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PROFESSOR: So here comes the point that this quite fabulous about Hermitian operators. Here is the thing

that it really should impress you. It's the fact that any, all Hermitian operators have as many

eigenfunctions and eigenvalues as you can possibly need, whatever that means. But they're

rich. It's a lot of those states. What it really means is that the set of eigenfunctions for any

Hermitian operator-- whatever Hermitian operator, it's not just for some especially nice ones--

for all of them you get eigenfunctions.

And these eigenfunctions, because it has vectors, they are enough to span the space of

states. That is any state can be written as a superposition of those eigenvectors. There's

enough. If you're thinking finite dimensional vector spaces, if you're looking at the Hermitian

matrix, the eigenvectors will provide you a basis for the vector space. You can understand

anything in terms of eigenvectors. It is such an important theorem. It's called the spectral

theorem in mathematics.

And it's discussed in lots of detail in 805. Because there's a minor subtlety. We can get the

whole idea about it here. But there are a couple of complications that mathematicians have to

iron out. So basically let's state we really need, which is the following. Consider the collection

of eigenfunctions and eigenvalues of the Hermitian operator q. And then I go and say, well, q

psi 1 equal q 1 psi 1 q psi 2 equal q2 psi 2.

And I actually don't specify if it's a finite set or an infinite set. The infinite set, of course, is a tiny

bit more complicated. But the result is true as well. And we can work with it. So that is the set

up. And here comes the claim. Claim 3, the eigenfunctions can be organized to satisfy the

following relation, integral dx psi i of x psi j of x is equal to delta ij. And this is called

orthonormality.

Let's see what this all means. We have a collection of eigenfunctions. And here it says

something quite nice. These functions are like orthonormal functions, which is to say each

function has unit norm. You see, if you take i equal to j, suppose you take psi 1 psi 1, you get

delta 1 1, which is 1. Remember the [INAUDIBLE] for delta is 1 from the [INAUDIBLE] are the

same. And it's 0 otherwise. psi 1 the norm of psi 1 is 1 and [INAUDIBLE] squared [INAUDIBLE]

psi 1, psi 2, psi3, all of them are well normalized.

So they satisfied this thing we wanted them to satisfy. Those are good states. psi 1, psi 2, psi



3, those are good states. They are all normalized. But even more, any two different ones are

orthonormal. This is like the 3 basis vectors of r3. The x basic unit vector, the y unit vector, the

z unit vector, each one has length 1, and they're all orthonormal.

And when are two functions orthonormal? You say, well, when vectors are orthonormal I know

what I mean. But orthonormality for functions means doing this integral. This measures how

different one function is from another one. Because if you have the same function, this integral

and this positive, and this all adds up. But for different functions, this is a measure of the inner

product between two functions. You see, you have the dot product between two vectors. The

dot product of two functions is an integral like that. It's the only thing that makes sense

So I want to prove one part of this, which is a part that is doable with elementary methods. And

the other part is a little more complicated. So let's do this. And consider the case if qi is

different from qj, I claim i can prove this property. We can prove this orthonormality. So start

with the integral dx of psi i star q psi j. Well, q out here at psi j is qj. So this is integral dx psi i

star qj psi j. And therefore, it's equal to qj times integral psi i star psi j.

I simplified this by just enervating it. Because psi i and psi j are eigenstates of q. Now, the

other thing I can do is use the property that q is Hermitant and move the q to act on this

function. So this is equal to integral dx q i psi i star psi j. And now I can keep simplifying as

well. And I have dx. And then I have the complex conjugate of qi psi i psi i, like this, psi j. And

now, remember q is an eigenvalue for Hermitian operator. We already know it's real. So q

goes out of the integral as a number. Because it's real, and it's not changed. Integral dx psi i

star psi j.

The end result is that we've shown that this quantity is equal to this second quantity. And

therefore moving this-- since the integral is the same in both quantities, this shows that q i

minus qj, subtracting these two equations, or just moving one to one side, integral psi i star psi

j dx is equal to 0. So look what you've proven by using Hermiticity, that the difference between

the eigenvalues times the overlap between psi i and psi j must be 0.

But we started with the assumption that the eigenvalues are different. And if the eigenvalues

are different, this is non-zero. And the only possibility is that this integral is 0. So this implies

since we've assumed that qi is different than qj. We've proven that psi i star psi j dx is equal to

0. And that's part of this little theorem. That the eigenfunctions can be organized to have

orthonormality and orthonormality between the different points.



My proof is good. But it's not perfect. Because it ignores one possible complication, which is

that here we wrote the list of all the eigenfunctions. But sometimes something very interesting

happens in quantum mechanics. It's called degeneracy. And degeneracy means that there

may be several eigenfunctions that are different but have the same eigenvalue. We're going to

find that soon-- we're going to find, for example, states of a particle that move in a circle that

are different and have the same energy. For example, a particle moving in a circle with this

velocity and a particle moving in a circle with the same magnitude of the velocity in the other

direction are two states that are different but have the same energy eigenvalue.

So it's possible that this list not all are different. So suppose you have like three or four

degenerate states, say three degenerate states. They all have the same eigenvalue. But they

are different. Are they orthonormal or not? The answer is-- actually the clue is there. The

eigenfunctions can be organized to satisfy. It would be wrong if you say the eigenfunctions

satisfy. They can be organized to satisfy. It means that, yes, those ones that have different

eigenvalues are automatically orthonormal. But those that have the same eigenvalues, you

may have three of them maybe, they may not necessarily be orthonormal. But you can do

linear transformations of them and form linear combinations such that they are orthonormal.

So the interesting part of this theorem, which is the more difficult part mathematically, is to

show that when you have degeneracies this still can be done. And there's still enough

eigenvectors to span the space.


