2)〈j1,m1; j2,m2|j,m; j1, j2〉 = 0 . (21.16)

Thus, the Clebsch–Gordon coefficient must vanish unless m = m1 +m2.

2. The Clebsch–Gordon coefficients vanish unless |j1− j2| ≤ j ≤ j1 + j2. As a consistency check,
we can see that this condition gives the correct number of states. In the basis |j1,m1; j2.m2〉,
we can see that the total number of states is

(2j1 + 1)(2j2 + 1) , (21.17)
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because subsystem i has 2ji + 1 possible states. We can similarly count the number of states
in the basis |j,m; j1, j2〉, assuming that |j1 − j2| ≤ j ≤ j1 + j2. For each j, there are 2j + 1
states, and j runs between |j1− j2| and j1 + j2. We further assume that every j in this range
occurs, but with two successive j values differing by 1 and not by 1 . This gives the total2
number of states as

j∑1+j2

(2j + 1) = (2j1 + 1)(2j2 + 1) , (21.18)
j=j1−j2

where we have assumed j1 ≥ j2, without loss of generality.

3. If j 1
1 and j2 are both half-integer (by which we mean an integer plus ) or both integer, then2

j is integer. To see this, note that under a 2π rotation, both subsystems will acquire the
same phase (−1 if they are both half-integer, or +1 if they are both integer), and so the total
system acquires no phase. Thus, the combined system has integer angular momentum.

Using the same type of argument, we see that the converse is also true: if only one of (j1, j2)
is half-integer, then j is half-integer.

21.3 Discrete Symmetries

We now move on to discuss parity (a.k.a. inversion). Let Π be the operator that implements the
parity transformation. By this, we mean that

|α〉 → Π|α〉 := |αΠ〉 (21.19)

under the parity transformation x→ −x. We require that

〈αΠ|x|αΠ〉 = −〈α|x|β〉 , (21.20)

which implies that
Π†xΠ = −x . (21.21)

In other words,
{x,Π} = 0 , (21.22)

where {·, ·} is the anticommutator.
Two successive inversions do nothing, i.e., Π2 = 1. This implies that the eigenvalues of Π are

±1. States with eigenvalue +1 are called even under parity, and states with eigenvalue −1 are
called odd. Operators that are odd under parity must anticommute with Π. For example, p is odd,
as p→ −p under parity, so

{p,Π} = 0 . (21.23)

What about angular momentum? For a general rotation (not necessarily a proper rotation),

ΠR(θ, n̂) = R(θ, n̂)Π . (21.24)

That is, parity and rotation commute with one another. This implies that [Π,J ] = 0. In general,
J = L + S. We can see that L = x × p is even under parity, because x and p are each odd.
Because J and L are both even under parity, we conclude that S must also be even under parity.
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