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Lecture 23 (Nov. 29, 2017)

23.1 Consequences of Time Reversal Symmetry

23.1.1 Spinless Particles

Theorem 5. Consider a system of spinless particles. Suppose that H is time-reversal invariant,
and that there exists a non-degenerate energy eigenket |n〉. The corresponding energy eigenfunction
can be chosen to be real.

Proof. Because |n〉 is an energy eigenket, we have

H|n〉 = En|n〉 . (23.1)

Because time reversal is a symmetry, we then have

H(θ|n〉) = θH|n〉 = En(θ|n〉) , (23.2)

which implies
|n〉 = ηθ|n〉 (23.3)

for some phase η, because |n〉 is non-degenerate. The corresponding wavefunction is then

ψn(x) = 〈x|n〉 = η〈x|θ|n〉 = ηψn
∗(x) . (23.4)

˜We can then make the redefinition ψ 1
n(x) = η− /2ψn(x) in order to get a real wavefunction. This

completes the proof.

23.1.2 No Conservation Law

There is no conservation law associated with time reversal. Even though [θ,H] = 0, there is no con-
cept of a time reversal quantum number. Despite the fact that θ commutes with the Hamiltonian,
we find that

θU(t, t0) 6= U(t, t0)θ , (23.5)

where U(t, t0) is the time-evolution operator. For example, suppose that we consider an energy
eigenstate,

H|ψ〉 = E|ψ〉 . (23.6)

Then,
|ψ(t)〉 = e−iEt/~|ψ(0)〉 , (23.7)

while
θ|ψ(t)〉 = eiEt/~|ψ(0)〉 =6 |ψ(t)〉 . (23.8)

Thus, θ|ψ〉 = |ψ〉 is not preserved under time evolution.

23.1.3 Kramer’s Rule for Half-Integer Spin

Theorem 6 (Kramer’s Rule). Time-reversal symmetry implies a two-fold degeneracy all energy
eigenstates.
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Proof. Suppose we have an energy eigenket |n〉,

H|n〉 = En|n〉 . (23.9)

If time-reversal is a symmetry, then θ|n〉 has the same energy En. Suppose that

θ|n〉 = eiδ|n〉 . (23.10)

Then,

θ2|n〉 = θ

= e−

(
eiδ|n〉
iδθ

)
|n〉 (23.11)

= e−iδeiδ|n〉
= |n〉 .

However, for half-integer spin, we have seen that θ2 = −1, so this is a contradiction. Thus, θ|n〉
must be a distinct state from |n〉. Thus, we get a two-fold degeneracy for all energy eigenstates.
There may be additional degeneracy, but all states will come in pairs in this way.

23.2 Uses of Symmetry in Solving the Schrödinger Equation

23.2.1 Symmetric Double-Well Potential

Consider some symmetric double-well potential V (x) and Hamiltonian

p2

H = + V (x) . (23.12)
2m

By definition, we have V (x) = V (−x), because the potential is symmetric.
This Hamiltonian is invariant under both Π and θ. The eigenfunctions can thus be chosen to be

real (from time-reversal invariance) and either even or odd under x→ −x (from parity invariance).
We can argue that the ground state ψ0(x) must be symmetric under x → −x (specifically, it has
no nodes); furthermore, it is physically apparent that the ground state should be peaked near the
bottom of each well. To see the first point, imagine that the ground state were antisymmetric; in
this case, we must have ψ(0) = 0. The squared slope of the wavefunction gives the contribution to
the kinetic energy. We can then cut the ground state apart at x = 0, negate one side, and then
glue the halves back together to give a symmetric function (with a small amount of smoothing at
the origin to make the new wavefunction continuously differentiable). The resulting wavefunction
has the same potential energy as the supposed ground state wavefunction, but has a smaller slope
at the origin, meaning it has lower energy than the ground state, which is a contradiction. Using
this approach repeatedly, we can argue that the ground state has no nodes.

What can we say about the first excited state ψ1(x)? Note that if we try to construct another
wavefunction with zero nodes, it will not be orthogonal to the ground state. The next-lowest energy
state will have the fewest nodes possible, from the argument above, and so we thus expect the first
excited state to be antisymmetric with a single node.

