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Lecture 22 (Nov. 27, 2017)

22.1 Parity

22.1.1 Some Standard Terminology

When we refer to a scalar, we mean an observable that is invariant under rotations and even under
parity. Examples include x2 and p2. There is a different type of object, called a pseudoscalar, that
is invariant under rotations, but odd under parity. An example of a pseudoscalar is the product
S · x; this is invariant under rotations, but odd under parity because S is parity even and x is
parity odd.

A vector is an object that transforms as a vector under rotations and is odd under parity.
Examples are x and p. A pseudovector is an object that transforms as a vector under rotations,
but is even under parity. Examples of pseudovectors are L, S, and J .

22.1.2 Wavefunctions Under Parity

Eigenstates of parity satisfy
Π|ψ〉 = ±|ψ〉 , (22.1)

as we know that Π has eigenvalues ±1 only. If we take the matrix element with a position ket, then
we find

〈x|Π|ψ〉 = ±〈x|ψ〉 = ±ψ(x) . (22.2)

On the other hand, we can have the parity operator act on the position ket, giving

〈x|Π|ψ〉 = 〈−x|ψ〉 = ψ(−x) . (22.3)

Thus, wavefunctions of parity eigenstates satisfy

ψ(−x) = ±ψ(x) . (22.4)

We refer to such wavefunctions as even (+) or odd (−).

22.1.3 Momentum and Angular Momentum

As we have seen, [p,Π] 6= 0. Thus, we cannot simultaneously diagonalize the momentum and parity
operators, i.e., momentum eigenstates are not, in general, parity eigenstates.

As an example, consider the free particle

p2
H = . (22.5)

2m

The energy eigenstates
1√ ~eipx/ (22.6)
2π~

are not parity eigenstates. However, [Π, H] = 0, which means that we can choose energy eigenstates
that are also parity eigenstates in this case. Because the two states

1|±p〉 = √
2π~

e±ipx/~ (22.7)
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are degenerate, we can choose

|±p〉 =
|p〉 ± |−p〉√ (22.8)

2

as energy eigenstates. These are energy and parity eigenstates, but are not momentum eigenstates.
By contrast, [L,Π] = 0, so we can simultaneously diagonalize both orbital angular momentum

and parity. Under a parity operation, the spherical angles (θ, φ) are sent to

(θ, φ)→ (π − θ, φ+ π) . (22.9)

This tells us that states with a definite angular position transform as

Π|θ, φ〉 = |π − θ, φ+ π〉 . (22.10)

We can write the orbital angular momentum eigenstates |`,m〉 in terms of these states using the
matrix elements

〈θ, φ|`,m〉 := Y`,m(θ, φ) , (22.11)

which are known as spherical harmonics.
The spherical harmonic Y0,0 is a constant, meaning that

Π|` = 0,m = 0〉 = |` = 0,m = 0〉 . (22.12)

The ` = 1 states transform together as a vector, i.e., as linear combinations of x, y, z. In particular,
the ` = 1,m = +1 state transforms like x+ iy; the ` = 1,m = −1 states transforms like x− iy; and
the ` = 1,m = 0 state transforms like z. Because vectors are odd under parity, this tells us that

Π|` = 1,m〉 = −|` = 1,m〉 , (22.13)

or equivalently,
Y`,m(π − θ, φ+ π) = −Y`,m(θ, φ) . (22.14)

In general, Y`,m has parity (−1)`.

22.1.4 Selection Rules

Let O be an operator with definite parity, i.e.

ΠOΠ = λO , (22.15)

with λ = ±1. Consider the matrix elements 〈ψ|O|ψ′〉 of this operator with two parity eigenstates
|ψ〉 and |ψ′〉, such that

Π|ψ〉 = s|ψ〉 , Π|ψ′〉 = s′|ψ′〉 , (22.16)

with s, s′ = ±1. We then have
〈ψ|O|ψ′〉 = 〈ψ|ΠΠOΠΠ|ψ′〉

(22.17)
= λss′〈ψ|O|ψ′〉 ,

where in the first step we have used Π2 = 1. This implies that 〈ψ|O|ψ′〉 = 0 unless λss′ = 1. Thus,
if O is even under parity (λ = +1), then |ψ〉 and |ψ′〉 must have the same parity for the matrix
element to be nonzero; similarly, if O is odd under parity (λ = −1), then |ψ〉 and |ψ′〉 must have
opposite parity for the matrix element to be nonzero. This is a selection rule.

