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LECTURE NOTES 2 

ROTATIONS IN INDEX NOTATION 

These notes will be an elaboration of a topic that I discussed very hastily at the 
end of the lecture of Friday, September 7, 2012. How does one describe the rotation of a 
vector in index notation? 

Rotations can be described in an active sense, or a passive sense, where active refers 
to rotating the object being described, while passive refers to rotating the coordinate 
system. I have always found it easier to visualize an active rotation, probably because 
it is easier to imagine an object rotating than it is to imagine one’s own head spinning. 
Especially when one tries to think about successive rotations about different axes, the 
active description seems much easier to visualize. So here I will describe the rotations as 
active. 

(I have to admit, however, that the idea of a passive rotation is easier to rigorously 
define. If you rotate the coordinate system, you don’t need to say anything about the 
object. If we are rotating the object, however, we have to imagine that we can cause the 
object to rotate without affecting it in any other way. For a rigid object, like a block of 
wood, this sounds easy, as long as one does not care about microscopic vibrations. But 
if we had to rotate a stream of water falling from a faucet, it would be hard to figure out 
how to do it. So, if anybody asks what we are really talking about, it is probably best 
to say that we are rotating the coordinate system. But I still find it most convenient 
to describe it actively, in terms of what happens to the object. The counterclockwise 
rotation of an object by an angle φ about the z-axis corresponds to a clockwise rotation 
of the coordinate system by the same amount.) 

So, as an example, let us consider what happens to a vector if we rotate it counter
clockwise by an angle φ about the z-axis. We consider an arbitrary vector AA, which  can  
be expanded in unit vectors as 

AA = Aj êj . (2.1) 

We let AAj denote the result of rotating AA as described above. If AA is expanded in basis 
vectors as in Eq. (2.1), then AAj can be expressed by using the same expansion coefficients 
Aj , but with rotated basis vectors. That is, we can write 

jAAj = Aj êj , (2.2) 

jwhere êj is the result of rotating êj counterclockwise by an angle φ about the z-axis. The 
jvectors êj can be expressed in terms of the basis vectors êj by drawing a diagram: 
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One can read from the diagram that 

êjx = êx cos φ + êy sin φ 
jê = −êx sin φ + êy cos φ (2.3)y 

êj = ˆ .z ez 

We can rewrite the above equation by defining a matrix Rij , writing  

jê = êi Rij , (2.4)j 

where in this case we call the rotation matrix Rz(φ), with 

j=1 j=2 j=3 
  

i=1 cos φ − sin φ 0      = i=2  sin φ cos φ 0  . (2.5)Rz(φ)ij     
i=3 0 0 1 

When Rij is written as a matrix, the first index (in this case i) labels the rows, and the 
second index (j in this case) labels the columns. By substituting Eq. (2.4) into Eq. (2.2), 
we find 

AAj = Aj êi Rij , 

or, by reordering the factors, 
AAj = (Rij Aj ) êi . (2.6) 

The components Aj of the vector AA j are defined by i 

AAj = Aj
iêi , (2.7) 

so by comparing Eq. (2.6) with Eq. (2.7), we see that 

Aj
i = Rij Aj , (2.8) 
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where of course j is summed from 1 to 3, since it is a repeated index. 

Note that if the repeated indices are adjacent, as in Eq. (2.8), and if the number of 
indices on any one factor is not larger than two, then the index notation is just another 
way of writing matrix multiplication. That is, Eq. (2.8) could also be written as an 
explicit matrix equation, 

     
Aj

 1   R11 R12 R13  A1             Aj  =  R21 R22 R23  A2  , (2.9) 2          
Aj

3 R31 R32 R33 A3 

where the rules for matrix multiplication are equivalent to the sum over j. 

As an aside,* I mention that it is not difficult to generalize Eq. (2.5) to describe a 
rotation about the direction of n̂, where  ̂n is an arbitrary unit vector. Eq. (2.5) describes 
rotations for n̂i = δi3, so we can try to rewrite Eq. (2.5) in terms of n̂. If we start with 
the matrix elements on the diagonal, we can get those right by writing 

Rz (φ)ij = δij cos φ + n̂in̂j (1 − cos φ) + off-diagonal terms. 

The off-diagonal elements are not so obvious. We want R21 = −R12 = sin  φ, while the 
other off-diagonal terms should vanish. With a little thought, we see that we can build 
such an expression out of n̂ and the Levi-Civita symbol: 

R(n̂, φ)ij = δij cos φ + n̂in̂j (1 − cos φ) − εijk n̂k sin φ .  (2.10) 

By inspection, we can see that Eq. (2.10) agrees with Eq. (2.5) for the special case n̂ = êz . 
But any other case is just a rotation of this case. If we knew just a little more about 
rotational invariance than we are going to include in this course, we would be able to 
conclude that both sides of Eq. (2.10) behave the same way under rotations; that is, 
they behave as tensors. Thus, if the equation is valid for the coordinate system in which 
the rotation axis is the z-axis, then it is also valid in any rotated system, where n̂ is an 
arbitrary unit vector. 

* An “aside” means that if you have trouble following this part, you can safely ignore 
it. It will not be needed for the rest of the course, and will not appear on any exams. 
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