Classically, a particle moving in such a potential will oscillate around the bottom of one of the
two wells; it must choose a particular well to reside in. This is a classical example of what is called
a spontaneously broken symmetry.
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23.2.2 3D Particle in a Spherically Symmetric Potential

Consider a 3D Hamiltonian
~2

H = − r
2
∇2 + V ( ) . (23.13)

m
The spin decouples from the orbital angular momentum, and so we will ignore spin for now. We
see that [L, H] = 0, because [J , H] = 0 and [S, H] = 0. We can then choose the energy eigenstates
to be eigenstates of L2 and Lz. We then label the energy eigenstates by |n, `,m〉, where ` and m
specify the eigenvalues of L2 and Lz, respectively. The wavefunction can then be written in the
form

ψn,`,m(x) = 〈x|n, `,m〉 = Rn,`(r)Y`,m(θ, φ) . (23.14)

That is, the radial and angular parts of the wavefunction factorize. We will see the details of this
in a moment.

In polar coordinates, we can write

−∇2 1
= −

r2

∂

∂r

(
r2 ∂

∂r

)
+

L2

r2

= −
(
∂2

∂r2
+

2

r

∂

∂r

)
+

L2
(23.15)

.
r2

Thus, the Hamiltonian acts as

HRn,`(r)Y`,m(θ, φ) =

[
~2

−
2m

d

dr

(
r2 dRn,`

dr

)
+

~2`(`+ 1)
Rn,` + V (r)Rn,` `,m

mr2

]
Y

2 (23.16)

= EnRn,`Y`,m .

We can cancel Y`,m from both sides of this equation, and it becomes an ordinary differential equation
for Rn,`(r).

From the requirement that 〈n, `,m|n, `,m〉 = 1, we haveˆ ∞
dr r2Rn,`

∗ (r)Rn,`(r)
0

ˆ
dΩ Y`,m

∗ (θ, φ)Y`,m(θ, φ)︸ ︷︷ = 1 , (23.17)

1

giving

︸
ˆ ∞

dr r2Rn,`
∗ (r)Rn,`(r) = 1 . (23.18)

0

We can understand this ODE more easily by making the change of variables

un,`(r)
Rn,`(r) = . (23.19)

r

The radial equation then becomes

~2

−
2m

d2un,`
+ Veff(r)un,` = Enun,` , (23.20)

dr2

where
~2`(`+ 1)

Veff(r) = V (r) + (23.21)
2mr2

and ˆ ∞
dr |un,`(r)

0
|2 = 1 . (23.22)

This effective potential has a local minimum (for sufficiently non-singular potentials V (r)), which
serves to localize the energy eigenfunctions.
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23.3 Approximation Methods

23.3.1 Time-Independent Perturbation Theory

Suppose that we have a Hamiltonian of the form

H = H0 + V , (23.23)

where H0 is a Hamiltonian with known spectrum and V is small. We can try to find the en-
ergy eigenstates and corresponding energy eigenvalues of the full Hamiltonian by treating V as a
perturbation, and writing these quantities as a systematic power series in V .

As a formal bookkeeping device, let’s introduce a parameter λ, and write

H = H0 + λV . (23.24)

We will then expand in powers of λ (ultimately, we are interested in λ = 1, so we will set it to be
so at the end). Choose an orthonormal energy eigenbasis of H0,

H0|n0〉 = En,0|n0〉 , 〈m0|n0〉 = δm0,n0 . (23.25)

We then assume we can expand the energy eigenstates of H in the form

|n〉 = |n0〉+ λ|n1〉+ λ2|n2〉+ · · · , (23.26)

and the corresponding energy eigenvalues in the form

E = E + λE + λ2
n n,0 n,1 En,2 + · · · . (23.27)

If we plug these expansions into the Schrödinger equation, H|n〉 = En|n〉, we will get an infinite
number of equations from matching the two sides order by order in λ. Explicitly, we have

(H0 + λV )(|n0〉+ λ|n1〉+ · · · ) = (En,0 + λEn,1 + · · · )(|n0〉+ λ|n1〉+ · · · ) . (23.28)
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