For example, 〈ψ|x|ψ′〉 6= 0 only when |ψ〉 and |ψ′〉 have opposite parity. As a corollary, we see
that the expectation value of x in any parity eigenstate must be zero.
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22.2 Time Reversal

Classical physics is time-reversal invariant: Newton’s law

mẍ = −∇V (x) (22.18)

is invariant under t→ −t,x→ x. Thus, if x(t) is a valid solution to Newton’s equation, then so is
x(−t).

Consider now the Schrödinger equation,

∂ψ
i~
∂t

=

(
− ~2 2 + V (x) ψ(x, t) . (22.19)

2m
∇

)
If we let t→ −t, we see that we can get a solution if we take

ψ(x, t)→ ψ∗(x,−t) (22.20)

for some solution ψ(x, t). This suggests that we should take the time reversal operator Θ to be
anti-unitary. (Recall that an anti-unitary operator A can be written in the form A = KU , where
K is complex conjugation and U is some unitary operator.) Thus, we have

θ(a|α〉+ b|β〉) = a∗θ|α〉+ b∗θ|β〉 (22.21)

for any a, b ∈ C and |α〉, |β〉 ∈ H.
We now consider combinations of time reversal and time translation operations. Assuming that

time reversal is a symmetry, we require that

|ψ(−δt)〉 = θ|ψ(δt)〉 , |ψ(0)〉 = θ|ψ(0)〉 . (22.22)

By using forward and backward time translations from t = 0, we see that

iH|ψ(−δt)〉 =

(
1 +

~
δt

)
|ψ(0)〉 ,

|ψ(δt)〉 =

(
1− iH

(22.23)

δt
~

)
|ψ(0)〉 ,

so the statements |ψ(−δt)〉 = θ|ψ(δt)〉 and |ψ(0)〉 = θ|ψ(0)〉 imply that

iHθ|ψ(0)〉 = θ(−iH)|ψ(0)〉 . (22.24)

Thus, we have
iHθ = θ(−iH) (22.25)

as an operator equation. Because θ is anti-unitary, this tells us that [H, θ] = 0, exactly as expected
of a symmetry of the Hamiltonian.

As usual, operators transform under time reversal as O → θOθ−1. An operator O is even/odd
under time reversal if

θOθ−1 = ±O . (22.26)

We require that
θxθ−1 = x , θpθ−1 = −p . (22.27)

There are two ways to see that p must be odd under time reversal: first, we could consider the
position space representation p→ −i~∇, and use that fact that θ is anti-unitary; alternatively, we
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can use the fact that time reversal should preserve the commutation algebra [xi, pj ] = i~δij , which
requires that p be odd because x is even and the right-hand side contains a factor of i.

Similarly, in order to preserve the commutation algebra [Ji, Jj ] = i~εijkJk, we need

θJθ−1 = −J , (22.28)

meaning that L → −L and S → −S under parity. Note that L2 → L2, so this tells us that
θ|`,m〉 ∝ |`,−m〉. In particular,

θ|`,m〉 = (−1)m|`,−m〉 . (22.29)

Here, the phase factor (−1)m is a convention choice built into the definition of the spherical har-
monics,

Y`,m
∗ (θ, φ) = (−1)mY`,−m(θ, φ) . (22.30)

22.2.1 Time Reversal and Spin

We find interesting outcomes when acting on spin-1 systems (or systems with other half-integer2
spin) with time reversal. The statement

θJzθ
−1 = −Jz (22.31)

implies for a spin-12 particle that

Jzθ|+〉 = −θJz|+〉 = −~
θ

2
|+〉 . (22.32)

Thus, we see that θ|+〉 ∝ |−〉. In general, there can be some phase η, so that

θ|+〉 = η|−〉 . (22.33)

We can write this equation in the form

θ|+〉 = ηe−iπSy/~|+〉 . (22.34)

We could have similarly chosen Sx instead of Sy, or indeed any spin operator in the x, y-plane.
Based on this statement, we write

θ = ηe−iπSy/~K , (22.35)

where we have included K because θ is anti-unitary. We then have

θ|−〉 = ηe−iπSy/~K|−〉 = −η|+〉 . (22.36)

From this, we see that

θ2|+〉 = θ(η|−〉) = η∗θ|−〉 = −|η|2|+〉 = −|+〉 , (22.37)

where we have used the fact that |θ|2 = 1 because θ is purely a phase. Similarly, θ2|−〉 = −|−〉.
This means that

θ2 = −1 (22.38)

holds as an operator equation for a spin-1 system. This is true for any system with half-integer2
spin. There is a standard phase choice for spin-12 , which is to take η = i, which gives

θ = ie−iπSy/~K . (22.39)
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