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LECTURE NOTES 4
CONDUCTORS: SURFACE FORCES AND CAPACITANCE

These notes are an addendum to Lecture 7, Wednesday September 19, 2012. The
notes will not repeat what I said in class, but rather will explain two topics that I did not
have time to discuss in class: surface forces in conductors, and capacitance. The material
in these notes will complete our class discussion of Chapter 2 of Griffiths, and it should
be useful to you in completing Problem Set 2.

SURFACE FORCES COMPUTED USING VIRTUAL WORK:

The method of virtual work is simply the use of conservation of energy to determine
a force — in this case, the force on the surface of a conductor. The work is virtual in
the sense that the entire system is static, so no work is actually done. Instead one asks
how much the energy of a system would change if the surface were moved an infinitesimal
amount, and this change in energy is then used to compute the force.

To illustrate the method, consider a solid ball of
conductor with radius R, and charge Q. The charge
will flow to the surface, and by spherical symmetry the
charge must distribute itself uniformly on the sphere,
with surface charge density

Q
σ = . (4.1)

4πR2

Our goal is to calculate the force on the surface. Since
the forces depend only on the charges, the answer we
get will hold for any spherical shell of charge, whether
a conductor is involved or not.

To calculate the total electrostatic energy of this configuration, note that Gauss’s
law implies

�E =


Q r̂ for r > R

4πε0r2 (4.2)
�0 for r < R .

Taking V = 0 at we


∞, for r > R have

V (r) = −
∫ r

�E · d�
∞ (4.3)∞

= +
∫

Q�E · d� =
4πε0

∫ ∞ dr Q
= .

r2
r r 4πε0r
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The potential on the surface is therefore Q/(4πε0R, and the potential inside the sphere
is constant, with this value:

V (r) = V (R)−
∫ r Q�E d� = V (R) = , (4.4)

R

·
4πε0R

since �E = 0 inside the sphere. The total electrostatic energy can be found from

1 Q
W =

∫
ρV d3 1 1 2

x = V (R) ρd3x = V (R)Q = . (4.5)
2 2

∫
2 8πε0R

Now we can apply the method of virtual work. Consider a element of surface with
area da. By spherical symmetry the force on it will be proportional to r̂, and it must also
be proportional to da, since dq = σ da. So we can write the force on the surface element
as

d�F = P da r ,ˆ (4.6)

where we have called the constant of proportionality P , because it is a force per area,
also known as a pressure. Now imagine that the sphere is allowed to expand to radius
R + dR. The surface element will undergo a displacement r̂ dR, so the mechanical work
the electric field does on it is

dWmech = d�F · (r̂ dR) = P da dR . (4.7)

Integrating over the surface, the total mechanical work done is

dWmech = P dR

∫
da = 4πR2P dR . (4.8)

Even though we have integrated, I am still calling the work dWmech, since it is an in-
finitesimal quantity proportional to dR. From Eq. (4.5), the change in the total potential
energy is given by

dW Q2

dW = dR = − dR . (4.9)
dR 8πε0R2

By conservation of energy, this must equal the negative of the amount of mechanical work
done. So

Q2

− dR = πR d
0R2

−4 2P R , (4.10)
8πε

and then

Q2 1 σ2 1
P = = = �σ E , (4.11)

2(4
| out

π)2ε0R4 2 ε0 2
|
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where �Eout = (σ/ε0)r̂ is the electric field just outside the surface.

Eq. (4.11) implies that the surface charge density σ experiences a force equivalent to
an electric field 1 �Eout2

, which is the average of the field outside and the vanishing electric
field inside.

The factor of 1
2 in the force law is easy to understand from a microscopic model

of the charge distribution. While the approximation of an idealized conductor implies a
surface charge layer of zero thickness, the idealization breaks down on the scale of atomic
dimensions, so we expect that the real charge layer will have some nonzero thickness.
If we model the charge density as being uniform over this thickness, the situation is
described in the following diagram:

Gauss’s law implies that the electric field at any point is proportional to the enclosed
charge, so the electric field varies linearly with distance, as shown. (We are treating the
surface as if it is a plane, since the thickness of the surface charge layer is far smaller
than R.) Thus, the average piece of charge in the surface experiences an electric field
that is midway between the value outside and the vanishing value inside, as we found
by the method of virtual work. The description here is based on the assumption that
the charge density is uniform within the surface layer, but in fact the answer does not
depend on this simplification. No matter how the charge density is distributed in space,
we can always divide the thin layer into N thinner layers, each containing a fraction 1/N
of σ. We can think about the limit N → ∞. Gauss’s law implies that the n’th layer
will experience the electric field of the first n − 1 layers, no matter how the layers are
distributed in space. Thus, the total force is independent of how the charge density is
distributed in space, as long as we can assume that the thickness is small compared to
R, so that the planar geometry is a valid approximation.
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CAPACITANCE:

To describe capacitance in the most general possible context, we consider a system
of N isolated conductors, with arbitrary shape and position:

Each conductor is an equipotential, so we can let Vi be the potential of the i’th conductor,
defining the potential at |�r| = ∞ as zero.

If we specify the charge Qi on the i’th conductor, for each i, and if we know the
geometry of the conductors, we can in principle calculate the electric field everywhere.
The equations would be

∇×� �E = 0 (4.12)

outside the conductors, and on the boundaries of each conductor
σ� �E = n ,ˆ E = 0 , (4.13)⊥
ε0

‖

where �E is the normal contribution of the electric field, �E is the tangential contribution,⊥ ‖
and n̂ is a unit outward normal vector to the surface. The total charges on each conductor
i would be specified by ∫

σ da = Qi . (4.14)
Si

The charges on each conductor will distribute themselves so that the field inside the
conductor is zero, and we will prove later that this condition determines the distribution
of charge uniquely. Thus, the potential on each conductor can be calculated, once all the
Qi are specified.

Suppose we put a charge Q1 on conductor 1. The net charges on all the other
conductors will remain zero, but nonetheless a surface charge density will be induced
on the surfaces of each conductor, so that �E inside each conductor will remain �0. If
we doubled the charge on conductor 1, the linearity of the equations of electrostatics
tells us that the electric field everywhere would double, and hence the potential on each
conductor would double. The surface charge densities would also double.

The linearity of the equations also implies that if we put charges on two conductors,
the electric field will be just the vector sum of the fields that would have been created by
Q1 and Q2 separately. In general, then, the electric fields and hence also the potentials
are linear in the charges Qi. Thus we can write

Vi =
∑

PijQj , (4.15)
j
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where the constants Pij are determined by the geometry of the conductors. This matrix
can be inverted, so we can write

Qi =
∑

CijVj , (4.16)
j

where as a matrix,

C = P−1 , or equivalently
∑

CijPjk = δik . (4.17)
j

Cij is called the capacitance matrix, while Pij is called either the elastance matrix, or
simply the reciprocal capacitance matrix. In my experience the word “elastance” is seldom
used.

The most commonly discussed situation involves just
two conductors, with charges that are equal in magnitude
but opposite in sign. Here V is used to denote the poten-
tial difference between the two conductors. This pair of
conductors is called a capacitor. In this case we define the
capacitance C by

Q = CV . (4.18)

Note that the charges for this case are related simply to the notation of the general case,
with Q1 = Q and Q2 = −Q, but the potential V is related in a more complicated way,
V = V1 − V2. Thus the relation between C and the matrix Cij is nontrivial — you will
calculate it in Problem 5 of Problem Set 2.

The unit of capacitance is a coulomb/volt, which is defined to be a farad.
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